• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱合成部分還原氧化石墨烯-K2Mn4O8超級(jí)電容器納米復(fù)合材料

    2013-09-17 06:58:56賀蘊(yùn)秋儲(chǔ)曉菲李一鳴孫芳芳黃河洲
    物理化學(xué)學(xué)報(bào) 2013年8期
    關(guān)鍵詞:同濟(jì)大學(xué)物理化學(xué)水熱

    李 樂 賀蘊(yùn)秋,2,* 儲(chǔ)曉菲 李一鳴 孫芳芳 黃河洲

    (1同濟(jì)大學(xué)材料科學(xué)與工程學(xué)院,上海200092;2同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海200092)

    1 Introduction

    Supercapacitor,as a kind of electrical storage devices,has drawn tremendous attention due to its high power density,good electrochemical behavior,and long cycle life.1-4Specific capacitance is a general evaluation criteria for supercapacitor performance,however,as mentioned in literature,5the two indicators of energy density and power density are critical to evaluate the energy storage performance rather than specific capacitance.The energy density(E)and power density(P)can be calculated using the galvanostatic charge-discharge curves by the equations(1)-(3):6

    where C is the specific capacitance of samples,V is the operating potential window excluding voltage drop?V obtained by the discharge curve,i is the applied current,M is the mass of active electrode,and Rsis the internal resistance.

    According to the distinct charge storage mechanisms,supercapacitors can be classified into electrical double-layer capacitors(EDLCs)and pseudocapacitors.Electric energy storage in the former such as carbon material is achieved via the formation of electric double layers at the electrode/electrolyte interface,while the latter such as transition metal oxide is finished through the surface oxidation/reduction on the electrode materials.Carbon materials,for instance,porous carbon and carbon nanotubes(CNTs),have a long cycle life and high power density.7-9As a sort of typical EDLCs,carbon materials still cannot meet the need of the market for low specific capacitance(about 75-300 F·g-1)compared with that of transition metal oxides such as RuO2(710 F·g-1).10-13RuO2is supposed to be an optimal material for the excellent electrochemical behavior.Unfortunately,the commercialization is limited by its high cost and toxicity.Then other cheap and environmentally friendly transition metal oxides were investigated.MnO2,NiO,Co3O4,and Fe3O4were chosen to be these alternative materials.14-18Considering the high energy density in aqueous electrolyte,manganese oxide is regarded as a relatively promising electrode material for the operating potential window between 0 and 1 V.Another attractive advantage of MnO2is the theoretical specific capacitance value(approximately 1300 F·g-1).19-21Nonetheless,the poor electrical conductivity of MnO210-6S·cm-1),which limits the charge transfer from the surface of MnO2nanoparticles to the interior,is the critical part and needs to be solved urgently since it results in the huge gap between the reported specific capacitance value(265 F·g-1)and the theoretical value.22-27Meanwhile,the power density of MnO2(0.26 kW·kg-1)18is fairly low for the same reason.

    It is known that the electrochemical performance of MnO2is determined by several parameters including crystal structure,morphology,specific surface area,and pore size.To meet above structure demands,manganese oxides with different morphologies and crystal phases were prepared and investigated by diverse synthesis routes such as coprecipitation,21thermal decomposition,28sol-gel,29,30hydrothermal method,31-36etc.Synchronously,much attention has also been focused on exploring composites combined MnO2with highly conductive materials such as CNTs,graphene and so forth.

    Graphene,as a kind of burgeoning material,has been one of the most interesting hot topics in many research fields.Chemical reduction of graphene oxide(GO)is a common preparation method to obtain graphene sheets because GO can be easily dispersed in water,which is good for the intercalation of metal oxides.Multiple preparation methods,37-43which used reduced graphene oxide(rGO)or graphene films as raw materials,have been used to synthesize graphene-MnO2composites with the view of improving the electronic conductivity of MnO2.Some reports showed that the specific capacitance values of graphene-MnO2were higher than 300 F·g-1,but the drawback was extremely low mass loading of the active material with less than 3 mg·cm-2.5Moreover,these methods via the reduction of GO firstly will lessen the interlayer which is adverse to metal ion intercalation.

    Herein,we provided a facile hydrothermal approach to prepare partially reduced graphene oxide-K2Mn4O8composites(GMCs).GO sol,rather than rGO or graphene,was used as raw material and KMnO4was added into GO sol to form the precursor solution in order to improve the bonding between graphene oxide and manganese oxide.Graphene oxide sheets served as a heterophase boundary,where the MnO2crystal nucleus can be easily formed during the hydrothermal process.Simultaneously,GO was reduced under a reasonable hydrothermal condition.44The large contact area between reduced graphene oxide and MnO2nanoparticles can improve the electrical conductivity of composites for the higher electrical conductivity of reduced graphene oxide and the capacitive behaviors can be increased greatly.By control of hydrothermal reaction temperatures(T)and different feeding ratios,the electrochemical properties of the obtained GMCs have been investigated and compared.

    2 Experimental

    2.1 Preparation of GO

    All chemical reagents used in this study were analar(AR)grade unless noted.GO was synthesized from spectroscopically pure graphite by using a process as following:45Graphite(3.0 g)was poured into a mixed solution of concentrated H2SO4(360 mL)and H3PO4(40 mL),stirred and sonicated for 5 min,and then potassium permanganate(18.0 g)was added slowly.Stir and sonication continued for 45 min respectively,after which the mixture was heated to 50°C and stirred for 24 h.The reaction system was cooled to room temperature and transferred into an iced solution(400 mL)containing 30%H2O2(3 mL).The mixture was obviously stratified after 2 days′precipitation and the supernatant was decanted away while the remaining solid materials were transferred into high purity water(17 MΩ·cm-1,total 800 mL).In the same way,the mixture was washed for 3 times,and then a purified GO sol(800 mL)was obtained.

    2.2 Preparation of GMCs

    The nanocomposites of reduced graphene oxide-K2Mn4O8with different mole feeding ratios of GO to KMnO4and various temperatures were prepared under the hydrothermal condition.The typical synthetic method is described as follows:Firstly,GO sol and KMnO4were mixed together in accordance with different reactant ratios.Subsequently,the mixed solution was transferred into a 200 mL Teflon-lined stainless steel autoclave and loaded into an oven at a certain temperature for 3 h.After that,the resultant samples were filtered,washed,and finally dried in an oven at 100°C for 10 h.The samples are labeled as T-GMCratio(e.g.,100-GMC2,120-GMC2and 140-GMC2,meaning that GMC samples were prepared at different hydrothermal reaction temperatures with the same feeding ratio of GO to KMnO4by 2 to 1).All the composite samples are called GMCs.

    2.3 Characterization

    The crystallographic structures of the products were investigated by powder X-ray diffraction(XRD)analysis using the Rigaku X-ray diffractometer equipped with Cu Kα(λ=0.154056 nm)radiation at a scan rate of 10(°)·min-1.The diffractometer was operated at a tube voltage of 40 kV and a tube current of 100 mA.Based on Fourier transform infrared(FTIR)spectroscopy,a Bruker Optics HYPERION2000 spectrometer by making slices with KBr powder was performed to test the changes of oxygen-containing functional groups.XPS experiments were carried out on a RBD upgraded PHI-5000C ESCA system(Perkin Elmer)with Mg Kαradiation(hν=1253.6 eV).All XPS spectra were calibrated by using the containment carbon(C 1s binding energy:284.6 eV)to detect the changes of oxygen-containing functional groups and the variation valence state of Mn.Curve fitting and background subtraction were achieved using XPS Peak4.1 provided by Raymund W.M.Kwok(The Chinese University of HongKong,China).The microstructure of the samples was investigated by a scanning electron microscopy(SEM,FEI Quanta 200 FEG).

