• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱合成部分還原氧化石墨烯-K2Mn4O8超級(jí)電容器納米復(fù)合材料

    2013-09-17 06:58:56賀蘊(yùn)秋儲(chǔ)曉菲李一鳴孫芳芳黃河洲
    物理化學(xué)學(xué)報(bào) 2013年8期
    關(guān)鍵詞:同濟(jì)大學(xué)物理化學(xué)水熱

    李 樂 賀蘊(yùn)秋,2,* 儲(chǔ)曉菲 李一鳴 孫芳芳 黃河洲

    (1同濟(jì)大學(xué)材料科學(xué)與工程學(xué)院,上海200092;2同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海200092)

    1 Introduction

    Supercapacitor,as a kind of electrical storage devices,has drawn tremendous attention due to its high power density,good electrochemical behavior,and long cycle life.1-4Specific capacitance is a general evaluation criteria for supercapacitor performance,however,as mentioned in literature,5the two indicators of energy density and power density are critical to evaluate the energy storage performance rather than specific capacitance.The energy density(E)and power density(P)can be calculated using the galvanostatic charge-discharge curves by the equations(1)-(3):6

    where C is the specific capacitance of samples,V is the operating potential window excluding voltage drop?V obtained by the discharge curve,i is the applied current,M is the mass of active electrode,and Rsis the internal resistance.

    According to the distinct charge storage mechanisms,supercapacitors can be classified into electrical double-layer capacitors(EDLCs)and pseudocapacitors.Electric energy storage in the former such as carbon material is achieved via the formation of electric double layers at the electrode/electrolyte interface,while the latter such as transition metal oxide is finished through the surface oxidation/reduction on the electrode materials.Carbon materials,for instance,porous carbon and carbon nanotubes(CNTs),have a long cycle life and high power density.7-9As a sort of typical EDLCs,carbon materials still cannot meet the need of the market for low specific capacitance(about 75-300 F·g-1)compared with that of transition metal oxides such as RuO2(710 F·g-1).10-13RuO2is supposed to be an optimal material for the excellent electrochemical behavior.Unfortunately,the commercialization is limited by its high cost and toxicity.Then other cheap and environmentally friendly transition metal oxides were investigated.MnO2,NiO,Co3O4,and Fe3O4were chosen to be these alternative materials.14-18Considering the high energy density in aqueous electrolyte,manganese oxide is regarded as a relatively promising electrode material for the operating potential window between 0 and 1 V.Another attractive advantage of MnO2is the theoretical specific capacitance value(approximately 1300 F·g-1).19-21Nonetheless,the poor electrical conductivity of MnO210-6S·cm-1),which limits the charge transfer from the surface of MnO2nanoparticles to the interior,is the critical part and needs to be solved urgently since it results in the huge gap between the reported specific capacitance value(265 F·g-1)and the theoretical value.22-27Meanwhile,the power density of MnO2(0.26 kW·kg-1)18is fairly low for the same reason.

    It is known that the electrochemical performance of MnO2is determined by several parameters including crystal structure,morphology,specific surface area,and pore size.To meet above structure demands,manganese oxides with different morphologies and crystal phases were prepared and investigated by diverse synthesis routes such as coprecipitation,21thermal decomposition,28sol-gel,29,30hydrothermal method,31-36etc.Synchronously,much attention has also been focused on exploring composites combined MnO2with highly conductive materials such as CNTs,graphene and so forth.

    Graphene,as a kind of burgeoning material,has been one of the most interesting hot topics in many research fields.Chemical reduction of graphene oxide(GO)is a common preparation method to obtain graphene sheets because GO can be easily dispersed in water,which is good for the intercalation of metal oxides.Multiple preparation methods,37-43which used reduced graphene oxide(rGO)or graphene films as raw materials,have been used to synthesize graphene-MnO2composites with the view of improving the electronic conductivity of MnO2.Some reports showed that the specific capacitance values of graphene-MnO2were higher than 300 F·g-1,but the drawback was extremely low mass loading of the active material with less than 3 mg·cm-2.5Moreover,these methods via the reduction of GO firstly will lessen the interlayer which is adverse to metal ion intercalation.

    Herein,we provided a facile hydrothermal approach to prepare partially reduced graphene oxide-K2Mn4O8composites(GMCs).GO sol,rather than rGO or graphene,was used as raw material and KMnO4was added into GO sol to form the precursor solution in order to improve the bonding between graphene oxide and manganese oxide.Graphene oxide sheets served as a heterophase boundary,where the MnO2crystal nucleus can be easily formed during the hydrothermal process.Simultaneously,GO was reduced under a reasonable hydrothermal condition.44The large contact area between reduced graphene oxide and MnO2nanoparticles can improve the electrical conductivity of composites for the higher electrical conductivity of reduced graphene oxide and the capacitive behaviors can be increased greatly.By control of hydrothermal reaction temperatures(T)and different feeding ratios,the electrochemical properties of the obtained GMCs have been investigated and compared.

    2 Experimental

    2.1 Preparation of GO

    All chemical reagents used in this study were analar(AR)grade unless noted.GO was synthesized from spectroscopically pure graphite by using a process as following:45Graphite(3.0 g)was poured into a mixed solution of concentrated H2SO4(360 mL)and H3PO4(40 mL),stirred and sonicated for 5 min,and then potassium permanganate(18.0 g)was added slowly.Stir and sonication continued for 45 min respectively,after which the mixture was heated to 50°C and stirred for 24 h.The reaction system was cooled to room temperature and transferred into an iced solution(400 mL)containing 30%H2O2(3 mL).The mixture was obviously stratified after 2 days′precipitation and the supernatant was decanted away while the remaining solid materials were transferred into high purity water(17 MΩ·cm-1,total 800 mL).In the same way,the mixture was washed for 3 times,and then a purified GO sol(800 mL)was obtained.

