• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金/氧化亞銅異質(zhì)球的制備及其可見光催化性能

    2013-09-17 06:59:18施湛斌張東鳳
    物理化學(xué)學(xué)報(bào) 2013年8期
    關(guān)鍵詞:氧化亞銅北京航空航天大學(xué)海濱

    商 旸 陳 陽 施湛斌 張東鳳 郭 林

    (北京航空航天大學(xué)化學(xué)與環(huán)境學(xué)院,北京100191)

    1 Introduction

    The requirement of sustainable energy sources and reduction of environmental pollution has driven considerable research efforts on water splitting and photodegradation of organic pollutants by using the abundant solar energy.1,2Many photoexcited semiconductor metal oxides,such as Cu2O,Fe2O3,TiO2,ZnO,and WO3,were reported as the efficient photocatalyst in aqueous solutions.3-11Among them,Cu2O with bandgap energy of 2.1 eV is expected as one of the promising materials in visible-light photocatalytic degradation,12which stimulated the research effort on the controlled growth of Cu2O and the investigation of morphology-dependent photocatalytic activities.13-17However,the lower photocatalytic efficiency owing to the fast recombination of the photogenerated electron and hole(e-/h+)pairs was still the main barrier limiting the applications of Cu2O in photocatalysis.5

    Previous reports indicated that the hybridation between noble metal with semiconductor could reduce the recombination of the photogenerated e-/h+pairs,and thus enhance the photocatalytic efficiency.18-24For one thing,the loaded noble metal nanoparticles(NPs)can serve as electron sink to promote the e-/h+pairs separation24,25andthus enhance the quantum yield.26For another thing,the surface plasmon resonance(SPR)effect,defined as the collective coherent oscillation of the free charges on noble metal NPs irradiated by visible-light,can enhance the local electric field in the neighborhood of the noble metal NPs,and accelerate the formation of e-/h+pairs in the near-surface region of the semiconductor.27-29In addition,metal oxide photocatalyst with high support surface areas and the uniform distributions of the loaded noble metal NPs are necessary to get high photocatalytic efficiency.30Unlike TiO2,which has been extensively studied for loading with noble metal NPs,24,30,31Cu2O support tends to react with the noble metal precursor due to the low standard reduction potential.3And larger noble metal NPs tend to grow on the surface of Cu2O,which may hinder the adsorption and degradation of organic pollutant.5

    Our previous work reported the preparation of Cu2O mesoporous spheres(MPS),which exhibit excellent adsorption performance.32We believed that the higher specific surface area and short-range-ordered structure of Cu2O MPS are beneficial for the sufficient contact between the organic dye molecules and Cu2O.To further explore their photocatalytic activities,herein,we report the preparation of Au/Cu2O heterogeneous spheres(HGS)by in-situ growth of Au NPs on the surface of Cu2O MPS through a wet-chemical reduction process while keep the mesoporous structure intact.Furthermore,we investigate the visible light photocatalytic activities of Au/Cu2O HGS for the degradation of methylene blue(MB).

    2 Experimental

    2.1 Materials

    All the reagents were used without further purification.Copper chloride(CuCl2·2H2O,AR,≥99.0%),absolute ethanol(AR,≥99.7%),and ammonia(NH3·H2O,25%-28%,mass fraction)were purchased from Beijing Chemical Works.Triblock copolymer Pluronic P123(EO20PO70EO20,MW 5800)was purchased from Sigma-Aldrich,USA.Ascorbic acid(AR,≥99.7%)was purchased from Xilong Chemical Industry Incorporated Co.Ltd.Chloroauric acid(HAuCl4·4H2O,AR,≥47.8%)was purchased from Shenyang Jinke reagent factory.Sodium borohydride(NaBH4,AR,≥98.0%)and L-cysteine(AR,≥99.5%)were purchased fromAladdin reagent.

    2.2 Synthesis

    2.2.1 Synthesis of Cu2O mesoporous spheres

    The Cu2O MPS were fabricated according to our previous works with minor modification.32Typically,0.612 g P123 was firstly dissolved in the mixture of 28.0 mL deionized water and 2.0 mL ethanol at 18°C under constant stirring.And given volume of NH3·H2O(14 mol·L-1)was added into the CuCl2aqueous solution(0.20 mol·L-1)to make the molar ratio of NH3to Cu2+kept as 10:1.The dark blue color of the solution indicated the formation of the Cu(NH3)2+4.Then,2.25 mL Cu(NH3)2+4solution was poured into the solution of P123 under constant stirring.After 30 min,5.0 mL ascorbic acid(AA,0.60 mol·L-1)was added dropwise into the above mixture.All the procedures were kept in water bath at 18°C(calibrated by Lauda Ecoline staredition RE 106).The reaction mixture underwent a series of color change from deep blue,light blue,limpid,white turbid,and finally to bright yellow turbid.The solution was kept stirring for another 10 min,and the resulting bright yellow precipitate was collected by centrifugation,washed with ethanol for several times to remove the P123,and then dried under vacuum at 60°C for 4 h.

    2.2.2 Synthesis of Au/Cu2O heterogeneous spheres

    In a typical synthesis,0.015 g Cu2O MPS was dispersed in 15.0 mL ethanol followed by the addition of 0.20 mL of L-cysteine aqueous solution(0.010 mol·L-1).After subjected to sonication for 30 min,1.0 mL HAuCl4aqueous solution(5.0 mmol·L-1)was added into the Cu2O dispersing.After the solution was vigorously stirred for another 30 min,0.25 mL NaBH4aqueous solution(0.030 mol·L-1)was quickly added into the solution.The mixture was aged for 0.5 h.All the procedures were kept in water bath at 10°C(calibrated by Lauda Ecoline staredition RE 106).The resulting precipitate was collected by centrifugation and decanting,followed by washing with distilled water for 3 times and absolute ethanol twice,respectively.Then,the products were dried under vacuum at 60°C for 4 h for the final characterization.