    2.4 Preparation of electrodes and electrochemical

    measurement

    The working electrodes of supercapacitors were fabricated by mixing the prepared samples with 15%(w)carbon black conductor and 10%(w)polytetrafluoroethylene(PTFE)binder.The mixture was dispersed in ethanol and sonicated for 20 min.The homogenized mixture was coated onto the nickel foam substrate(0.5 cm×1 cm)with a painting brush.Then the coated nickel foam was pressed,dried at 100°C for 2 h,and the loading mass was about 8-12 mg·cm-2.

    All electrochemical measurements were carried out in 1 mol·L-1Na2SO4aqueous electrolyte solution at room temperature using a common three-electrode configuration with GMC as the working electrode,Pt wire as the counter electrode,and saturated calomel electrode(SCE)as the reference.Cyclic voltammograms(CVs),galvanostatic charge-discharge,and electrochemical impedance spectroscopy(EIS)were utilized to evaluate the electrochemical properties of different composite electrodes.The electrochemical behaviors were measured by a CHI 660C electrochemical workstation.CV measurements were conducted between 0 and 1 V(vs SCE)at a scan rate of 10 mV·s-1.Galvanostatic charge-discharge curves were measured in the potential range of 0-1 V(vs SCE)at a current density of 1 A·g-1,and EIS was performed in the frequency range from 100 kHz to 0.1 Hz with an AC amplitude of 5 mV.The discharge specific capacitance(F·g-1)of the electrode was calculated using equation(4):

    where I is the discharge current(A),t is the time(s)of discharge,M is the mass(g)of the active material in the electrode,and V is the operating potential window excluding voltage drop ΔV in the discharge process.

    3 Results and discussion

    3.1 XRD analyses

    Fig.1 XRD patterns of GO,100-GMC2,120-GMC2,140-GMC2(a)and 120-GMC3,120-GMC2,120-GMC1(b)

    XRD patterns of GO and GMC nanocomposites are presented in Fig.1.Fig.1(a)presents the XRD patterns of GO and different T-GMC2samples.The XRD pattern of GO shows two diffraction peaks at 9.3°and 42.7°,which correspond to the(002)and(100)reflections of GO.The diffraction peak at 9.3°,suggesting the introduction of oxygen-containing functional groups and adsorbed water on the graphite interlamination,means that the interlayer spacing of GO powders is 0.95 nm,which is much larger than that of graphite(0.34 nm).XRD patterns of 100-GMC2and 120-GMC2in Fig.1(a)are indexed to be the crystal phase of K2Mn4O8(JCPDS 16-0205).It can be observed that MnCO3(JCPDS 44-1472)phase comes out as the temperature rises to 140°C due to the enhanced oxidative effect of KMnO4.Meanwhile,GO peaks can not be found in all T-GMC2samples,revealing that the interlayer spacing of GO enlarged due to K2Mn4O8crystallization on GO.However,K2Mn4O8is hardly formed in the KMnO4solution without GO.It is inferred that GO sheets serve as heterophase boundaries on which the nucleation of K2Mn4O8becomes easier.

    The feeding ratio of GO to KMnO4also has much influence on crystallization of MnO2.Fig.1(b)shows the XRD patterns of 120-GMCratiosamples.As can be seen from Fig.1(b),five extra diffraction peaks at 18.1°,28.8°,41.9°,49.8°,and 60.1°,which should be indexed as the(200),(310),(301),(411),and(521)reflections of α-MnO2(JCPDS 44-0141),can be observed when the feeding ratio is 1:1.It suggests that the crystal phases in 120-GMC1sample are composed of K2Mn4O8and α-MnO2.The XRD patterns of 120-GMC3and 120-GMC2show the same phase of K2Mn4O8.The diffraction peaks of GO in all GMCs disappear.

    3.2 FTIR and XPS analyses

    The oxygen-containing functional groups of both GO and GMCs were performed by FTIR measurements as shown in Fig.2.Several characteristic peaks were identified in GO(Fig.2(a)):carbonyl C=O stretching vibration(1730 cm-1),C=C stretching vibration(1610 cm-1),epoxy C―O―C stretching vibration(1225 cm-1),and hydroxyl C―OH stretching vibration(1053 cm-1).The FTIR spectra of T-GMC2samples in Fig.2(a)show that the characteristic peaks of C=O,C―O―C,and C―OH weakened or even vanished in comparison with those of GO,suggesting that GO in composites was reduced more or less.It can be seen that C=C peak of 120-GMC2sample shifts from 1610 to 1585 cm-1,which may attribute to the formation of more C=C bonds.The vibration bands centered at 1410 and 862 cm-1in 140-GMC2,are the characteristic peaks of MnCO3,46which is consistent with the XRD patterns of 140-GMC2.The band centered at 523 cm-1is assigned to the Mn―O stretching vibration.

    Fig.2(b)presents the FTIR spectra of different ratios of 120-GMCratio.The C=O bands at 1730 cm-1and C―O―C bands at 1225 cm-1in all the three samples of 120-GMCratioweaken while the C=C signal at 1610 cm-1remains relatively strong.As can be seen from Fig.2(b),the hydroxyl group at 1053 cm-1in 120-GMC1becomes stronger,indicating that GO may be further oxidized.The band centered at 523 cm-1is the Mn―O stretching vibration.The characteristic peak of MnCO3centered at 862 cm-1can be observed in 120-GMC1sample.However,the XRD peaks of MnCO3cannot be found from 120-GMC1sample probably due to the low content of MnCO3in the sample.GO in both 120-GMC2and 120-GMC3is partially reduced as can be seen from the weaker characteristic peaks.

    Fig.2 FTIR spectra of GO,100-GMC2,120-GMC2,140-GMC2(a)and 120-GMC1,120-GMC2,120-GMC3(b)

    The C 1s XPS spectra of GO,100-GMC2,120-GMC2,140-GMC2,120-GMC1,and 120-GMC3are represented in Fig.3.All XPS curves were fitted considering the following functional groups:C=C,C―C,C―OH,C―O―C,C=O,and COOH bonds.47Table 1 lists the C 1s XPS spectrum analysis results of GO and GMCs.