    2.2 Preparation of GMCs

    The nanocomposites of reduced graphene oxide-K2Mn4O8with different mole feeding ratios of GO to KMnO4and various temperatures were prepared under the hydrothermal condition.The typical synthetic method is described as follows:Firstly,GO sol and KMnO4were mixed together in accordance with different reactant ratios.Subsequently,the mixed solution was transferred into a 200 mL Teflon-lined stainless steel autoclave and loaded into an oven at a certain temperature for 3 h.After that,the resultant samples were filtered,washed,and finally dried in an oven at 100°C for 10 h.The samples are labeled as T-GMCratio(e.g.,100-GMC2,120-GMC2and 140-GMC2,meaning that GMC samples were prepared at different hydrothermal reaction temperatures with the same feeding ratio of GO to KMnO4by 2 to 1).All the composite samples are called GMCs.

    2.3 Characterization

    The crystallographic structures of the products were investigated by powder X-ray diffraction(XRD)analysis using the Rigaku X-ray diffractometer equipped with Cu Kα(λ=0.154056 nm)radiation at a scan rate of 10(°)·min-1.The diffractometer was operated at a tube voltage of 40 kV and a tube current of 100 mA.Based on Fourier transform infrared(FTIR)spectroscopy,a Bruker Optics HYPERION2000 spectrometer by making slices with KBr powder was performed to test the changes of oxygen-containing functional groups.XPS experiments were carried out on a RBD upgraded PHI-5000C ESCA system(Perkin Elmer)with Mg Kαradiation(hν=1253.6 eV).All XPS spectra were calibrated by using the containment carbon(C 1s binding energy:284.6 eV)to detect the changes of oxygen-containing functional groups and the variation valence state of Mn.Curve fitting and background subtraction were achieved using XPS Peak4.1 provided by Raymund W.M.Kwok(The Chinese University of HongKong,China).The microstructure of the samples was investigated by a scanning electron microscopy(SEM,FEI Quanta 200 FEG).

    2.4 Preparation of electrodes and electrochemical

    measurement

    The working electrodes of supercapacitors were fabricated by mixing the prepared samples with 15%(w)carbon black conductor and 10%(w)polytetrafluoroethylene(PTFE)binder.The mixture was dispersed in ethanol and sonicated for 20 min.The homogenized mixture was coated onto the nickel foam substrate(0.5 cm×1 cm)with a painting brush.Then the coated nickel foam was pressed,dried at 100°C for 2 h,and the loading mass was about 8-12 mg·cm-2.

    All electrochemical measurements were carried out in 1 mol·L-1Na2SO4aqueous electrolyte solution at room temperature using a common three-electrode configuration with GMC as the working electrode,Pt wire as the counter electrode,and saturated calomel electrode(SCE)as the reference.Cyclic voltammograms(CVs),galvanostatic charge-discharge,and electrochemical impedance spectroscopy(EIS)were utilized to evaluate the electrochemical properties of different composite electrodes.The electrochemical behaviors were measured by a CHI 660C electrochemical workstation.CV measurements were conducted between 0 and 1 V(vs SCE)at a scan rate of 10 mV·s-1.Galvanostatic charge-discharge curves were measured in the potential range of 0-1 V(vs SCE)at a current density of 1 A·g-1,and EIS was performed in the frequency range from 100 kHz to 0.1 Hz with an AC amplitude of 5 mV.The discharge specific capacitance(F·g-1)of the electrode was calculated using equation(4):

    where I is the discharge current(A),t is the time(s)of discharge,M is the mass(g)of the active material in the electrode,and V is the operating potential window excluding voltage drop ΔV in the discharge process.

    3 Results and discussion

    3.1 XRD analyses

    Fig.1 XRD patterns of GO,100-GMC2,120-GMC2,140-GMC2(a)and 120-GMC3,120-GMC2,120-GMC1(b)

    XRD patterns of GO and GMC nanocomposites are presented in Fig.1.Fig.1(a)presents the XRD patterns of GO and different T-GMC2samples.The XRD pattern of GO shows two diffraction peaks at 9.3°and 42.7°,which correspond to the(002)and(100)reflections of GO.The diffraction peak at 9.3°,suggesting the introduction of oxygen-containing functional groups and adsorbed water on the graphite interlamination,means that the interlayer spacing of GO powders is 0.95 nm,which is much larger than that of graphite(0.34 nm).XRD patterns of 100-GMC2and 120-GMC2in Fig.1(a)are indexed to be the crystal phase of K2Mn4O8(JCPDS 16-0205).It can be observed that MnCO3(JCPDS 44-1472)phase comes out as the temperature rises to 140°C due to the enhanced oxidative effect of KMnO4.Meanwhile,GO peaks can not be found in all T-GMC2samples,revealing that the interlayer spacing of GO enlarged due to K2Mn4O8crystallization on GO.However,K2Mn4O8is hardly formed in the KMnO4solution without GO.It is inferred that GO sheets serve as heterophase boundaries on which the nucleation of K2Mn4O8becomes easier.