    2.3 Characterization

    The structure of the products was characterized by the powder X-ray diffraction(XRD)using a Rigaku Rotaflex Dmax 2200(Japan)diffractometer with Cu Kαradiation(λ=0.15406 nm).Scanning electron microscopy(SEM)images of the samples were obtained using Hitachi S-4800(Japan)with an accelerating voltage of 10 kV.Transmission electron microscopy(TEM)and High-resolution transmission electron microscopy(HRTEM)images were recorded by JEOL JEM-2100F(Japan)with an accelerating voltage of 200 kV.Elemental composition data were collected by EDAX equipped within the JEOL JEM-2100F.Specific surface areas were measured by using at least 0.1 g sample at-196°C through Brunauer-Emmett-Teller(BET)nitrogen adsorption-desorption(NOVA 2200e,Quanthachrome,USA).Before the measurements,all samples were degassed in vacuum at 150°C in the port of the adsorption analyzer for 4 h.The Brunauer-Emmett-Teller method was utilized to calculate the specific surface area(SBET).The pore size distribution(PSD)was derived from the adsorption branch using the Barrett-Joyner-Halenda(BJH)theory.Absorption spectra were recorded on a UV-3600 UV-Vis-NIR spectrophotometer made in Shimadzu,Japan.X-ray photoelectron spectroscopy(XPS)measurements were carried out on an Axis Ultra spectrometer(UK)under ultrahigh vacuum conditions with a standard Al Kαexcitation source(1486.6 eV).The charging effect was corrected by adjusting the binding energy of the main C 1s peak to 284.6 eV.

    2.4 Photocatalytic activity measurement

    The photocatalytic activities of the Cu2O and Au/Cu2O were evaluated by the degradation of methylene blue(50 mL,5 mg·L-1)containing 0.015 g as-obtained sample placed in a 200 mL cylindrical quartz vessel under 300 W Xe lamp with UV cutoff filter(providing visible light with λ larger than 400 nm).Before the light was turned on,the solution was stirred in the dark for 30 min to ensure adsorption-desorption equilibrium between the Cu2O and dyes.Under constant stirring in the dark,about 3 mL of the mixture solution was taken out at different intervals.After centrifugation,the UV-Vis spectrum of the supernatant was recorded to monitor the adsorption behavior.

    3 Results and discussion

    3.1 Characterization of Au/Cu2O HGS

    The phase and purity of the samples were verified by X-ray diffraction(XRD)characterizations.Fig.1a illustrated the typical XRD pattern of the as-prepared pure Cu2O MPS.All the diffraction peaks could be well indexed to cuprite Cu2O(JCPDS No.05-0667).No peaks from impurities such as CuO and Cu can be identified.Fig.1b showed a typical XRD pattern of the as-prepared Au/Cu2O HGS.Besides the four diffraction peaks originated from cuprite Cu2O,there appears a peak at 2θ=38.2°,which can be indexed to(111)crystal plane of cube phase Au(JCPDS No.04-0784).The weak diffraction peak of Au indicated the low content ofAu in the sample.

    Fig.1 XRD patterns of(a)pure Cu2O MPS and(b)Au/Cu2O HGS

    Fig.2 presented typical scanning electron microscopy and transmission electron microscopy of the pure Cu2O MPS and Au/Cu2O HGS.The size of the pure Cu2O MPS was 150 to 350 nm(Fig.2a),and the magnified SEM image of a representative spheres illustrated its mesoporous structure feature with the pore diameter of~8 nm(inset of Fig.2a).Fig.2b was the typical SEM image of Au/Cu2O HGS,which demonstrated that no obvious size change of the spheres was observed after Au loading except for the observation of some small attachments.TEM observations as shown in Fig.2d revealed that the spheres kept the mesoporous structure and small particles of~4 nm could be identified on the surface of the mesoporous structures.The small particles on the surface tended to aggregate,corresponding to the attachment in the SEM image.The energy dispersive X-ray(EDX analysis as shown in Fig.2c)gave signals of Au and Cu,which confirmed that the small particles observed in TEM were Au NPs.To learn more structure information,high-resolution transmission electron microscopy was employed.The typical TEM images of Au/Cu2O HGS were shown in Figs.2d and 2e.From the HRTEM image(Fig.2f)recorded from the edge of the sphere(as indicated by the framed area in Fig.2e),lattice fringes with interplanar spacing of 0.246 and 0.235 nm can be identified.The former can be ascribed to the(111)crystal plane of the cubic Cu2O,while the latter can be ascribed to the(111)crystal plane of the cubic Au.The result revealed that the Cu2O mesoporous structure was good supports for the dispersedness of the Au NPs to construct novel catalytically nanoreactors.

    Contrast experiment was carried out to optimize the ratio of Au/Cu2O by changing the amount of the added HAuCl-4solution.According to the experiment,the added HAuCl4/Cu2O ratio is 5%,and the EDX analysis illustrated that the ratio of the loaded Au NPs on Cu2O MPS was 2.4%.If increased the HAuCl4aqueous solution to 1.5 mL,the EDX analysis(Fig.S1(Supporting Information))showed that the ratio of the loaded Au NPs on Cu2O MPS was increased to 2.5%.It means that the amount of Au loaded on Cu2O does not obviously increase with the amount of HAuCl4.To optimize use ratio of the expensive HAuCl4,1.0 mL HAuCl4was added to react with Cu2O MPS.

    Fig.2 SEM images of(a)pure Cu2O MPS and(b)Au/Cu2O HGS;(c)EDX spectrum of theAu/Cu2O HGS;(d)TEM image ofAu/Cu2O HGS;(e)magnified TEM image recorded on the framed area in(d);(f)HRTEM image recorded on the framed area in(e)

    The Brunauer-Emmett-Teller N2adsorption-desorption isotherms of the Cu2O and Au/Cu2O HGS(Fig.3)exhibited type IV hysteresis loops at relative pressures of p/p0=0.45-0.98,providing another evidence for the intact mesoporous structure.The measured surface area of Au/Cu2O HGS is 45.22 m2·g-1,similar with that of the pure Cu2O MPS(48.04 m2·g-1).There are obvious strong and narrow peaks at about 7.4 nm calculated by Barrett-Joyner-Halenda(BJH)analysis using the adsorption branch of the isotherm,proving the narrow pore size distributions and the unchanged Cu2O mesoporous structures after loadedAu NPs.

    Fig.3 Nitrogen adsorption-desorption isotherms and the corresponding BJH pore size distribution curve(inset)of the Cu2O MPS andAu/Cu2O HGS

    Fig.4 showed the UV-Vis absorption spectra of pure Cu2O MPS and Au/Cu2O HGS.The absorption spectrum of Cu2O MPS displayed an adsorption peak centered at about 450 nm(Fig.4b).By contrast,the Au/Cu2O HGS exhibited increased light absorption intensity with a much broader absorption peak,which centred at about 510 nm(Fig.4c).As a noble metal,Au NPs often exhibit strong SPR due to the collective oscillation of conduction electrons when exposed to an external electromagnetic field.33It is well documented that the transverse SPR(TSPR)absorption band of Au NPs with 3-5 nm in solution is about 520 nm(Fig.4a).5,34Due to the low amount of Au loaded on the Cu2O MPS,the plasmon resonance of Au NPs is weaker than the absorption of Cu2O,and the hardly observed adsorption peak of Au SPR might be overlapped with the absorption peak of Cu2O and lead a broaden spectrum feature of Au/Cu2O HGS.