    As is shown in Fig.3(a),the C 1s XPS spectrum of pure GO has a broader peak than GO in GMCs,demonstrating that GO in GMCs is partially reduced.As can be seen in Table 1,the mole percentage content of high chemically active functional group COOH at the edge of GO decreases obviously during the hydrothermal process,indicating that edge carbon atoms are basically reduced.As the temperature arises from 100 to 120°C,the content of C=C bonds in T-GMC2samples increases to approximately 60%and the content of C―C bonds falls by half,meanwhile the content of C=C in 140-GMC2is obviously reduced.The content of C=O bonds in GMCs compared to pure GO all slightly increases except 140-GMC2.Nevertheless,the change in 140-GMC2sample is antipodal probably due to the phenomenon that GO was further oxidized and Mn-CO3phase was obtained.This result is consistent with the XRD and FTIR analysis results.As the feeding ratio of GO to KMnO4rises,the C=C content increases and the C―C content decreases.Concurrently,the content of C―OH in 120-GMC1sample is higher than that in GO while the contents of C―OH in both 120-GMC2and 120-GMC3samples are close to that in GO.As previously mentioned,GO can be reduced in hydrothermal condition.Nonetheless,when the content of strongly oxidising KMnO4increased greatly,the oxidation of GO was easier than reduction.Therefore,the content of C―OH increases to ca 41%.

    Fig.3 C 1s XPS spectra of GO(a),100-GMC2(b),120-GMC2(c),140-GMC2(d),120-GMC1(e),and 120-GMC3(f)

    Table 1 C 1s XPS spectrum analysis results of GO and GMCs with different binding energies

    Fig.4 shows the narrow XPS spectra of Mn 2p region of GMCs.The Mn 2p3/2peak positions of 100-GMC2,120-GMC2,140-GMC2,120-GMC1,and 120-GMC3centered at 642.7,642.9,643.3,644.4,and 642.9 eV,respectively.The binding energies of Mn 2p3/2peak48for Mn2+,Mn3+,and Mn4+are 640.0,640.7,and 641.9 eV,respectively.The binding energy position of Mn2+ion shifts from 640.0 to 644.4 eV49since the electron cloud density around Mn2+ion is the highest for the carbonate ion.The binding energies of Mn 2p3/2peak for T-GMC2samples are gradually increasing with the ascending of temperature,revealing the formation and increasing content of MnCO3in T-GMC2samples,especially in 140-GMC2sample.Nevertheless,the binding energies of 120-GMCratioare decreasing with the rising of feeding ratios of GO to KMnO4.The binding energy of Mn 2p3/2peak for 120-GMC1shifts to the highest peak position(644.4 eV)due to the formation of MnCO3and the higher valence state of Mn(α-MnO2)compared with K2Mn4O8.The XPS analysis on the valence state of Mn corresponds to the XRD and FTIR patterns.

    Fig.4 XPS spectra of the Mn 2p region of GMCs

    3.3 Morphological study

    Fig.5 SEM images of GO(a,b),120-GMC2(c,d),140-GMC2(e,f),and 120-GMC1(g,h)at different magnifications

    The morphologies of GO,120-GMC2,140-GMC2,and 120-GMC1were characterized by SEM as shown in Fig.5.As depicted in Fig.5(a,b),SEM images of synthesized GO have wrinkles and folds.Fig.5(c,d)shows the SEM images of 120-GMC2,which consist of rGO flakes and K2Mn4O8nanoparticles according to XRD and FTIR analysis.It can be seen that K2Mn4O8nanoparticles(~40 nm)grow on the surfaces of partially reduced graphene oxide under hydrothermal condition.K2Mn4O8with small grain sizes is beneficial to the electrical transfer between rGO and K2Mn4O8nanoparticles.Numerous rGO flakes can be observed and the growth of K2Mn4O8is firstly inclined to the edges of rGO layers owing to the higher reaction activity in contrast to other oxygen-containing functional groups.The SEM images of 140-GMC2are shown in Fig.5(e,f).The morphology of product consists of many interleaving nanorods.The changed feature should be caused by the formation of largely MnCO3due to the reaction between GO and KMnO4at 140°C,which is confirmed by XRD,FTIR,and XPS.Fig.5(g,h)shows the microstructure images of 120-GMC1,from which only large rGO flakes covered by compact α-MnO2nanoparticles can be observed.The fragment of GO cannot be seen probably due to the reaction between carbon and KMnO4.During this reaction,MnCO3phase comes out and the GO fragment is consumed.Herein,GO sol,which has an affinity for manganese oxide,makes the heterogeneous nucleation of K2Mn4O8and MnO2easier.

    3.4 Electrochemical behavior

    The charge storage mechanism of MnO2can be described as a surface ion adsorption/desorption process of cations M+from the electrolyte.The reaction50is expressed as equation(5):

    where M represents protons(H+)or alkali metal cations such as Na+in the electrode.Electron transport plays an important role in this reaction.Furthermore,the crystal structure of MnO2which is helpful for ion transfer is equivalently significant.Cyclic voltammograms studies were performed to evaluate the chemical behaviors of GMCs.

    Fig.6(a)shows the CVs curves of different T-GMC2,and the rectangular shapes without obvious redox peaks indicate that T-GMC2samples have ideal capacitive behaviors attributing to the introduction of reduced graphene oxide which can improve the electrical conductivity of MnO2.The CV curve of 120-GMC2shows a larger rectangular shape compared to those of 100-GMC2and 140-GMC2.The former one is assinged to be a higher reduction degree of GO,while the latter can be explained by the formation of largely MnCO3which is adverse to the capacitive behaviors.The CV curves of 120-GMCratioare shown in Fig.6(b).An apparent distortion and redox peaks can be observed in 120-GMC1which is composed of K2Mn4O8,α-MnO2,and MnCO3.The electrical transfer in the interior of 120-GMC1materials is hindered due to the decreased content of C=C bonds which is beneficial to the electrical conductivity.However,the elecrtochemical performance of 120-GMC3sample is slightly less than that of 120-GMC2probably owing to the lower content of K2Mn4O8.These different capacitive behaviors suggest two key points.One is that K2Mn4O8may be a good phase for capacitive property even it contains some Mn3+ions.Another one is that the above nanostructures composed of nanoparticles on rGO layers favor to the electron transfer.These nanostructures are released by the special reaction system containing GO sol,which benefits to heterogeneous nucleation on rGO and results in some kinds of bonding between manganese oxides and rGO.

    The galvanostatic charge-discharge curves of T-GMC2and 120-GMCratiowere demonstrated in Fig.6(c,d).As is mentioned by many researches,the low loading mass on the electrode is good for the contact between active material and current collector which leads to a higher electrical conductivity.Nevertheless,with a heavier mass(8-12 mg·cm-2)in our electrode than the reported loading mass(3 mg·cm-2),39the internal resistance is still fairly low.The energy density,power density,and specific capacitance of GMCs are respectively figured out and listed in Table 2.The energy density and power density of 120-GMC2are the highest in all results.In T-GMC2samples,the capacitive behaviors of 100-GMC2and 140-GMC2are worse than those of 120-GMC2probably due to the low content of K2Mn4O8and the formation of MnCO3,respectively.

    Fig.6 CVs of T-GMC2(a)and 120-GMCratio(b);galvanostatic charge-discharge curves of T-GMC2(c)and 120-GMCratio(d);the trend plots of specific capacitance values as different hydrothermal reaction temperatures(e)and different feeding ratios(f)of GO to KMnO4(a,b)scan rate:10 mV·s-1;(c,d)current density:1A·g-1

    In 120-GMCratiosamples,the capacitive properties of 120-GMC1are worse than those of 120-GMC2probably owing to the further oxidization of GO which hinders from the electrical transfer between GO and manganese oxide.The slightly lower electrochemical properties of 120-GMC3can be explained by the lower content of K2Mn4O8compared with 120-GMC2.As is shown all the curves are practically linear and symmetrical with a slight curvature,which is supported by the metioned different microstructures.The trend plots of GMCs as the temperatures and feeding ratios changed are illustrated in Fig.6(e,f).From all the measured data and curves,the most suitable reaction temperature is 120°C with a mole feeding ratio of GO to KMnO4being 2 to 1.