    The feeding ratio of GO to KMnO4also has much influence on crystallization of MnO2.Fig.1(b)shows the XRD patterns of 120-GMCratiosamples.As can be seen from Fig.1(b),five extra diffraction peaks at 18.1°,28.8°,41.9°,49.8°,and 60.1°,which should be indexed as the(200),(310),(301),(411),and(521)reflections of α-MnO2(JCPDS 44-0141),can be observed when the feeding ratio is 1:1.It suggests that the crystal phases in 120-GMC1sample are composed of K2Mn4O8and α-MnO2.The XRD patterns of 120-GMC3and 120-GMC2show the same phase of K2Mn4O8.The diffraction peaks of GO in all GMCs disappear.

    3.2 FTIR and XPS analyses

    The oxygen-containing functional groups of both GO and GMCs were performed by FTIR measurements as shown in Fig.2.Several characteristic peaks were identified in GO(Fig.2(a)):carbonyl C=O stretching vibration(1730 cm-1),C=C stretching vibration(1610 cm-1),epoxy C―O―C stretching vibration(1225 cm-1),and hydroxyl C―OH stretching vibration(1053 cm-1).The FTIR spectra of T-GMC2samples in Fig.2(a)show that the characteristic peaks of C=O,C―O―C,and C―OH weakened or even vanished in comparison with those of GO,suggesting that GO in composites was reduced more or less.It can be seen that C=C peak of 120-GMC2sample shifts from 1610 to 1585 cm-1,which may attribute to the formation of more C=C bonds.The vibration bands centered at 1410 and 862 cm-1in 140-GMC2,are the characteristic peaks of MnCO3,46which is consistent with the XRD patterns of 140-GMC2.The band centered at 523 cm-1is assigned to the Mn―O stretching vibration.

    Fig.2(b)presents the FTIR spectra of different ratios of 120-GMCratio.The C=O bands at 1730 cm-1and C―O―C bands at 1225 cm-1in all the three samples of 120-GMCratioweaken while the C=C signal at 1610 cm-1remains relatively strong.As can be seen from Fig.2(b),the hydroxyl group at 1053 cm-1in 120-GMC1becomes stronger,indicating that GO may be further oxidized.The band centered at 523 cm-1is the Mn―O stretching vibration.The characteristic peak of MnCO3centered at 862 cm-1can be observed in 120-GMC1sample.However,the XRD peaks of MnCO3cannot be found from 120-GMC1sample probably due to the low content of MnCO3in the sample.GO in both 120-GMC2and 120-GMC3is partially reduced as can be seen from the weaker characteristic peaks.

    Fig.2 FTIR spectra of GO,100-GMC2,120-GMC2,140-GMC2(a)and 120-GMC1,120-GMC2,120-GMC3(b)

    The C 1s XPS spectra of GO,100-GMC2,120-GMC2,140-GMC2,120-GMC1,and 120-GMC3are represented in Fig.3.All XPS curves were fitted considering the following functional groups:C=C,C―C,C―OH,C―O―C,C=O,and COOH bonds.47Table 1 lists the C 1s XPS spectrum analysis results of GO and GMCs.

    As is shown in Fig.3(a),the C 1s XPS spectrum of pure GO has a broader peak than GO in GMCs,demonstrating that GO in GMCs is partially reduced.As can be seen in Table 1,the mole percentage content of high chemically active functional group COOH at the edge of GO decreases obviously during the hydrothermal process,indicating that edge carbon atoms are basically reduced.As the temperature arises from 100 to 120°C,the content of C=C bonds in T-GMC2samples increases to approximately 60%and the content of C―C bonds falls by half,meanwhile the content of C=C in 140-GMC2is obviously reduced.The content of C=O bonds in GMCs compared to pure GO all slightly increases except 140-GMC2.Nevertheless,the change in 140-GMC2sample is antipodal probably due to the phenomenon that GO was further oxidized and Mn-CO3phase was obtained.This result is consistent with the XRD and FTIR analysis results.As the feeding ratio of GO to KMnO4rises,the C=C content increases and the C―C content decreases.Concurrently,the content of C―OH in 120-GMC1sample is higher than that in GO while the contents of C―OH in both 120-GMC2and 120-GMC3samples are close to that in GO.As previously mentioned,GO can be reduced in hydrothermal condition.Nonetheless,when the content of strongly oxidising KMnO4increased greatly,the oxidation of GO was easier than reduction.Therefore,the content of C―OH increases to ca 41%.

    Fig.3 C 1s XPS spectra of GO(a),100-GMC2(b),120-GMC2(c),140-GMC2(d),120-GMC1(e),and 120-GMC3(f)

    Table 1 C 1s XPS spectrum analysis results of GO and GMCs with different binding energies

    Fig.4 shows the narrow XPS spectra of Mn 2p region of GMCs.The Mn 2p3/2peak positions of 100-GMC2,120-GMC2,140-GMC2,120-GMC1,and 120-GMC3centered at 642.7,642.9,643.3,644.4,and 642.9 eV,respectively.The binding energies of Mn 2p3/2peak48for Mn2+,Mn3+,and Mn4+are 640.0,640.7,and 641.9 eV,respectively.The binding energy position of Mn2+ion shifts from 640.0 to 644.4 eV49since the electron cloud density around Mn2+ion is the highest for the carbonate ion.The binding energies of Mn 2p3/2peak for T-GMC2samples are gradually increasing with the ascending of temperature,revealing the formation and increasing content of MnCO3in T-GMC2samples,especially in 140-GMC2sample.Nevertheless,the binding energies of 120-GMCratioare decreasing with the rising of feeding ratios of GO to KMnO4.The binding energy of Mn 2p3/2peak for 120-GMC1shifts to the highest peak position(644.4 eV)due to the formation of MnCO3and the higher valence state of Mn(α-MnO2)compared with K2Mn4O8.The XPS analysis on the valence state of Mn corresponds to the XRD and FTIR patterns.