    Fig.4 UV-Vis absorption spectra of(a)Au NPs with~4 nm,(b)Cu2O MPS,and(c)Au/Cu2O HGS

    Fig.5 XPS results of theAu/Cu2O HGS

    The element analysis of the Au/Cu2O HGS examined by XPS was shown in Fig.5.The XPS spectra gave strong signals at around 932.1,952.0,83.9,and 87.6 eV,the former two correspond to the Cu 2p3/2and Cu 2p1/2of Cu+,35while the latter two can be assigned to metallic Au0.36Although the signals related to Cu2+states were also observed(satellite peaks at 934.7,943.8,and 954.6 eV),they are very weak.According to the previous reports,it may due to the adsorption of ambient CO2and/or hydration during the sample handling(e.g.,surface CuCO3and/or Cu(OH)2),which is always not detectable by XRD due to the small amount and the poor crystalline.33The predominant pure-metallic Au0component observed herein excludes the presence of any Au-Cu alloys(e.g.,Cu3Au).33Thus,the XPS study also reconfirms the formation of binary nanocomposites of theAu NPs and Cu2O.

    3.2 Formation mechanism

    Due to the quite different standard reduction potential=+0.15 V),Cu2O inclined to be oxidized by HAuCl4.To keep the Cu2O mesoporous structure intact with Au NPs loading,the key factor is to ensure the redox action betweenions and Cu2O not to occur before the introduction of NaBH4.Therefore,the L-cysteine molecules with bi-functional groups(-NH2and -COOH)act as a linker for in-situ growth of Au NPs on Cu2O MPS.The strong coordination ability between-COOH group and Cu atoms in Cu2O MPS makes the L-cysteine bind to the Cu2O.WhenAuCl-4is introduced,the bonding between Au3+and-NH2group promote the adsorption ofonto the surface of the pores of the Cu2O MPS,which ensured the in-situ reduction of AuCl-4and the formation of theAu/Cu2O heterogeneous structures.

    When distilled water was used as the reaction solvent,the solution color simultaneously transformed into dark green just after HAuCl4solution was added.This rapid process without using the reducing agent NaBH4could be expressed by Eq.(1).

    From the corresponding SEM image as shown in Fig.6a,some sheet-like structures were obvious in the products,which is the characteristic structure feature of CuO.37The EDX analysis(Fig.S2c)confirms that the sheet-like structures are composed of Cu and O,and the Cu/O molar ratio of the product is 51/49 that can be ascribed to CuO.From the HRTEM image(Fig.S2b)recorded from the edge of the structures(as indicated by the framed area in Fig.S2a),lattice fringes with interplanar spacing of 0.231 nm can be ascribed to the(111)crystal plane of the CuO.The CuO sheet-like structures may be the by-products when the Eq.(1)was happened that Cu2O MPS was oxidized into CuO by oxygen in the air.Furthermore,some larger Au NPs can be found independent with the Cu2O MPS.The larger Au NPs may result from the fast reduction of Au seeds and the subsequent quick seeded growth process.38It is well documented that the additional ethanol in deionized water can slow down the formation rate of inorganic nanocrystals.39When the solvent changed into the mixture of 10.0 mL distilled water and 5.0 mL ethanol,it can be seen that the sheet structures are decreased(Fig.6b).This result illustrates that the degree of oxidation for Cu2O is declined by the addition of ethanol.Furthermore,some of hollow spheres may cause by the corrosion of the production of HCl.When increasing the amount of ethanol to 10.0 mL,the sheet structures significantly reduced.Therefore,the use of ethanol retarded the redox be-tween AuCl-4and Cu2O and facilitated the absorption of AuCl-4onto the surface of the pores of the Cu2O MPS.After the strong reducing agent NaBH4was added,a rapid redox reaction between HAuCl4and NaBH4could happen as shown in Eq.(2).9H2O+3NaBH4+8HAuCl4=8Au+3NaCl+29HCl+8H3BO3(2)The fast reduction is beneficial for the fast nucleation of Au,which produces small sizedAu NPs.

    Fig.6 SEM images of theAu/Cu2O HGS obtained with different solution of(a)15.0 mLdeionized water,(b)10.0 mLdeionized water with 5.0 mLethanol,and(c)5.0 mLdeionized water with 10.0 mLethanol

    3.3 Photocatalytic degradation of MB

    To avoid the adsorption of the negatively charged dyes such as methyl orange,32the photocatalytic activities of the as-prepared Cu2O HGS were investigated on the decomposition of positively charged methylene blue(MB)under visible-light irradiation.Fig.7A summarized the activities of the photocatalyst toward MB degradation through monitoring the adsorption intensity at 664 nm versus time.Before visible-light irradiation,the mixed solution containing the catalyst and MB was stirred in the dark for 30 min to ensure that MB was adsorbed to saturation on the surface of catalysts.In the blank test(without catalyst),Ct/C0(relative concentration)of MB was degraded by only 4%after visible-light irradiation for 120 min(curve a in Fig.7A).However,the degradation rate was significantly improved in the presence of the Cu2O MPS with a slight adsorption capacity in the range of 0.04-0.05 of Ct/C0.Under the same conditions,Au/Cu2O HGS illustrated a higher photocatalytic activity(curve c in Fig.7A)than Cu2O MPS.MB degraded to 62%by the Cu2O MPS(curve b in Fig.7A)after 120 min;by contrast,Au/Cu2O HGS decomposed the MB to 85%after 120 min.Therefore,the photocatalytic activity was enhanced afterAu NPs loaded on the Cu2O MPS.

    Fig.7 (A)Curves of the photocatalytic activities on the decomposition of MB concentration and(B)apparent reaction rate constant versus visible irradiation time in the presence of different Cu2O catalysts

    The photodegradation of MB could be described as a firstorder reaction by using a simplified Langmuir-Hinshelwood model,40-42when C0is very small:ln(Ct/C0)=-kt,where k is the apparent first-order reaction rate constant.Fig.7B shows the linear relationship represented by the ln(Ct/C0)versus reaction time t for different catalysts employed in this work.As all these plots match the first-order reaction kinetics very well,the apparent reaction rate constant(k)can be calculated from the rate equation ln(Ct/C0)=-kt(Fig.7B).The reaction rate constants for the photodegradation of MB were 4×10-4,8.2×10-3,and 1.43×10-2min-1for the blank experiment,in the presence of Cu2O and Au/Cu2O,respectively.The kinetic reaction constants k of MB photodegradation in the presence of Au/Cu2O were 1.74 times that of the reaction in the presence of pure Cu2O MPS.