    The cycle stability studies were carried out to get more information about the 120-GMC2.After 1000 cycles,the galvanostatic charge-discharge time shown in Fig.7(a)decreases quite little,however,the charge-discharge curves tend to more symmetrical.The CV loop in Fig.7(b)is more close to a rectangular shape after 1000 cycles with a little shrink,indicating that only a fraction of K2Mn4O8has been polarized.

    As one of the fundamental measuring methods,the electro-chemical impedance spectroscopy(EIS)was applied to further comprehend the electrochemical interfacial behavior.The EIS of the 120-GMC2sample at the first cycle and after 1000 cycles were performed and shown in Fig.7(c).The EIS data were fitted by an equivalent circuit diagram.39As depicted in the inset of Fig.7(c),it consists of the contact resistance Reof the active material/current collector interface,the charge transfer resistance Rctcaused by the redox reaction of MnO2,the Warburg diffusion resistance Zw,the double-layer capacitance Cdl,and the limited capacitance CL.51The EIS curves exhibit a steep slope at the low frequency region,which should attribute to the non-Faradic charge storage mechanism.However,the curve turns to be steeper after 1000 cycles,indicating that the electrode has a more stable cycle performance.At the high frequency region,the semicircle curves close to arcs are nearly overlapping and respectively intersect the real axis at Reand Re+Rct.At the first cycle,the Reand Rctwere measured to be 2.328 and 0.4545 Ω,respectively,while the corresponding values after 1000 cycles were calculated to be 2.263 and 0.5308 Ω.Such a low Faradic resistance Rct,which is a limiting factor to the power density,indicates that the Na+ion can be adsorbed and desorbed rapidly at the electrode/electrolyte interface.This is consistent with the above high power value.Nevertheless,the increased Rctvalue after 1000 cycles can be explained by the decreased contact area between active material and current collector for the longtime infusion.Furthermore,the Warburg resistance Zw,the response of the frequency dependence of ion transport in the electrolyte,changes from 0.9597 to 1.222 Ω,which is caused by passivation of a small amount of manganese oxides.

    Table 2 Specific capacitance,energy density,and power density of GMCs

    Fig.7 Galvanostatic charge-discharge curves of 120-GMC2(a);CV curves of 120-GMC2(b);EIS plots of 120-GMC2electrode and the equivalent circuit(inset)(c);capacitance retention curve measured at a current density of 5A·g-1and a part of the galvanostatic charge-discharge curves(inset)(d)

    The CV method was used to investigate the cycle stability of electrode materials by some papers.However,the galvanostatic charge-discharge cycles,rather than CVs,can exactly reflect the cycle performance due to the accordance with practical application.Fig.7(d)shows the cycling behavior of prepared electrode with 120-GMC2measured in 1 mol·L-1Na2SO4electrolyte at a current density of 5 A·g-1between 0 and 1 V.Part of galvanostatic charge-discharge curves are also exhibited in the inset of Fig.7(d).The electrode material shows good cycle performance still with 88%of the initial capacitance retained after 1000 cycles at such a high current density.This excellent cycle behavior should attribute to the unique microstructure with rGO flakes covered by MnO2nanoparticles.Compared with reported results52about MnO2electrochemical behaviors,reduced graphene oxide in the composites authentically acts as a conductive matrix and exhibits the double-layer capacitive properties.

    4 Conclusions

    Partially reduced graphene oxide-K2Mn4O8composites have been synthesized using a facile hydrothermal reaction method.This immediate reaction method using GO sol makes the MnO2nanoparticles nucleate and grow on the surface of GO sheets.Meanwhile,GO was partially reduced under a proper hydrothermal reaction temperature and mole feeding ratio of GO to KMnO4.Then the 120-GMC2sample with an excellent electrochemical behavior was obtained attributing to the unique microstructure of rGO flakes covered by K2Mn4O8nanoparticles.The specific capacitance of the optimal sample is calculated to be 251 F·g-1at the current density of 1 A·g-1with an energy density of 32.0 Wh·kg-1and a power density of 18.2 kW·kg-1.Moreover,the capacitance retention ratio maintains 88%after 1000 cycles measured at a high current density of 5 A·g-1.It is believed that the partially reduced graphene oxide-K2Mn4O8nanocomposites have widely promising applications,such as microelectronics,uninterrupted power supply(UPS),electrochemical sensors,and lithium ion batteries.

    (1)Wang,G.;Zhang,L.;Zhang,J.Chem.Soc.Rev.2012,41(2),797.doi:10.1039/c1cs15060j

    (2)Wang,X.;Li,G.;Chen,Z.;Augustyn,V.;Ma,X.;Wang,G.;Dunn,B.;Lu,Y.Adv.Energy Mater.2011,1(6),1089.doi:10.1002/aenm.201100332

    (3) Chen,Z.;Wen,J.;Yan,C.;Rice,L.;Sohn,H.;Shen,M.;Cai,M.;Dunn,B.;Lu,Y.Adv.Energy Mater.2011,1(4),551.doi:10.1002/aenm.201100114

    (4) Guo,P.Z.;Ji,Q.Q.;Zhang,L.L.;Zhao,S.Y.;Zhao,X.S.Acta Phys.-Chim.Sin.2011,27(12),2836.[郭培志,季倩倩,張麗莉,趙善玉,趙修松.物理化學(xué)學(xué)報(bào),2011,27(12),2836.]doi:10.3866/PKU.WHXB20112836

    (5) Lin,Y.H.;Wei,T.Y.;Chien,H.C.;Lu,S.Y.Adv.Energy Mater.2011,1(5),901.doi:10.1002/aenm.201100256

    (6)Yu,G.;Hu,L.;Vosgueritchian,M.;Wang,H.;Xie,X.;McDonough,J.R.;Cui,X.;Cui,Y.;Bao,Z.Nano Lett.2011,11(7),2905.doi:10.1021/nl2013828

    (7) Sharma,P.;Bhatti,T.S.Energy Convers.Manag.2010,51(12),2901.doi:10.1016/j.enconman.2010.06.031

    (8) Zhang,L.L.;Zhao,X.S.Chem.Soc.Rev.2009,38(9),2520.doi:10.1039/b813846j

    (9)Ghosh,A.;Lee,Y.H.ChemSusChem 2012,5(3),480.doi:10.1002/cssc.201100645

    (10) Sop?i?,S.;Mandi?,Z.;Inzelt,G.;Rokovi?,M.K.;Me?trovi?,E.J.Power Sources 2011,196(10),4849.doi:10.1016/j.jpowsour.2011.01.070

    (11) Bharali,P.;Kuratani,K.;Takeuchi,T.;Kiyobayashi,T.;Kuriyama,N.J.Power Sources 2011,196(18),7878.doi:10.1016/j.jpowsour.2011.03.097