    Fig.4 XPS spectra of the Mn 2p region of GMCs

    3.3 Morphological study

    Fig.5 SEM images of GO(a,b),120-GMC2(c,d),140-GMC2(e,f),and 120-GMC1(g,h)at different magnifications

    The morphologies of GO,120-GMC2,140-GMC2,and 120-GMC1were characterized by SEM as shown in Fig.5.As depicted in Fig.5(a,b),SEM images of synthesized GO have wrinkles and folds.Fig.5(c,d)shows the SEM images of 120-GMC2,which consist of rGO flakes and K2Mn4O8nanoparticles according to XRD and FTIR analysis.It can be seen that K2Mn4O8nanoparticles(~40 nm)grow on the surfaces of partially reduced graphene oxide under hydrothermal condition.K2Mn4O8with small grain sizes is beneficial to the electrical transfer between rGO and K2Mn4O8nanoparticles.Numerous rGO flakes can be observed and the growth of K2Mn4O8is firstly inclined to the edges of rGO layers owing to the higher reaction activity in contrast to other oxygen-containing functional groups.The SEM images of 140-GMC2are shown in Fig.5(e,f).The morphology of product consists of many interleaving nanorods.The changed feature should be caused by the formation of largely MnCO3due to the reaction between GO and KMnO4at 140°C,which is confirmed by XRD,FTIR,and XPS.Fig.5(g,h)shows the microstructure images of 120-GMC1,from which only large rGO flakes covered by compact α-MnO2nanoparticles can be observed.The fragment of GO cannot be seen probably due to the reaction between carbon and KMnO4.During this reaction,MnCO3phase comes out and the GO fragment is consumed.Herein,GO sol,which has an affinity for manganese oxide,makes the heterogeneous nucleation of K2Mn4O8and MnO2easier.

    3.4 Electrochemical behavior

    The charge storage mechanism of MnO2can be described as a surface ion adsorption/desorption process of cations M+from the electrolyte.The reaction50is expressed as equation(5):

    where M represents protons(H+)or alkali metal cations such as Na+in the electrode.Electron transport plays an important role in this reaction.Furthermore,the crystal structure of MnO2which is helpful for ion transfer is equivalently significant.Cyclic voltammograms studies were performed to evaluate the chemical behaviors of GMCs.

    Fig.6(a)shows the CVs curves of different T-GMC2,and the rectangular shapes without obvious redox peaks indicate that T-GMC2samples have ideal capacitive behaviors attributing to the introduction of reduced graphene oxide which can improve the electrical conductivity of MnO2.The CV curve of 120-GMC2shows a larger rectangular shape compared to those of 100-GMC2and 140-GMC2.The former one is assinged to be a higher reduction degree of GO,while the latter can be explained by the formation of largely MnCO3which is adverse to the capacitive behaviors.The CV curves of 120-GMCratioare shown in Fig.6(b).An apparent distortion and redox peaks can be observed in 120-GMC1which is composed of K2Mn4O8,α-MnO2,and MnCO3.The electrical transfer in the interior of 120-GMC1materials is hindered due to the decreased content of C=C bonds which is beneficial to the electrical conductivity.However,the elecrtochemical performance of 120-GMC3sample is slightly less than that of 120-GMC2probably owing to the lower content of K2Mn4O8.These different capacitive behaviors suggest two key points.One is that K2Mn4O8may be a good phase for capacitive property even it contains some Mn3+ions.Another one is that the above nanostructures composed of nanoparticles on rGO layers favor to the electron transfer.These nanostructures are released by the special reaction system containing GO sol,which benefits to heterogeneous nucleation on rGO and results in some kinds of bonding between manganese oxides and rGO.

    The galvanostatic charge-discharge curves of T-GMC2and 120-GMCratiowere demonstrated in Fig.6(c,d).As is mentioned by many researches,the low loading mass on the electrode is good for the contact between active material and current collector which leads to a higher electrical conductivity.Nevertheless,with a heavier mass(8-12 mg·cm-2)in our electrode than the reported loading mass(3 mg·cm-2),39the internal resistance is still fairly low.The energy density,power density,and specific capacitance of GMCs are respectively figured out and listed in Table 2.The energy density and power density of 120-GMC2are the highest in all results.In T-GMC2samples,the capacitive behaviors of 100-GMC2and 140-GMC2are worse than those of 120-GMC2probably due to the low content of K2Mn4O8and the formation of MnCO3,respectively.

    Fig.6 CVs of T-GMC2(a)and 120-GMCratio(b);galvanostatic charge-discharge curves of T-GMC2(c)and 120-GMCratio(d);the trend plots of specific capacitance values as different hydrothermal reaction temperatures(e)and different feeding ratios(f)of GO to KMnO4(a,b)scan rate:10 mV·s-1;(c,d)current density:1A·g-1

    In 120-GMCratiosamples,the capacitive properties of 120-GMC1are worse than those of 120-GMC2probably owing to the further oxidization of GO which hinders from the electrical transfer between GO and manganese oxide.The slightly lower electrochemical properties of 120-GMC3can be explained by the lower content of K2Mn4O8compared with 120-GMC2.As is shown all the curves are practically linear and symmetrical with a slight curvature,which is supported by the metioned different microstructures.The trend plots of GMCs as the temperatures and feeding ratios changed are illustrated in Fig.6(e,f).From all the measured data and curves,the most suitable reaction temperature is 120°C with a mole feeding ratio of GO to KMnO4being 2 to 1.