    The enhanced photocatalytic activities are attributed to the loaded Au NPs on Cu2O,which may act as electron sink to slow down the recombination of the photogenerated e-/h+pairs in Cu2O so as to improve the separation on its surfaces.The Fermi level of Au is-5.1 eV,43which is lower than that of Cu2O.As the Au/Cu2O heterojunction formed,an interfacial charge equilibrium will be established through electrons transfer from Au to Cu2O(Scheme 1a).When the as-obtained Au/Cu2O is excited by visible light,electrons in the conduction band(VB)are excited to the valence band(CB);meanwhile,holes are simultaneously generated in the VB.Since the bottom of the CB of Cu2O is higher than the new equilibrium Fermi level of Au/Cu2O,the photo-generated electrons will transfer from the CB of Cu2O to the Au NPs until new interfacial charge equilibrium is reached(Scheme 1b).Due to the Schottky barrier formed at the metal-semiconductor interface,Au NPs will act as electron sink that enhances the separation of photogenerated e-/h+pairs,and prolong their lifetime.The photogenerated holes in the VB can be trapped by OH-,resulting in generation of hydroxyl radical(·OH).Furthermore,the exposed{111}surface of Cu2O MPS possess active“Cu”atoms which tend to adsorb O2that will capture photogenerated electrons,and then lead to the formation of superoxide anion radical(·O-2).Finally,the·O-2radicals are all reduced to·OH radicals.Due to the strong oxidization of·OH free radicals(the reduction potential of·OH is about 2.8 V),those radicals attack organic dye and cause dye molecules photodegradation under the irradiation of visible light.

    Furthermore,the SPR of Au NPs anchored on Cu2O MPS may also enhance the visible-light photocatalytic efficiency of the Au/Cu2O HGS.It has been demonstrated that SPR-induced local electric field enhancement in the neighborhood of metal NPs could accelerate the generation of e-/h+pairs in the semiconductor.23,44Under visible-light illumination,electric fields are spatially inhomogeneous and intensive in the vicinity of Au NPs,24which would induce rapid formation of e-/h+pairs on the Cu2O surface region near the Au NPs.Therefore,more photoelectrons are generated and could produce more·OH radicals which attack organic dye and cause dye molecules photodegradation under the irradiation of visible-light.

    Scheme 1 Schematic illustration of(a)energy level diagram ofAu/Cu2O interface before visible-light irradiation and(b)charge separation process and photocatalytic mechanism of theAu/Cu2O GHS under visible-light irradiation

    4 Conclusions

    In summary,Au/Cu2O GHS have been successfully prepared through in-situ growth of Au NPs on the surfaces of Cu2O MPS by using a facile wet-chemical reduction.The Au/Cu2O exhibits higher visible-light photocatalytic activities than pure Cu2O counterpart for the degradation of MB.Au NPs are believed to work in two ways to improve the photocatalytic activities.On the one hand,Au NPs served as an electron sink to allow the quick separation of photogenerated electrons and holes and prolong their lifetime to have sufficient time to participate the overall photocatalytic reactions;On the other hand,the SPR-induced local electric field enhancement on Au NPs may increase the generation of electrons and holes of Cu2O under visible-light irradiation,and thus improve the photocatalytic efficiency of the Au/Cu2O HGS.We envisage that this strategy of the heterostructure synthesis involving loaded noble metal NPs on semiconductor surface may have important impact on the future development of highly efficient visible light photocatalyst for organic pollutant degradation.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Fujishima,A.;Honda,K.Nature 1972,238,37.doi:10.1038/238037a0

    (2) Zou,Z.G.;Ye,J.H.;Sayama,K.;Arakawa,H.Nature 2001,414,625.doi:10.1038/414625a

    (3)Wang,Z.H.;Zhao,S.P.,Zhu,S.Y.;Sun Y.L.;Fang,M.CrystEngComm 2011,13,2262.doi:10.1039/c0ce00681e

    (4) Fan,H.B.;Zhang,D.F.;Guo,L.Acta Phys.-Chim.Sin.2012,28,2214.[范海濱,張東鳳,郭 林.物理化學(xué)學(xué)報(bào),2012,28,2214.]doi:10.3866/PKU.WHXB201206122

    (5) Pan,Y.L.;Deng,S.Z.;Polavarapu,L.;Gao,N.Y.;Yuan,P.Y.;Sow,C.H.;Xu,Q.H.Langmuir 2012,28,12304.doi:10.1021/la301813v

    (6)Kochuveedu,S.T.;Oh,J.H.;Do,Y.R.;Kim,D.H.Chem.Eur.J.2012,18,7467.

    (7) Shang,Y.;Sun,D.;Shao,Y.M.;Zhang,D.F.;Guo,L.;Yang,S.H.Chem.Eur.J.2012,18,14261.doi:10.1002/chem.v18.45

    (8)Subramanian,V.;Wolf,E.E.;Kamat,P.V.J.Am.Chem.Soc.2004,126,4943.doi:10.1021/ja0315199

    (9)Tong,G.X.;Guan J.G.;Xiao,Z.D.;Huang,X.;Guan,Y.J.Nanopart.Res.2010,12,3025.doi:10.1007/s11051-010-9897-2

    (10)Tong,G.X.;Guan J.G.;Zhang,Q.J.Mater.Chem.Phys.2011,127,371.doi:10.1016/j.matchemphys.2011.02.021

    (11)Wei,S.Q.;Ma,Y.Y.;Chen,Y.Y.;Liu,L.;Liu,Y.;Shao,Z.C.J.Hazard.Mater.2011,194,243.doi:10.1016/j.jhazmat.2011.07.096

    (12) Hara,M.;Kondo,T.;Komoda,M.;Ikeda,S.;Shinohara,K.;Tanaka,A.;Kondo J.N.;Domen,K.Chem.Commun.1998,357.