    (12)Zhang,Y.;Feng,H.;Wu,X.;Wang,L.;Zhang,A.;Xia,T.;Dong,H.;Li,X.;Zhang,L.Int.J.Hydrog.Energy 2009,34(11),4889.doi:10.1016/j.ijhydene.2009.04.005

    (13)Hu,Y.Y.;Hu,Z.A.;Zhang,Y.J.;Lu,A.L.;Xu,H.;Zhang,Z.Y.;Yang,Y.Y.;Li,L.;Wu,H.Y.Acta Phys.-Chim.Sin.2013,29(2),305.[胡英瑛,胡中愛,張亞軍,魯愛蓮,徐 歡,張子瑜,楊玉英,李 麗,吳紅英.物理化學(xué)學(xué)報(bào),2013,29(2),305.]doi:10.3866/PKU.WHXB201211201

    (14)Lee,J.W.;Ahn,T.;Kim,J.H.;Ko,J.M.;Kim,J.D.Electrochim.Acta 2011,56(13),4849.doi:10.1016/j.electacta.2011.02.116

    (15) Xu,J.;Gao,L.;Cao,J.;Wang,W.;Chen,Z.J.Solid State Electrochem.2011,15(9),2005.doi:10.1007/s1008-010-1222-6

    (16) Fan,Z.;Chen,J.;Cui,K.;Sun,F.;Xu,Y.;Kuang,Y.Electrochim.Acta 2007,52(9),2959.doi:10.1016/j.electacta.2006.09.029

    (17) Burke,A.Electrochim.Acta 2007,53(3),1083.doi:10.1016/j.electacta.2007.01.011

    (18) Cottineau,T.;Toupin,M.;Delahaye,T.;Brousse,T.;Bélanger,D.Appl.Phys.A 2006,82(4),599.doi:10.1007/s00339-005-3401-3

    (19) Li,Y.;Xie,H.;Wang,J.;Chen,L.Mater.Lett.2011,65(2),403.doi:10.1016/j.matlet.2010.10.048

    (20) Chen,Z.;Jiao,Z.;Pan,D.;Li,Z.;Wu,M.;Shek,C.H.;Wu,C.M.;Lai,J.K.Chem.Rev.2012,112(7),3833.doi:10.1021/cr2004508

    (21) Beaudrouet,E.;Le Gal La Salle,A.;Guyomard,D.Electrochim.Acta 2009,54(4),1240.doi:10.1016/j.electacta.2008.08.072

    (22) Zhang,J.;Jiang,J.;Zhao,X.S.J.Phys.Chem.C 2011,115(14),6448.doi:10.1021/jp200724h

    (23)Yu,G.;Hu,L.;Liu,N.;Wang,H.;Vosgueritchian,M.;Yang,Y.;Cui,Y.;Bao,Z.Nano Lett.2011,11(10),4438.doi:10.1021/nl2026635

    (24)Wang,Y.T.;Lu,A.H.;Zhang,H.L.;Li,W.C.J.Phys.Chem.C 2011,115(13),5413.doi:10.1021/jp110938x

    (25)Wang,H.;Peng,C.;Peng,F.;Yu,H.;Yang,J.Mater.Sci.Eng.B 2011,176(14),1073.doi:10.1016/j.mseb.2011.05.043

    (26) Zhu,G.;Li,H.;Deng,L.;Liu,Z.H.Materials Letters 2010,64(16),1763.doi:10.1016/j.matlet.2010.05.019

    (27) Pang,X.;Ma,Z.Q.;Zuo,L.Acta Phys.-Chim.Sin.2009,25(12),2433.[龐 旭,馬正青,左 列.物理化學(xué)學(xué)報(bào),2009,25(12),2433.]doi:10.3866/PKU.WHXB20091211

    (28) Zhao,J.Z.;Tao,Z.L.;Liang,J.;Chen,J.Cryst.Growth Des.2008,8(8),2799.doi:10.1021/cg701044b

    (29) Devaraj,S.;Munichandraiah,N.J.Phys.Chem.C 2008,112(11),4406.doi:10.1021/jp7108785

    (30)Yu,J.;Zhao,T.;Zeng,B.Electrochem.Commun.2008,10(9),1318.doi:10.1016/j.elecom.2008.06.028

    (31) Qiu,G.;Huang,H.;Dharmarathna,S.;Benbow,E.;Stafford,L.;Suib,S.L.Chem.Mater.2011,23(17),3892.doi:10.1021/cm2011692

    (32)Yang,Y.Y.;Xiao,L.F.;Zhao,Y.Q.;Wang,F.Y.Int.J.Electrochem.Sci.2008,3(1),67.

    (33)Subramanian,V.;Zhu,H.W.;Vajtai,R.;Ajayan,P.M.;Wei,B.Q.J.Phys.Chem.B 2005,109(43),20207.doi:10.1021/jp0543330

    (34)Xiao,W.;Wang,D.L.;Lou,X.W.J.Phys.Chem.C 2010,114(3),1694.doi:10.1021/jp909386d

    (35)Xu,M.;Kong,L.;Zhou,W.;Li,H.J.Phys.Chem.C 2007,111(51),19141.doi:10.1021/jp076730b

    (36)Wang,H.;Lu,Z.;Qian,D.;Li,Y.;Zhang,W.Nanotechnology 2007,18(11),115616.doi:10.1088/0957-4484/18/11/115616

    (37) Li,Z.;Wang,J.;Liu,S.;Liu,X.;Yang,S.J.Power Sources 2011,196(19),8160.doi:10.1016/j.jpowsour.2011.05.036

    (38) Cheng,Q.;Tang,J.;Ma,J.;Zhang,H.;Shinya,N.;Qin,L.C.Carbon 2011,49(9),2917.doi:10.1016/j.carbon.2011.02.068

    (39)Yan,J.;Fan,Z.;Wei,T.;Qian,W.;Zhang,M.;Wei,F.Carbon 2010,48(13),3825.doi:10.1016/j.carbon.2010.06.047

    (40) Zhu,Y.;Murali,S.;Stoller,M.D.;Ganesh,K.J.;Cai,W.;Ferreira,P.J.;Pirkle,A.;Wallace,R.M.;Cychosz,K.A.;Thommes,M.;Su,D.;Stach,E.A.;Ruoff,R.S.Science 2011,332(6037),1537.doi:10.1126/science.1200770

    (41)Miller,J.R.;Outlaw,R.A.;Holloway,B.C.Science 2010,329(5999),1637.doi:10.1126/science.1194372

    (42) Le,L.T.;Ervin,M.H.;Qiu,H.;Fuchs,B.E.;Lee,W.Y.Electrochem.Commun.2011,13(4),355.doi:10.1016/j.elecom.2011.01.023

    (43)Huang,X.;Yin,Z.;Wu,S.;Qi,X.;He,Q.;Zhang,Q.;Yan,Q.;Boey,F.;Zhang,H.Small 2011,7(14),1876.doi:10.1002/smll.201002009

    (44) Luo,D.C.;Zhang,G.X.;Liu,J.F.;Sun,X.M.J.Phys.Chem.C 2011,115(23),11327.doi:10.1021/jp110001y

    (45) Marcano,D.C.;Kosynkin,D.V.;Berlin,J.M.;Sinitskii,A.;Sun,Z.;Slesarev,A.;Alemany,L.B.;Lu,W.;Tour,J.M.ACS Nano 2010,4(8),4806.doi:10.1021/nn1006368

    (46) Tang,N.;Tian,X.;Yang,C.;Pi,Z.Materials Research Bulletin 2009,44(11),2062.doi:10.1016/j.materresbull.2009.07.012

    (47)Chen,W.F.;Yan,L.F.;Bangal,P.R.J.Phys.Chem.C 2010,114(47),19885.doi:10.1021/jp107131v

    (48) Nesbitt,H.W.;Banerjee,D.American Mineralogist 1998,83(3-4),305.