    The cycle stability studies were carried out to get more information about the 120-GMC2.After 1000 cycles,the galvanostatic charge-discharge time shown in Fig.7(a)decreases quite little,however,the charge-discharge curves tend to more symmetrical.The CV loop in Fig.7(b)is more close to a rectangular shape after 1000 cycles with a little shrink,indicating that only a fraction of K2Mn4O8has been polarized.

    As one of the fundamental measuring methods,the electro-chemical impedance spectroscopy(EIS)was applied to further comprehend the electrochemical interfacial behavior.The EIS of the 120-GMC2sample at the first cycle and after 1000 cycles were performed and shown in Fig.7(c).The EIS data were fitted by an equivalent circuit diagram.39As depicted in the inset of Fig.7(c),it consists of the contact resistance Reof the active material/current collector interface,the charge transfer resistance Rctcaused by the redox reaction of MnO2,the Warburg diffusion resistance Zw,the double-layer capacitance Cdl,and the limited capacitance CL.51The EIS curves exhibit a steep slope at the low frequency region,which should attribute to the non-Faradic charge storage mechanism.However,the curve turns to be steeper after 1000 cycles,indicating that the electrode has a more stable cycle performance.At the high frequency region,the semicircle curves close to arcs are nearly overlapping and respectively intersect the real axis at Reand Re+Rct.At the first cycle,the Reand Rctwere measured to be 2.328 and 0.4545 Ω,respectively,while the corresponding values after 1000 cycles were calculated to be 2.263 and 0.5308 Ω.Such a low Faradic resistance Rct,which is a limiting factor to the power density,indicates that the Na+ion can be adsorbed and desorbed rapidly at the electrode/electrolyte interface.This is consistent with the above high power value.Nevertheless,the increased Rctvalue after 1000 cycles can be explained by the decreased contact area between active material and current collector for the longtime infusion.Furthermore,the Warburg resistance Zw,the response of the frequency dependence of ion transport in the electrolyte,changes from 0.9597 to 1.222 Ω,which is caused by passivation of a small amount of manganese oxides.

    Table 2 Specific capacitance,energy density,and power density of GMCs

    Fig.7 Galvanostatic charge-discharge curves of 120-GMC2(a);CV curves of 120-GMC2(b);EIS plots of 120-GMC2electrode and the equivalent circuit(inset)(c);capacitance retention curve measured at a current density of 5A·g-1and a part of the galvanostatic charge-discharge curves(inset)(d)

    The CV method was used to investigate the cycle stability of electrode materials by some papers.However,the galvanostatic charge-discharge cycles,rather than CVs,can exactly reflect the cycle performance due to the accordance with practical application.Fig.7(d)shows the cycling behavior of prepared electrode with 120-GMC2measured in 1 mol·L-1Na2SO4electrolyte at a current density of 5 A·g-1between 0 and 1 V.Part of galvanostatic charge-discharge curves are also exhibited in the inset of Fig.7(d).The electrode material shows good cycle performance still with 88%of the initial capacitance retained after 1000 cycles at such a high current density.This excellent cycle behavior should attribute to the unique microstructure with rGO flakes covered by MnO2nanoparticles.Compared with reported results52about MnO2electrochemical behaviors,reduced graphene oxide in the composites authentically acts as a conductive matrix and exhibits the double-layer capacitive properties.

    4 Conclusions

    Partially reduced graphene oxide-K2Mn4O8composites have been synthesized using a facile hydrothermal reaction method.This immediate reaction method using GO sol makes the MnO2nanoparticles nucleate and grow on the surface of GO sheets.Meanwhile,GO was partially reduced under a proper hydrothermal reaction temperature and mole feeding ratio of GO to KMnO4.Then the 120-GMC2sample with an excellent electrochemical behavior was obtained attributing to the unique microstructure of rGO flakes covered by K2Mn4O8nanoparticles.The specific capacitance of the optimal sample is calculated to be 251 F·g-1at the current density of 1 A·g-1with an energy density of 32.0 Wh·kg-1and a power density of 18.2 kW·kg-1.Moreover,the capacitance retention ratio maintains 88%after 1000 cycles measured at a high current density of 5 A·g-1.It is believed that the partially reduced graphene oxide-K2Mn4O8nanocomposites have widely promising applications,such as microelectronics,uninterrupted power supply(UPS),electrochemical sensors,and lithium ion batteries.