    (13)Zhou,W.W.;Yan,B.;Cheng,C.W.;Cong,C.X.;Hu,H.L.;Fan,H.J.;Yu,T.CrystEngComm 2009,11,2291.doi:10.1039/b912034n

    (14) Cao,Y.B.;Fan,J.M.;Bai,L.Y.;Yuan,F.L.;Chen,Y.F.Cryst.Growth Des.2010,10,232.doi:10.1021/cg9008637

    (15) Li,H.;Ni,Y.H.;Cai,Y.F.;Zhang,L.;Zhou,J.Z.;Hong,J.M.;Wei,X.W.J.Mater.Chem.2009,19,594.doi:10.1039/b818574c

    (16)Xu,H.L.;Wang,W.Z.;Zhu,W.J.Phys.Chem.B 2006,110,13829.doi:10.1021/jp061934y

    (17) Sun,S.D.;Zhang,H.;Song,X.P.;Liang,S.H.;Kong,C.C.;Yang,Z.M.CrystEngComm 2011,13,6040.doi:10.1039/c1ce05597f

    (18) Deo,M.;Shinde,D.;Yengantiwar,A.;Jog,J.;Hannoyer,B.;Sauvage,X.;Moreb,M.;Ogale,S.J.Mater.Chem.2012,22,17055.doi:10.1039/c2jm32660d

    (19)Wang,Y.B.;Zhang,Y.N.;Zhao,G.H.;Tian,H.Y.;Shi,H.J.;Zhou,T.C.ACS Appl.Mater.Interfaces 2012,4,3965.doi:10.1021/am300795w

    (20) Cao,S.W.;Yin,Z.;Barber,J.;Boey,F.Y.C.;Loo,S.C.J.;Xue,C.ACS Appl.Mater.Interfaces 2012,4,418.doi:10.1021/am201481b

    (21) Georgekutty,R.;Seery,M.K.;Pillai,S.C.J.Phys.Chem.C 2008,112,13563.doi:10.1021/jp802729a

    (22)Wang,P.;Huang,B.B.;Qin,X.Y.;Zhang,X.Y.;Dai,Y.;Wei,J.Y.;Whangbo,M.H.Angew.Chem.Int.Edit.2008,47,7931.doi:10.1002/anie.v47:41

    (23) Jiang,J.;Zhang,L.Z.Chem.Eur.J.2012,18,6360.doi:10.1002/chem.201102606

    (24)Wang,H.;You,T.T.;Shi,W.W.;Li,J.H.;Guo,L.J.Phys.Chem.C 2012,116,6490.doi:10.1021/jp212303q

    (25) Li,X.Z.;Li,F.B.Environ.Sci.Technol.2001,35,2381.doi:10.1021/es001752w

    (26)Zhang,H.;Wang,G.;Chen,D.;Lv,X.J.;Li,J.H.Chem.Mater.2008,20,6543.doi:10.1021/cm801796q

    (27) Hou,W.B.;Cronin,S.B.Adv.Funct.Mater.2012,23,1612.

    (28) Hirakawa,T.;Kamat,P.V.J.Am.Chem.Soc.2005,127,3928.doi:10.1021/ja042925a

    (29) Costi,R.;Saunders,A.E.;Elmalem,E.;Salant,A.;Banin,U.Nano Lett.2008,8,637.doi:10.1021/nl0730514

    (30)Jin,Z.;Xiao,M.D.;Bao,Z.H.;Wang,P.;Wang,J.F.Angew.Chem.Int.Edit.2012,51,6406.doi:10.1002/anie.201106948

    (31)Li,C.C.;Zheng,Y.P.;Wang,T.H.J.Mater.Chem.2012,22,13216.doi:10.1039/c2jm16921e

    (32) Shang,Y.;Zhang,D.F.;Guo,L.J.Mater.Chem.2012,22,856.doi:10.1039/c1jm14258e

    (33)Pang,M.L.;Wang,Q.X.;Zeng,H.C.Chem.Eur.J.2012,46,14605.

    (34) Zhang,D.F.;Niu,L.Y.;Jiang,L.;Yin,P.G.;Sun,L.D.;Zhang,H.;Zhang,R.;Guo,L.;Yan,C.H.J.Phys.Chem.C 2008,112,16011.doi:10.1021/jp803102h

    (35) Zhang,D.F.;Zhang,H.;Shang,Y.;Guo,L.Cryst.Growth Des.2011,11,3748.doi:10.1021/cg101283w

    (36)Zhang,J.;Liu,X.H.;Wang,L.W.;Yang,T.L.;Guo,X.Z.;Wu,S.H.;Wang,S.R.;Zhang,S.M.J.Phys.Chem.C 2011,115,5352.doi:10.1021/jp110421v

    (37) Sun,D.;Yin,P.G.;Guo,L.Acta Phys.-Chim.Sin.2011,27,1543.[孫 都,殷鵬剛,郭 林.物理化學(xué)學(xué)報(bào),2011,27,1543.]doi:10.3866/PKU.WHXB20110619

    (38)Gu,J.;Zhang,Y.W.;Tao,F.Chem.Soc.Rev.2012,41,8050.doi:10.1039/c2cs35184f

    (39)Wang,Z.Y.;Luan,D.Y.;Boey,F.Y.C.;Lou,X.W.J.Am.Chem.Soc.2011,133,4738.doi:10.1021/ja2004329

    (40) Peng,C.;Jiang,B.W.;Liu,Q.;Guo,Z.;Xu,Z.J.;Huang,Q.;Xu,H.J.;Tai,R.Z.;Fan,C.H.Energy Environ.Sci.2011,4,2035.doi:10.1039/c0ee00495b

    (41)Zuo,X.L.;Peng,C.;Huang,Q.;Song,S.P.;Wang,L.H.;Li,D.;Fan,C.H.Nano Res.2009,2,617.doi:10.1007/s12274-009-9062-3

    (42) Zhang,N.;Liu,S.Q.;Fu,X.Z.;Xu,Y.J.J.Phys.Chem.C 2011,115,9136.doi:10.1021/jp2009989

    (43)Subramanian,V.;Wolf,E.E.;Kamat,P.V.J.Am.Chem.Soc.2004,126,4943.doi:10.1021/ja0315199

    (44) Wu,J.L.;Chen,F.C.;Hsiao,Y.S.;Chien,F.C.;Chen,P.L.;Kuo,C.H.;Huang,M.H.;Hsu,C.S.ACS Nano 2011,5,959.doi:10.1021/nn102295p