    (49) Gao,J.;Tong,X.;Li,X.;Miao,H.;Xu,J.J.Chem.Technol.Biotechnol.2007,82(7),620.doi:10.1002/jctb.1717

    (50) Xia,H.;Wang,Y.;Lin,J.;Lu,L.Nanoscale Res.Lett.2012,7(1),33.doi:10.1186/1556-276X-7-33

    (51) Di Fabio,A.;Mastragostino,A.G.M.;Soavi,F.J.Electrochem.Soc.2001,148,A845.

    (52) Tang,N.;Tian,X.;Yang,C.;Pi,Z.Mater.Res.Bull.2009,44(11),2062.doi:10.1016/j.materresbull.2009.07.012

    猜你喜歡
    同濟(jì)大學(xué)物理化學(xué)水熱
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    Chemical Concepts from Density Functional Theory
    水熱還是空氣熱?
    簡述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無模板水熱合成
    性高湖久久久久久久久免费观看| xxxhd国产人妻xxx| 精品久久蜜臀av无| 五月伊人婷婷丁香| 又黄又爽又刺激的免费视频.| 在线观看免费高清a一片| 伊人亚洲综合成人网| 亚洲国产日韩一区二区| 亚洲三级黄色毛片| 亚洲国产成人一精品久久久| 多毛熟女@视频| 男女啪啪激烈高潮av片| 青春草视频在线免费观看| 日本欧美国产在线视频| 亚洲av福利一区| 午夜福利网站1000一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲综合精品二区| 亚洲欧洲国产日韩| 国产男女超爽视频在线观看| 国产亚洲av片在线观看秒播厂| 亚洲四区av| 高清av免费在线| 22中文网久久字幕| av专区在线播放| 国产黄色视频一区二区在线观看| 激情五月婷婷亚洲| 国产黄频视频在线观看| 91精品三级在线观看| 九九爱精品视频在线观看| 成年人午夜在线观看视频| 少妇的逼好多水| 亚洲精品日韩在线中文字幕| 国产熟女欧美一区二区| av有码第一页| 一个人看视频在线观看www免费| 亚洲精品久久成人aⅴ小说 | 免费av不卡在线播放| 熟女av电影| 免费看不卡的av| 久久亚洲国产成人精品v| 国产一区有黄有色的免费视频| 精品人妻熟女av久视频| 亚洲四区av| 91久久精品国产一区二区三区| 草草在线视频免费看| 一区二区三区精品91| 欧美三级亚洲精品| 赤兔流量卡办理| 久久精品国产亚洲网站| 综合色丁香网| 亚洲伊人久久精品综合| 亚洲欧美精品自产自拍| 久久久精品免费免费高清| 妹子高潮喷水视频| 精品国产国语对白av| 日韩中文字幕视频在线看片| 男女啪啪激烈高潮av片| 久久鲁丝午夜福利片| 少妇精品久久久久久久| 亚洲av免费高清在线观看| 狂野欧美激情性xxxx在线观看| 少妇被粗大猛烈的视频| 我的老师免费观看完整版| 亚洲精品一二三| 91精品国产九色| 久久精品国产亚洲网站| 秋霞在线观看毛片| 中文字幕av电影在线播放| 各种免费的搞黄视频| 日韩av在线免费看完整版不卡| 国产精品人妻久久久久久| 精品99又大又爽又粗少妇毛片| 免费观看的影片在线观看| 免费av中文字幕在线| 日韩中文字幕视频在线看片| av播播在线观看一区| av播播在线观看一区| 只有这里有精品99| 蜜臀久久99精品久久宅男| 22中文网久久字幕| 久久这里有精品视频免费| 黑人巨大精品欧美一区二区蜜桃 | 边亲边吃奶的免费视频| 黑丝袜美女国产一区| 日韩,欧美,国产一区二区三区| 午夜福利视频在线观看免费| 亚洲精品中文字幕在线视频| 欧美xxxx性猛交bbbb| 男女国产视频网站| 最近最新中文字幕免费大全7| 桃花免费在线播放| 亚洲国产精品专区欧美| 国产午夜精品久久久久久一区二区三区| 国产在线视频一区二区| 免费少妇av软件| 亚洲精品456在线播放app| 性色avwww在线观看| 在线观看国产h片| 亚洲欧洲精品一区二区精品久久久 | 99热网站在线观看| 精品久久久久久电影网| 色婷婷av一区二区三区视频| 99久久中文字幕三级久久日本| av免费观看日本| 久久女婷五月综合色啪小说| 尾随美女入室| 国产毛片在线视频| 国产欧美亚洲国产| 免费看光身美女| 考比视频在线观看| kizo精华| 国产av一区二区精品久久| 丝袜喷水一区| 国产成人精品一,二区| 久久国产精品男人的天堂亚洲 | 97精品久久久久久久久久精品| 色视频在线一区二区三区| 97超视频在线观看视频| 视频在线观看一区二区三区| 九九在线视频观看精品| 国产成人freesex在线| 国产精品人妻久久久久久| 午夜福利,免费看| 不卡视频在线观看欧美| 亚洲在久久综合| 尾随美女入室| 大香蕉久久网| 国产免费现黄频在线看| 精品一区二区三卡| 伊人久久国产一区二区| 国产乱人偷精品视频| 免费黄频网站在线观看国产| 高清毛片免费看| 嘟嘟电影网在线观看| 亚洲国产精品国产精品| 久久精品国产鲁丝片午夜精品| 韩国av在线不卡| 久久精品久久久久久久性| 国产乱人偷精品视频| h视频一区二区三区| 国产午夜精品一二区理论片| 国产精品久久久久久精品古装| 在现免费观看毛片| 国产免费视频播放在线视频| 国产综合精华液| 夫妻午夜视频| 菩萨蛮人人尽说江南好唐韦庄| 制服诱惑二区| 久久热精品热| 欧美最新免费一区二区三区| 精品人妻熟女毛片av久久网站| 久热这里只有精品99| 欧美97在线视频| 91成人精品电影| 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 肉色欧美久久久久久久蜜桃| 精品少妇黑人巨大在线播放| 久久久精品免费免费高清| 国产深夜福利视频在线观看| 三级国产精品片| 亚洲精品国产av成人精品| 丰满少妇做爰视频| 啦啦啦中文免费视频观看日本| 人人澡人人妻人| 国产亚洲欧美精品永久| 日韩不卡一区二区三区视频在线| 免费人妻精品一区二区三区视频| 欧美日韩精品成人综合77777| 婷婷色麻豆天堂久久| 婷婷色麻豆天堂久久| 亚洲美女黄色视频免费看| 人人妻人人澡人人看| 精品久久蜜臀av无| av天堂久久9| 