    (1)Wang,G.;Zhang,L.;Zhang,J.Chem.Soc.Rev.2012,41(2),797.doi:10.1039/c1cs15060j

    (2)Wang,X.;Li,G.;Chen,Z.;Augustyn,V.;Ma,X.;Wang,G.;Dunn,B.;Lu,Y.Adv.Energy Mater.2011,1(6),1089.doi:10.1002/aenm.201100332

    (3) Chen,Z.;Wen,J.;Yan,C.;Rice,L.;Sohn,H.;Shen,M.;Cai,M.;Dunn,B.;Lu,Y.Adv.Energy Mater.2011,1(4),551.doi:10.1002/aenm.201100114

    (4) Guo,P.Z.;Ji,Q.Q.;Zhang,L.L.;Zhao,S.Y.;Zhao,X.S.Acta Phys.-Chim.Sin.2011,27(12),2836.[郭培志,季倩倩,張麗莉,趙善玉,趙修松.物理化學(xué)學(xué)報(bào),2011,27(12),2836.]doi:10.3866/PKU.WHXB20112836

    (5) Lin,Y.H.;Wei,T.Y.;Chien,H.C.;Lu,S.Y.Adv.Energy Mater.2011,1(5),901.doi:10.1002/aenm.201100256

    (6)Yu,G.;Hu,L.;Vosgueritchian,M.;Wang,H.;Xie,X.;McDonough,J.R.;Cui,X.;Cui,Y.;Bao,Z.Nano Lett.2011,11(7),2905.doi:10.1021/nl2013828

    (7) Sharma,P.;Bhatti,T.S.Energy Convers.Manag.2010,51(12),2901.doi:10.1016/j.enconman.2010.06.031

    (8) Zhang,L.L.;Zhao,X.S.Chem.Soc.Rev.2009,38(9),2520.doi:10.1039/b813846j

    (9)Ghosh,A.;Lee,Y.H.ChemSusChem 2012,5(3),480.doi:10.1002/cssc.201100645

    (10) Sop?i?,S.;Mandi?,Z.;Inzelt,G.;Rokovi?,M.K.;Me?trovi?,E.J.Power Sources 2011,196(10),4849.doi:10.1016/j.jpowsour.2011.01.070

    (11) Bharali,P.;Kuratani,K.;Takeuchi,T.;Kiyobayashi,T.;Kuriyama,N.J.Power Sources 2011,196(18),7878.doi:10.1016/j.jpowsour.2011.03.097

    (12)Zhang,Y.;Feng,H.;Wu,X.;Wang,L.;Zhang,A.;Xia,T.;Dong,H.;Li,X.;Zhang,L.Int.J.Hydrog.Energy 2009,34(11),4889.doi:10.1016/j.ijhydene.2009.04.005

    (13)Hu,Y.Y.;Hu,Z.A.;Zhang,Y.J.;Lu,A.L.;Xu,H.;Zhang,Z.Y.;Yang,Y.Y.;Li,L.;Wu,H.Y.Acta Phys.-Chim.Sin.2013,29(2),305.[胡英瑛,胡中愛,張亞軍,魯愛蓮,徐 歡,張子瑜,楊玉英,李 麗,吳紅英.物理化學(xué)學(xué)報(bào),2013,29(2),305.]doi:10.3866/PKU.WHXB201211201

    (14)Lee,J.W.;Ahn,T.;Kim,J.H.;Ko,J.M.;Kim,J.D.Electrochim.Acta 2011,56(13),4849.doi:10.1016/j.electacta.2011.02.116

    (15) Xu,J.;Gao,L.;Cao,J.;Wang,W.;Chen,Z.J.Solid State Electrochem.2011,15(9),2005.doi:10.1007/s1008-010-1222-6

    (16) Fan,Z.;Chen,J.;Cui,K.;Sun,F.;Xu,Y.;Kuang,Y.Electrochim.Acta 2007,52(9),2959.doi:10.1016/j.electacta.2006.09.029

    (17) Burke,A.Electrochim.Acta 2007,53(3),1083.doi:10.1016/j.electacta.2007.01.011

    (18) Cottineau,T.;Toupin,M.;Delahaye,T.;Brousse,T.;Bélanger,D.Appl.Phys.A 2006,82(4),599.doi:10.1007/s00339-005-3401-3

    (19) Li,Y.;Xie,H.;Wang,J.;Chen,L.Mater.Lett.2011,65(2),403.doi:10.1016/j.matlet.2010.10.048

    (20) Chen,Z.;Jiao,Z.;Pan,D.;Li,Z.;Wu,M.;Shek,C.H.;Wu,C.M.;Lai,J.K.Chem.Rev.2012,112(7),3833.doi:10.1021/cr2004508

    (21) Beaudrouet,E.;Le Gal La Salle,A.;Guyomard,D.Electrochim.Acta 2009,54(4),1240.doi:10.1016/j.electacta.2008.08.072

    (22) Zhang,J.;Jiang,J.;Zhao,X.S.J.Phys.Chem.C 2011,115(14),6448.doi:10.1021/jp200724h

    (23)Yu,G.;Hu,L.;Liu,N.;Wang,H.;Vosgueritchian,M.;Yang,Y.;Cui,Y.;Bao,Z.Nano Lett.2011,11(10),4438.doi:10.1021/nl2026635

    (24)Wang,Y.T.;Lu,A.H.;Zhang,H.L.;Li,W.C.J.Phys.Chem.C 2011,115(13),5413.doi:10.1021/jp110938x

    (25)Wang,H.;Peng,C.;Peng,F.;Yu,H.;Yang,J.Mater.Sci.Eng.B 2011,176(14),1073.doi:10.1016/j.mseb.2011.05.043

    (26) Zhu,G.;Li,H.;Deng,L.;Liu,Z.H.Materials Letters 2010,64(16),1763.doi:10.1016/j.matlet.2010.05.019

    (27) Pang,X.;Ma,Z.Q.;Zuo,L.Acta Phys.-Chim.Sin.2009,25(12),2433.[龐 旭,馬正青,左 列.物理化學(xué)學(xué)報(bào),2009,25(12),2433.]doi:10.3866/PKU.WHXB20091211