    猜你喜歡
    氧化亞銅北京航空航天大學(xué)海濱
    空心微珠負(fù)載鈰或氮摻雜氧化亞銅光催化劑的制備方法
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    夏日海濱
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    納米氧化亞銅的制備及其抑菌性研究
    安徽化工(2018年1期)2018-04-03 03:06:28
    海濱書簡
    散文詩(2017年17期)2018-01-31 02:34:19
    海濱1
    用銅鎢合金廢料制備氧化亞銅
    最近在线观看免费完整版| 成人三级黄色视频| 国产一级毛片七仙女欲春2| 少妇高潮的动态图| 精品久久久久久久久久免费视频| 麻豆精品久久久久久蜜桃| 日韩高清综合在线| 成人漫画全彩无遮挡| 亚洲内射少妇av| 久久精品国产亚洲av香蕉五月| 成人av一区二区三区在线看| 久久久久国产网址| 日日摸夜夜添夜夜添av毛片| 亚洲人成网站高清观看| 欧美另类亚洲清纯唯美| 亚洲国产精品成人久久小说 | 又粗又爽又猛毛片免费看| 日本成人三级电影网站| 少妇高潮的动态图| 欧美绝顶高潮抽搐喷水| 国产av麻豆久久久久久久| 亚洲av电影不卡..在线观看| 国产日本99.免费观看| av女优亚洲男人天堂| 国产精品久久久久久av不卡| 久久6这里有精品| 91在线观看av| 男人狂女人下面高潮的视频| 最后的刺客免费高清国语| 一区二区三区四区激情视频 | 久久久久久久久大av| 国产不卡一卡二| 免费看a级黄色片| 人人妻,人人澡人人爽秒播| 亚洲成人久久性| 午夜福利在线观看免费完整高清在 | 国产成人一区二区在线| 可以在线观看毛片的网站| 国产精品一区二区免费欧美| 欧美高清性xxxxhd video| 97超级碰碰碰精品色视频在线观看| 亚洲精品国产av成人精品 | 天堂av国产一区二区熟女人妻| 天堂网av新在线| 中文在线观看免费www的网站| 亚洲精品456在线播放app| 日本撒尿小便嘘嘘汇集6| 国产精品一区www在线观看| 亚洲精品久久国产高清桃花| 一区二区三区四区激情视频 | 国产一区二区激情短视频| 少妇被粗大猛烈的视频| 国产男靠女视频免费网站| 日本-黄色视频高清免费观看| 亚洲成人av在线免费| 亚洲欧美日韩东京热| 亚洲,欧美,日韩| 人人妻人人看人人澡| 亚洲成av人片在线播放无| 大又大粗又爽又黄少妇毛片口| 亚洲天堂国产精品一区在线| 亚洲av电影不卡..在线观看| 精品久久久久久成人av| 色av中文字幕| 晚上一个人看的免费电影| 蜜桃亚洲精品一区二区三区| 午夜激情欧美在线| 国产日本99.免费观看| 免费看av在线观看网站| 99热这里只有是精品在线观看| 在线看三级毛片| 久久99热6这里只有精品| 少妇熟女欧美另类| 国产69精品久久久久777片| 欧美成人精品欧美一级黄| 如何舔出高潮| 精品久久久久久成人av| 成年av动漫网址| 蜜桃久久精品国产亚洲av| 国内久久婷婷六月综合欲色啪| 欧洲精品卡2卡3卡4卡5卡区| 欧美中文日本在线观看视频| 别揉我奶头 嗯啊视频| 亚洲人成网站在线播| 精品久久久久久久久久久久久| 久久人妻av系列| 日本三级黄在线观看| 99热这里只有是精品50| 少妇的逼水好多| 日韩在线高清观看一区二区三区| 亚洲丝袜综合中文字幕| 国产亚洲精品综合一区在线观看| 亚洲av成人精品一区久久| 国产aⅴ精品一区二区三区波| 亚洲人成网站在线播| 亚洲国产精品久久男人天堂| 欧美极品一区二区三区四区| 午夜福利成人在线免费观看| 国产综合懂色| 天堂网av新在线| 国产在线男女| 熟妇人妻久久中文字幕3abv| 日韩成人伦理影院| 成年版毛片免费区| 婷婷精品国产亚洲av| 亚洲中文字幕日韩| 寂寞人妻少妇视频99o| 成人av一区二区三区在线看| 久久久午夜欧美精品| 午夜福利18| www.色视频.com| 长腿黑丝高跟| 美女xxoo啪啪120秒动态图| 久久久久久大精品| 成人特级av手机在线观看| 一级毛片久久久久久久久女| 精品免费久久久久久久清纯| 美女xxoo啪啪120秒动态图| 久久韩国三级中文字幕| 亚洲国产精品成人久久小说 | 深夜精品福利| 国产精品一区二区三区四区久久| 有码 亚洲区| av在线天堂中文字幕| 两个人视频免费观看高清| 美女内射精品一级片tv| 精品一区二区三区视频在线| 少妇人妻精品综合一区二区 | 丰满乱子伦码专区| 少妇猛男粗大的猛烈进出视频 | 欧美又色又爽又黄视频| 成人国产麻豆网| 久久久成人免费电影| 五月玫瑰六月丁香| 久久中文看片网| 狂野欧美激情性xxxx在线观看| 天天躁日日操中文字幕| 日韩欧美精品免费久久| 国产黄色视频一区二区在线观看 | 精品人妻偷拍中文字幕| 亚洲美女黄片视频| 欧美一区二区国产精品久久精品| 99久久无色码亚洲精品果冻| 国产片特级美女逼逼视频| 别揉我奶头~嗯~啊~动态视频| 性欧美人与动物交配| 国产又黄又爽又无遮挡在线| 免费一级毛片在线播放高清视频| 国产精品亚洲美女久久久| 在线观看免费视频日本深夜| 无遮挡黄片免费观看| 色吧在线观看| 久久久久久大精品| 一区二区三区免费毛片| 非洲黑人性xxxx精品又粗又长| 如何舔出高潮| 日本一本二区三区精品| 中文字幕av在线有码专区| 国产毛片a区久久久久| 国产精品一区二区性色av| 日韩中字成人| 亚州av有码| 综合色丁香网| 毛片女人毛片| 欧美色欧美亚洲另类二区| 久久久久久久久久久丰满| 波多野结衣巨乳人妻| 国产高清不卡午夜福利| 少妇人妻一区二区三区视频| 国产亚洲91精品色在线| 丰满乱子伦码专区| 日韩高清综合在线| 国产日本99.