嫩草影院入口| 午夜激情福利司机影院| 伊人久久国产一区二区| 成人二区视频| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一区久久| 热99久久久久精品小说推荐| av有码第一页| 母亲3免费完整高清在线观看 | 国产一区二区在线观看日韩| 一区在线观看完整版| 国产成人免费观看mmmm| 日韩av免费高清视频| 91在线精品国自产拍蜜月| 国产亚洲精品久久久com| 亚洲国产色片| 精品久久久精品久久久| 91久久精品国产一区二区成人| 校园人妻丝袜中文字幕| 视频中文字幕在线观看| 在线观看国产h片| 久久午夜综合久久蜜桃| 亚洲国产精品一区三区| 久久人人爽av亚洲精品天堂| 一级二级三级毛片免费看| 亚洲精品国产色婷婷电影| 搡老乐熟女国产| 国产亚洲欧美精品永久| 九色成人免费人妻av| 国产精品免费大片| 高清av免费在线| 国产精品免费大片| √禁漫天堂资源中文www| 亚洲内射少妇av| 国产亚洲最大av| 夫妻午夜视频| 狂野欧美激情性xxxx在线观看| 99九九线精品视频在线观看视频| 天堂8中文在线网| 啦啦啦视频在线资源免费观看| 日韩强制内射视频| 国产黄片视频在线免费观看| 青青草视频在线视频观看| 黄色毛片三级朝国网站| 久久久久精品性色| 黑人巨大精品欧美一区二区蜜桃 | 人妻 亚洲 视频| 少妇高潮的动态图| 欧美亚洲 丝袜 人妻 在线| 日本av免费视频播放| 日韩中字成人| 国产成人免费观看mmmm| av天堂久久9| 午夜91福利影院| 一边摸一边做爽爽视频免费| 亚洲av不卡在线观看| 欧美精品高潮呻吟av久久| 黄色一级大片看看| 精品熟女少妇av免费看| 国产精品偷伦视频观看了| 桃花免费在线播放| 国产黄片视频在线免费观看| 老司机亚洲免费影院| 婷婷成人精品国产| 麻豆乱淫一区二区| 另类精品久久| 亚洲美女搞黄在线观看| 亚洲第一av免费看| 热99久久久久精品小说推荐| 久久精品国产亚洲av涩爱| 欧美最新免费一区二区三区| 男女免费视频国产| 免费人妻精品一区二区三区视频| 亚洲色图 男人天堂 中文字幕 | av在线老鸭窝| 一区二区日韩欧美中文字幕 | 在线免费观看不下载黄p国产| 性色av一级| 一个人免费看片子| 欧美亚洲日本最大视频资源| 999精品在线视频| 日日啪夜夜爽| 日韩精品免费视频一区二区三区 | 满18在线观看网站| 看非洲黑人一级黄片| 色婷婷av一区二区三区视频| 久久午夜综合久久蜜桃| 婷婷色综合www| videos熟女内射| 国产毛片在线视频| 久久久久久久久久久久大奶| 一区二区三区精品91| 日韩三级伦理在线观看| 亚洲成人手机| 久久久久网色| 久久精品国产a三级三级三级| 99国产精品免费福利视频| 波野结衣二区三区在线| 亚洲色图 男人天堂 中文字幕 | 免费大片黄手机在线观看| 亚洲精品乱码久久久久久按摩| 成人国语在线视频| 黄片播放在线免费| 国产 精品1| 亚洲国产毛片av蜜桃av| 久久久久久久久久人人人人人人| av福利片在线| 亚洲色图综合在线观看| 亚洲综合精品二区| 99热这里只有是精品在线观看| 高清在线视频一区二区三区| 91精品一卡2卡3卡4卡| 人人妻人人爽人人添夜夜欢视频| 夫妻性生交免费视频一级片| 伊人亚洲综合成人网| 国产伦精品一区二区三区视频9| 国国产精品蜜臀av免费| 亚洲成人手机| 久久久精品区二区三区| 国产一区有黄有色的免费视频| 不卡视频在线观看欧美| 人成视频在线观看免费观看| 国产精品秋霞免费鲁丝片| 亚洲av电影在线观看一区二区三区| 大香蕉97超碰在线| 国产深夜福利视频在线观看| 99re6热这里在线精品视频| 亚洲精品自拍成人| 丰满迷人的少妇在线观看| 久久精品久久久久久久性| 国产成人一区二区在线| 看非洲黑人一级黄片| 精品卡一卡二卡四卡免费| 亚洲少妇的诱惑av| .国产精品久久| 18禁裸乳无遮挡动漫免费视频| 老司机亚洲免费影院| 九九爱精品视频在线观看| 尾随美女入室| 日本av免费视频播放| 亚洲,一卡二卡三卡| 91精品国产九色| 亚洲中文av在线| 亚洲欧洲国产日韩| 99九九线精品视频在线观看视频| 免费黄色在线免费观看| 国产免费又黄又爽又色| 人妻夜夜爽99麻豆av| 亚洲伊人久久精品综合| 一本久久精品| 欧美一级a爱片免费观看看| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级| 一边摸一边做爽爽视频免费| 国产成人午夜福利电影在线观看| 久久人妻熟女aⅴ| 少妇人妻 视频| 久久99热这里只频精品6学生| 99热6这里只有精品| 日韩视频在线欧美| 色94色欧美一区二区| 久久久久久久久久久久大奶| 18禁裸乳无遮挡动漫免费视频| 91在线精品国自产拍蜜月| 少妇 在线观看| 久久久久久久国产电影| 国产一区有黄有色的免费视频| kizo精华| 男女无遮挡免费网站观看| 日韩在线高清观看一区二区三区| 两个人的视频大全免费| 日韩,欧美,国产一区二区三区| 欧美激情极品国产一区二区三区 | 桃花免费在线播放| 视频中文字幕在线观看| 国内精品宾馆在线| 精品一区二区三区视频在线| 青春草视频在线免费观看| 色5月婷婷丁香| 日本黄色日本黄色录像| 成人黄色视频免费在线看| 色吧在线观看| 校园人妻丝袜中文字幕| 欧美日韩国产mv在线观看视频| 亚洲av不卡在线观看| 精品视频人人做人人爽| 性高湖久久久久久久久免费观看| 国产成人freesex在线| 免费看光身美女| 欧美日本中文国产一区发布| 九九在线视频观看精品| 国产又色又爽无遮挡免| 大香蕉久久成人网| www.色视频.com| 伦理电影免费视频| 日日爽夜夜爽网站| 毛片一级片免费看久久久久| 亚洲欧美日韩另类电影网站| 乱人伦中国视频| 色5月婷婷丁香| 久久久久久久久久人人人人人人| 日韩中字成人| √禁漫天堂资源中文www| xxxhd国产人妻xxx| 简卡轻食公司| 男人添女人高潮全过程视频| 免费大片黄手机在线观看| 欧美精品一区二区大全| 午夜福利网站1000一区二区三区| av福利片在线| 久久久久久久久大av| 亚洲国产最新在线播放| 水蜜桃什么品种好| 狠狠精品人妻久久久久久综合| 亚洲精品乱码久久久v下载方式| 欧美激情极品国产一区二区三区 | 汤姆久久久久久久影院中文字幕| 哪个播放器可以免费观看大片| www.