    (28) Zhao,J.Z.;Tao,Z.L.;Liang,J.;Chen,J.Cryst.Growth Des.2008,8(8),2799.doi:10.1021/cg701044b

    (29) Devaraj,S.;Munichandraiah,N.J.Phys.Chem.C 2008,112(11),4406.doi:10.1021/jp7108785

    (30)Yu,J.;Zhao,T.;Zeng,B.Electrochem.Commun.2008,10(9),1318.doi:10.1016/j.elecom.2008.06.028

    (31) Qiu,G.;Huang,H.;Dharmarathna,S.;Benbow,E.;Stafford,L.;Suib,S.L.Chem.Mater.2011,23(17),3892.doi:10.1021/cm2011692

    (32)Yang,Y.Y.;Xiao,L.F.;Zhao,Y.Q.;Wang,F.Y.Int.J.Electrochem.Sci.2008,3(1),67.

    (33)Subramanian,V.;Zhu,H.W.;Vajtai,R.;Ajayan,P.M.;Wei,B.Q.J.Phys.Chem.B 2005,109(43),20207.doi:10.1021/jp0543330

    (34)Xiao,W.;Wang,D.L.;Lou,X.W.J.Phys.Chem.C 2010,114(3),1694.doi:10.1021/jp909386d

    (35)Xu,M.;Kong,L.;Zhou,W.;Li,H.J.Phys.Chem.C 2007,111(51),19141.doi:10.1021/jp076730b

    (36)Wang,H.;Lu,Z.;Qian,D.;Li,Y.;Zhang,W.Nanotechnology 2007,18(11),115616.doi:10.1088/0957-4484/18/11/115616

    (37) Li,Z.;Wang,J.;Liu,S.;Liu,X.;Yang,S.J.Power Sources 2011,196(19),8160.doi:10.1016/j.jpowsour.2011.05.036

    (38) Cheng,Q.;Tang,J.;Ma,J.;Zhang,H.;Shinya,N.;Qin,L.C.Carbon 2011,49(9),2917.doi:10.1016/j.carbon.2011.02.068

    (39)Yan,J.;Fan,Z.;Wei,T.;Qian,W.;Zhang,M.;Wei,F.Carbon 2010,48(13),3825.doi:10.1016/j.carbon.2010.06.047

    (40) Zhu,Y.;Murali,S.;Stoller,M.D.;Ganesh,K.J.;Cai,W.;Ferreira,P.J.;Pirkle,A.;Wallace,R.M.;Cychosz,K.A.;Thommes,M.;Su,D.;Stach,E.A.;Ruoff,R.S.Science 2011,332(6037),1537.doi:10.1126/science.1200770

    (41)Miller,J.R.;Outlaw,R.A.;Holloway,B.C.Science 2010,329(5999),1637.doi:10.1126/science.1194372

    (42) Le,L.T.;Ervin,M.H.;Qiu,H.;Fuchs,B.E.;Lee,W.Y.Electrochem.Commun.2011,13(4),355.doi:10.1016/j.elecom.2011.01.023

    (43)Huang,X.;Yin,Z.;Wu,S.;Qi,X.;He,Q.;Zhang,Q.;Yan,Q.;Boey,F.;Zhang,H.Small 2011,7(14),1876.doi:10.1002/smll.201002009

    (44) Luo,D.C.;Zhang,G.X.;Liu,J.F.;Sun,X.M.J.Phys.Chem.C 2011,115(23),11327.doi:10.1021/jp110001y

    (45) Marcano,D.C.;Kosynkin,D.V.;Berlin,J.M.;Sinitskii,A.;Sun,Z.;Slesarev,A.;Alemany,L.B.;Lu,W.;Tour,J.M.ACS Nano 2010,4(8),4806.doi:10.1021/nn1006368

    (46) Tang,N.;Tian,X.;Yang,C.;Pi,Z.Materials Research Bulletin 2009,44(11),2062.doi:10.1016/j.materresbull.2009.07.012

    (47)Chen,W.F.;Yan,L.F.;Bangal,P.R.J.Phys.Chem.C 2010,114(47),19885.doi:10.1021/jp107131v

    (48) Nesbitt,H.W.;Banerjee,D.American Mineralogist 1998,83(3-4),305.

    (49) Gao,J.;Tong,X.;Li,X.;Miao,H.;Xu,J.J.Chem.Technol.Biotechnol.2007,82(7),620.doi:10.1002/jctb.1717

    (50) Xia,H.;Wang,Y.;Lin,J.;Lu,L.Nanoscale Res.Lett.2012,7(1),33.doi:10.1186/1556-276X-7-33

    (51) Di Fabio,A.;Mastragostino,A.G.M.;Soavi,F.J.Electrochem.Soc.2001,148,A845.