免费观看| 亚洲美女搞黄在线观看 | 熟妇人妻久久中文字幕3abv| 亚洲熟妇熟女久久| 桃色一区二区三区在线观看| 在线a可以看的网站| 日韩av在线大香蕉| 深爱激情五月婷婷| 一夜夜www| 午夜爱爱视频在线播放| 色av中文字幕| 久久亚洲国产成人精品v| 成年版毛片免费区| 2021天堂中文幕一二区在线观| 国产成人福利小说| 一级a爱片免费观看的视频| 国产精品国产三级国产av玫瑰| 女生性感内裤真人,穿戴方法视频| av卡一久久| 亚洲欧美中文字幕日韩二区| 亚洲精品456在线播放app| 国产激情偷乱视频一区二区| 成年av动漫网址| 国产伦一二天堂av在线观看| 99视频精品全部免费 在线| 成人特级黄色片久久久久久久| 97人妻精品一区二区三区麻豆| 五月玫瑰六月丁香| 日韩高清综合在线| 在线看三级毛片| 久久久a久久爽久久v久久| 尾随美女入室| 国产免费一级a男人的天堂| 国产午夜精品久久久久久一区二区三区 | av专区在线播放| 成人高潮视频无遮挡免费网站| 中文字幕av成人在线电影| 我的女老师完整版在线观看| 午夜亚洲福利在线播放| 熟女人妻精品中文字幕| 国产av一区在线观看免费| 国产伦在线观看视频一区| 国产精品一区二区性色av| 国产精品av视频在线免费观看| 日韩欧美免费精品| 日韩 亚洲 欧美在线| 一本精品99久久精品77| 三级经典国产精品| 国产一区二区三区av在线 | 免费电影在线观看免费观看| 免费搜索国产男女视频| 99久国产av精品| 亚洲人成网站在线观看播放| 国产熟女欧美一区二区| av国产免费在线观看| or卡值多少钱| 日韩高清综合在线| 校园春色视频在线观看| 18+在线观看网站| 免费观看在线日韩| av国产免费在线观看| 激情 狠狠 欧美| 国产黄色视频一区二区在线观看 | 3wmmmm亚洲av在线观看| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久末码| 欧美色欧美亚洲另类二区| 亚洲成av人片在线播放无| 成人av一区二区三区在线看| 成人国产麻豆网| 在线观看美女被高潮喷水网站| 精品一区二区三区视频在线| 久久精品国产亚洲av天美| 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 国产欧美日韩精品亚洲av| 岛国在线免费视频观看| 最近2019中文字幕mv第一页| 老师上课跳d突然被开到最大视频| 日韩精品中文字幕看吧| 色在线成人网| 听说在线观看完整版免费高清| 日韩 亚洲 欧美在线| 国产高清三级在线| 99视频精品全部免费 在线| 黄片wwwwww| 综合色av麻豆| 国产精品美女特级片免费视频播放器| 国产乱人偷精品视频| 久久久久国产精品人妻aⅴ院| 自拍偷自拍亚洲精品老妇| 色综合站精品国产| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久v下载方式| 在线观看66精品国产| 男女下面进入的视频免费午夜| 校园人妻丝袜中文字幕| a级毛色黄片| 97超碰精品成人国产| 国产精品福利在线免费观看| 欧美性猛交╳xxx乱大交人| 久久99热6这里只有精品| 老师上课跳d突然被开到最大视频| 欧美绝顶高潮抽搐喷水| 欧美bdsm另类| 亚洲国产精品成人综合色| 国产91av在线免费观看| 91在线观看av| 日韩一本色道免费dvd| 国产国拍精品亚洲av在线观看| 国产精华一区二区三区| 日韩欧美国产在线观看| 亚洲av五月六月丁香网| 久久这里只有精品中国| 国产精品久久久久久av不卡| 亚洲av电影不卡..在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 美女大奶头视频| 嫩草影院新地址| 老司机福利观看| 国内精品一区二区在线观看| 国产精品福利在线免费观看| 欧美一区二区亚洲| 久久人人爽人人片av| 久久久成人免费电影| 天天躁日日操中文字幕| 国产久久久一区二区三区| 一级黄色大片毛片| 男女做爰动态图高潮gif福利片| 日韩av在线大香蕉| 内地一区二区视频在线| 亚洲av二区三区四区| 色综合亚洲欧美另类图片| 日韩欧美精品免费久久| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| 亚洲18禁久久av| 久久久国产成人免费| 亚洲三级黄色毛片| 两个人的视频大全免费| 嫩草影院新地址| 午夜福利成人在线免费观看| 老熟妇乱子伦视频在线观看| 热99在线观看视频| 最近手机中文字幕大全| 国产又黄又爽又无遮挡在线| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美三级三区| 好男人在线观看高清免费视频| 大又大粗又爽又黄少妇毛片口| 久久热精品热| 综合色av麻豆| 免费看日本二区| 少妇高潮的动态图| 日日撸夜夜添| 久久九九热精品免费| 大又大粗又爽又黄少妇毛片口| 日韩一本色道免费dvd| 深爱激情五月婷婷| 一卡2卡三卡四卡精品乱码亚洲| 亚洲经典国产精华液单| 成人国产麻豆网| 午夜免费激情av| 中文字幕久久专区| 午夜福利高清视频| 深爱激情五月婷婷| 欧洲精品卡2卡3卡4卡5卡区| 网址你懂的国产日韩在线| 日日撸夜夜添| 最近在线观看免费完整版| 中文字幕av在线有码专区| 村上凉子中文字幕在线| 亚洲av第一区精品v没综合| 高清毛片免费看| 熟女电影av网| 男女边吃奶边做爰视频| 最新在线观看一区二区三区| 国产毛片a区久久久久| 99热网站在线观看| 在现免费观看毛片| 99久久精品一区二区三区| 最好的美女福利视频网| а√天堂www在线а√下载| 级片在线观看| 22中文网久久字幕| 综合色丁香网| 欧美成人精品欧美一级黄| 1000部很黄的大片| a级毛片a级免费在线| 晚上一个人看的免费电影| 波野结衣二区三区在线| 99在线人妻在线中文字幕| 国产日本99.免费观看| 大香蕉久久网| 高清日韩中文字幕在线| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 3wmmmm亚洲av在线观看| 日本一二三区视频观看| 国产精品人妻久久久久久| 看非洲黑人一级黄片| 久久天躁狠狠躁夜夜2o2o| 午夜精品一区二区三区免费看| 蜜臀久久99精品久久宅男| 男女视频在线观看网站免费| av专区在线播放| 看非洲黑人一级黄片| 国产精品嫩草影院av在线观看| 亚洲人成网站在线观看播放| 成人三级黄色视频| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| avwww免费| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放 | 亚洲欧美精品综合久久99| 小说图片视频综合网站| 91久久精品国产一区二区三区| 女的被弄到高潮叫床怎么办| 全区人妻精品视频| 99九九线精品视频在线观看视频| 高清毛片免费看| 91久久精品电影网| 亚洲国产精品成人综合色| 精品久久久噜噜| 村上凉子中文字幕在线| 99久久无色码亚洲精品果冻| 成人美女网站在线观看视频| 蜜臀久久99精品久久宅男| 国产黄色小视频在线观看| 丝袜喷水一区| 12—13女人毛片做爰片一| 亚洲性夜色夜夜综合| 校园春色视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲自偷自拍三级| 