色视频.com| 在线观看免费高清a一片| 亚洲图色成人| 精品国产一区二区三区久久久樱花| 日日撸夜夜添| 亚洲熟女精品中文字幕| 亚洲一级一片aⅴ在线观看| √禁漫天堂资源中文www| 只有这里有精品99| 在线观看三级黄色| 成人无遮挡网站| 亚洲精品乱码久久久v下载方式| 男女免费视频国产| 国产极品粉嫩免费观看在线 | 国产一区二区三区av在线| 男男h啪啪无遮挡| 欧美丝袜亚洲另类| 80岁老熟妇乱子伦牲交| 亚洲国产精品一区二区三区在线| 久久久久久久久久久久大奶| 免费av中文字幕在线| 免费黄网站久久成人精品| 赤兔流量卡办理| 亚洲精品久久久久久婷婷小说| 久久青草综合色| 天堂俺去俺来也www色官网| 国产在线免费精品| 七月丁香在线播放| 最近2019中文字幕mv第一页| av黄色大香蕉| 久久久午夜欧美精品| 日日摸夜夜添夜夜爱| 亚洲成人一二三区av| 夫妻性生交免费视频一级片| 菩萨蛮人人尽说江南好唐韦庄| 热99国产精品久久久久久7| 涩涩av久久男人的天堂| 大话2 男鬼变身卡| 国产精品成人在线| 插阴视频在线观看视频| 成年女人在线观看亚洲视频| 观看av在线不卡| 国产精品久久久久成人av| 久久亚洲国产成人精品v| 黑人高潮一二区| 18禁动态无遮挡网站| 日韩人妻高清精品专区| 99久久综合免费| 亚洲,欧美,日韩| 亚洲av福利一区| 久久久久久久国产电影| 中文欧美无线码| 国产老妇伦熟女老妇高清| 精品酒店卫生间| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 免费观看a级毛片全部| 亚洲av免费高清在线观看| 久久久久久久久久久免费av| 桃花免费在线播放| 人妻少妇偷人精品九色| videosex国产| 亚洲情色 制服丝袜| 久久久a久久爽久久v久久| 欧美日韩在线观看h| 亚洲精品国产色婷婷电影| 精品人妻一区二区三区麻豆| 国产白丝娇喘喷水9色精品| 欧美日韩视频精品一区| 亚洲精品自拍成人| 女性生殖器流出的白浆| 国产午夜精品久久久久久一区二区三区| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 99久久精品一区二区三区| 亚洲一区二区三区欧美精品| 国产一区亚洲一区在线观看| 男人爽女人下面视频在线观看| 久久狼人影院| 成人手机av| 亚洲av成人精品一二三区| 亚洲国产精品一区三区| 熟女人妻精品中文字幕| 国产精品不卡视频一区二区| 亚洲第一区二区三区不卡| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 校园人妻丝袜中文字幕| 97精品久久久久久久久久精品| 亚洲精品美女久久av网站| 久久久亚洲精品成人影院| 亚洲综合色网址| xxxhd国产人妻xxx| 免费观看的影片在线观看| 狠狠精品人妻久久久久久综合| 久久精品熟女亚洲av麻豆精品| 91aial.com中文字幕在线观看| 综合色丁香网| 天堂俺去俺来也www色官网| 女性生殖器流出的白浆| 九九久久精品国产亚洲av麻豆| 亚洲五月色婷婷综合| av专区在线播放| 亚洲色图 男人天堂 中文字幕 | 男人操女人黄网站| 日本猛色少妇xxxxx猛交久久| 欧美成人精品欧美一级黄| freevideosex欧美| av不卡在线播放| 欧美老熟妇乱子伦牲交| 日韩中文字幕视频在线看片| 亚洲美女搞黄在线观看| 欧美亚洲 丝袜 人妻 在线| 简卡轻食公司| 亚洲成人av在线免费| 中国国产av一级| 赤兔流量卡办理| 777米奇影视久久| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 日日摸夜夜添夜夜爱| 91精品一卡2卡3卡4卡| 亚洲欧洲日产国产| 日本欧美视频一区| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 黄色怎么调成土黄色| 免费人成在线观看视频色| 精品国产一区二区久久| 99热这里只有是精品在线观看| 亚洲欧美精品自产自拍| 黄色毛片三级朝国网站| 日韩在线高清观看一区二区三区| 爱豆传媒免费全集在线观看| 纯流量卡能插随身wifi吗| 蜜臀久久99精品久久宅男| 在现免费观看毛片| 国产成人精品在线电影| 天堂8中文在线网| 精品人妻在线不人妻| 桃花免费在线播放| 中文字幕亚洲精品专区| 91午夜精品亚洲一区二区三区| 最近中文字幕高清免费大全6| 国产日韩欧美在线精品| 欧美亚洲 丝袜 人妻 在线| 一二三四中文在线观看免费高清| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 亚洲美女搞黄在线观看| 如日韩欧美国产精品一区二区三区 | 亚洲国产av新网站| 久热久热在线精品观看| 一区二区三区精品91| 51国产日韩欧美| 国产毛片在线视频| 国产精品一区二区在线不卡| 男女无遮挡免费网站观看| 一区二区av电影网| 嘟嘟电影网在线观看| 91aial.com中文字幕在线观看| 日本黄色片子视频| 久久99蜜桃精品久久| 99久久精品国产国产毛片| 中文字幕人妻丝袜制服| 国语对白做爰xxxⅹ性视频网站| 久久毛片免费看一区二区三区| 中文精品一卡2卡3卡4更新| 日韩视频在线欧美| 男女边吃奶边做爰视频| 日韩电影二区| 中文精品一卡2卡3卡4更新| 午夜影院在线不卡| 女人精品久久久久毛片| 成人无遮挡网站| 人妻一区二区av| 综合色丁香网| 看免费成人av毛片| av国产精品久久久久影院| 国产探花极品一区二区| 久久午夜综合久久蜜桃| 18禁动态无遮挡网站| 免费观看a级毛片全部| 亚洲av综合色区一区| 亚洲欧美精品自产自拍| 毛片一级片免费看久久久久| 五月开心婷婷网| 热re99久久国产66热| 80岁老熟妇乱子伦牲交| 国产成人免费观看mmmm| 亚洲国产毛片av蜜桃av| 亚洲欧洲国产日韩| 久久精品国产亚洲网站| 2022亚洲国产成人精品| 国产精品久久久久成人av| 高清午夜精品一区二区三区| 插阴视频在线观看视频| 久久国产精品大桥未久av| 一级毛片电影观看| 亚洲人成网站在线观看播放| av又黄又爽大尺度在线免费看| 国产亚洲精品第一综合不卡 | 国产成人午夜福利电影在线观看| 少妇的逼好多水| 九九爱精品视频在线观看| 成人国产麻豆网| 久久久久久人妻| 久久久久国产网址| 日本爱情动作片www.在线观看| 国产色婷婷99| 啦啦啦在线观看免费高清www| 久久久久国产精品人妻一区二区| 久久人妻熟女aⅴ| 国产片特级美女逼逼视频| av网站免费在线观看视频| 亚洲四区av| 午夜福利网站1000一区二区三区| 亚洲欧美中文字幕日韩二区| 久久99一区二区三区| 日韩免费高清中文字幕av|