麻豆av噜噜一区二区三区| 在线观看免费视频日本深夜| 露出奶头的视频| 国产精品永久免费网站| 人人妻,人人澡人人爽秒播| 99国产精品一区二区蜜桃av| 欧美高清性xxxxhd video| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 午夜福利成人在线免费观看| 全区人妻精品视频| 国产国拍精品亚洲av在线观看| aaaaa片日本免费| 亚洲色图av天堂| 国产一区二区激情短视频| 男人狂女人下面高潮的视频| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 99热这里只有精品一区| 久久精品91蜜桃| 国产一区二区三区在线臀色熟女| 中出人妻视频一区二区| 欧美日韩一区二区视频在线观看视频在线 | 国内少妇人妻偷人精品xxx网站| 噜噜噜噜噜久久久久久91| 国产av一区在线观看免费| 22中文网久久字幕| 卡戴珊不雅视频在线播放| 久久人妻av系列| 成人三级黄色视频| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 亚洲av.av天堂| 日本撒尿小便嘘嘘汇集6| 熟女电影av网| 国产精品爽爽va在线观看网站| 九九爱精品视频在线观看| 搡老岳熟女国产| 日韩强制内射视频| 99热这里只有精品一区| 悠悠久久av| 丝袜美腿在线中文| 麻豆一二三区av精品| 高清日韩中文字幕在线| 成人二区视频| 中文字幕av成人在线电影| 国产成人影院久久av| 国产成人一区二区在线| 少妇的逼好多水| 亚洲国产精品国产精品| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| av天堂中文字幕网| АⅤ资源中文在线天堂| 99热这里只有精品一区| 国产三级在线视频| 亚洲av免费高清在线观看| 91狼人影院| 有码 亚洲区| 真实男女啪啪啪动态图| 最新中文字幕久久久久| 女人被狂操c到高潮| 国产女主播在线喷水免费视频网站 | 91av网一区二区| 简卡轻食公司| 亚洲成人av在线免费| 舔av片在线| 蜜桃亚洲精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 久久中文看片网| 久久草成人影院| 日本免费一区二区三区高清不卡| 99久久精品国产国产毛片| 久久久久国产网址| 久久久久久大精品| 成人美女网站在线观看视频| 亚洲美女视频黄频| 一级av片app| 久久久久久九九精品二区国产| 成人无遮挡网站| 久久鲁丝午夜福利片| 嫩草影院精品99| 天堂av国产一区二区熟女人妻| 国产精品久久久久久精品电影| 成人二区视频| 老熟妇仑乱视频hdxx| 午夜福利视频1000在线观看| 国产黄片美女视频| 校园人妻丝袜中文字幕| 亚洲成av人片在线播放无| 亚洲国产欧美人成| 人妻丰满熟妇av一区二区三区| 一区福利在线观看| 亚洲成a人片在线一区二区| 22中文网久久字幕| 美女cb高潮喷水在线观看| 老熟妇乱子伦视频在线观看| 校园人妻丝袜中文字幕| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 中文字幕免费在线视频6| 欧美日韩在线观看h| 秋霞在线观看毛片| 亚洲欧美精品自产自拍| 美女内射精品一级片tv| 亚洲欧美日韩东京热| 中国国产av一级| 成人精品一区二区免费| 国产精品人妻久久久影院| 级片在线观看| 国产精品av视频在线免费观看| 一级av片app| 一级a爱片免费观看的视频| 久久精品国产99精品国产亚洲性色| 最好的美女福利视频网| 美女 人体艺术 gogo| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 三级男女做爰猛烈吃奶摸视频| 一个人观看的视频www高清免费观看| 久久久久久久久久成人| av在线天堂中文字幕| 国产在线男女| 国产精品日韩av在线免费观看| 亚洲人成网站高清观看| 久久精品国产自在天天线| 欧美3d第一页| 中文字幕av成人在线电影| 在线免费十八禁| 午夜福利在线观看免费完整高清在 | 神马国产精品三级电影在线观看| 别揉我奶头~嗯~啊~动态视频| 色哟哟哟哟哟哟| 99久国产av精品国产电影| 亚洲电影在线观看av| 日韩高清综合在线| 中文亚洲av片在线观看爽| 色播亚洲综合网| 亚洲无线观看免费| 乱人视频在线观看| 日韩成人伦理影院| 亚洲精品国产成人久久av| 波多野结衣巨乳人妻| 哪里可以看免费的av片| 亚洲av成人精品一区久久| 精品乱码久久久久久99久播| 国内久久婷婷六月综合欲色啪| 精品国产三级普通话版| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 非洲黑人性xxxx精品又粗又长| 大型黄色视频在线免费观看| 乱系列少妇在线播放| 国产高潮美女av| 美女 人体艺术 gogo| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区 | 欧美最黄视频在线播放免费| 国产私拍福利视频在线观看| 国产91av在线免费观看| 国产伦精品一区二区三区视频9| 九九爱精品视频在线观看| 搡女人真爽免费视频火全软件 | 欧美激情久久久久久爽电影| 日本爱情动作片www.在线观看 | 狂野欧美激情性xxxx在线观看| 真人做人爱边吃奶动态| 舔av片在线| av在线亚洲专区| 日韩成人av中文字幕在线观看 | 美女xxoo啪啪120秒动态图| 久久久久免费精品人妻一区二区| 偷拍熟女少妇极品色| 内射极品少妇av片p| 亚洲av熟女| 变态另类成人亚洲欧美熟女| 一边摸一边抽搐一进一小说| 成人特级黄色片久久久久久久| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站| 国产视频内射| 日本色播在线视频| 国产精品永久免费网站| 我的女老师完整版在线观看| 99久久成人亚洲精品观看| 国产成年人精品一区二区| 亚洲三级黄色毛片| a级毛片免费高清观看在线播放| 亚洲成av人片在线播放无| 嫩草影院新地址| av福利片在线观看| 在现免费观看毛片| 久久精品人妻少妇| 美女高潮的动态| avwww免费| 插阴视频在线观看视频| 精品一区二区三区人妻视频| 在线免费观看不下载黄p国产| 午夜影院日韩av| 精品99又大又爽又粗少妇毛片| 亚洲av.av天堂| 啦啦啦观看免费观看视频高清| 露出奶头的视频| 人妻制服诱惑在线中文字幕| 亚洲精品久久国产高清桃花| 91久久精品电影网| 国产视频内射|