    (52) Tang,N.;Tian,X.;Yang,C.;Pi,Z.Mater.Res.Bull.2009,44(11),2062.doi:10.1016/j.materresbull.2009.07.012

    猜你喜歡
    同濟(jì)大學(xué)物理化學(xué)水熱
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    Chemical Concepts from Density Functional Theory
    水熱還是空氣熱?
    簡述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無模板水熱合成
    国产淫语在线视频| 欧美乱码精品一区二区三区| 午夜福利在线观看吧| 日韩精品免费视频一区二区三区| 亚洲熟女毛片儿| 精品卡一卡二卡四卡免费| 国产精品 欧美亚洲| 青草久久国产| 精品久久久久久久毛片微露脸| 女人高潮潮喷娇喘18禁视频| 久久久久国产精品人妻aⅴ院 | 大型黄色视频在线免费观看| 国产成+人综合+亚洲专区| 久久ye,这里只有精品| 日韩一卡2卡3卡4卡2021年| 久久中文字幕一级| 人人妻人人爽人人添夜夜欢视频| 男人舔女人的私密视频| 一级黄色大片毛片| 窝窝影院91人妻| 色综合欧美亚洲国产小说| 久久人妻熟女aⅴ| 99热只有精品国产| 精品亚洲成国产av| 好男人电影高清在线观看| 免费日韩欧美在线观看| 国产精品一区二区免费欧美| 欧美日韩视频精品一区| 国产成人精品久久二区二区91| 日韩欧美一区二区三区在线观看 | 老熟妇仑乱视频hdxx| 国产精品免费视频内射| 亚洲av片天天在线观看| 91大片在线观看| 国产成人免费观看mmmm| 久久精品亚洲av国产电影网| 国产欧美日韩精品亚洲av| 十八禁高潮呻吟视频| 久久国产精品影院| 丝袜美足系列| 国产成人av激情在线播放| bbb黄色大片| 黄片大片在线免费观看| 成在线人永久免费视频| 18禁国产床啪视频网站| 日韩欧美国产一区二区入口| 欧美日韩av久久| 美女福利国产在线| 丰满人妻熟妇乱又伦精品不卡| 国产av又大| 国产精品久久视频播放| 俄罗斯特黄特色一大片| 中文字幕人妻丝袜一区二区| 精品国产一区二区三区四区第35| 欧美+亚洲+日韩+国产| 国产精品香港三级国产av潘金莲| 亚洲熟妇中文字幕五十中出 | 男女床上黄色一级片免费看| 捣出白浆h1v1| 国产精品久久视频播放| 99久久国产精品久久久| 亚洲精品国产一区二区精华液| 久久ye,这里只有精品| 一本综合久久免费| 成人永久免费在线观看视频| 久久 成人 亚洲| 精品卡一卡二卡四卡免费| 水蜜桃什么品种好| 老汉色∧v一级毛片| 国产野战对白在线观看| 国产真人三级小视频在线观看| 国产主播在线观看一区二区| 久久亚洲精品不卡| 丝瓜视频免费看黄片| 中文亚洲av片在线观看爽 | 国产午夜精品久久久久久| 精品久久久久久,| 亚洲专区字幕在线| 国产精品一区二区精品视频观看| 国产在视频线精品| 亚洲情色 制服丝袜| 欧美中文综合在线视频| 免费观看精品视频网站| 国产av又大| 18在线观看网站| 国产精品久久久久久人妻精品电影| 亚洲av日韩在线播放| 欧美激情极品国产一区二区三区| 亚洲精品一二三| 美女午夜性视频免费| 91成人精品电影| 新久久久久国产一级毛片| 纯流量卡能插随身wifi吗| 国产一区二区三区视频了| 变态另类成人亚洲欧美熟女 | 人妻一区二区av| 国产淫语在线视频| 国产高清激情床上av| 久久精品aⅴ一区二区三区四区| 国产男靠女视频免费网站| av线在线观看网站| 亚洲情色 制服丝袜| 在线观看免费午夜福利视频| 成人黄色视频免费在线看| 69精品国产乱码久久久| 国产精品 国内视频| 啪啪无遮挡十八禁网站| 国产成人精品无人区| 免费观看a级毛片全部| 欧美国产精品一级二级三级| 怎么达到女性高潮| 真人做人爱边吃奶动态| 看免费av毛片| 黑人操中国人逼视频| 9热在线视频观看99| 久久久久久人人人人人| 久久国产精品男人的天堂亚洲| a级片在线免费高清观看视频| 午夜福利一区二区在线看| 日本欧美视频一区| 丁香欧美五月| 免费少妇av软件| 久久国产乱子伦精品免费另类| 免费黄频网站在线观看国产| 三上悠亚av全集在线观看| 成人精品一区二区免费| 夫妻午夜视频| 亚洲第一欧美日韩一区二区三区| 很黄的视频免费| 精品熟女少妇八av免费久了| 日韩大码丰满熟妇| 啪啪无遮挡十八禁网站| 国产成人精品无人区| 日本a在线网址| 久久中文字幕人妻熟女| 一二三四社区在线视频社区8| 欧美午夜高清在线| 成年动漫av网址| 久久精品熟女亚洲av麻豆精品| 国产一区在线观看成人免费| 伊人久久大香线蕉亚洲五| 亚洲中文字幕日韩| 欧美乱码精品一区二区三区| 黄片播放在线免费| 国产成人免费无遮挡视频| 搡老熟女国产l中国老女人| 亚洲专区国产一区二区| 亚洲精品在线观看二区| 啦啦啦免费观看视频1| 两个人免费观看高清视频| 日韩 欧美 亚洲 中文字幕| 国产一区有黄有色的免费视频| 日韩 欧美 亚洲 中文字幕| 国产精品二区激情视频| 久久久国产精品麻豆| 少妇裸体淫交视频免费看高清 | 在线视频色国产色| 乱人伦中国视频| 亚洲美女黄片视频| 亚洲精品在线观看二区| 日韩 欧美 亚洲 中文字幕| 深夜精品福利| 亚洲精品一二三| videosex国产| 国产三级黄色录像| 亚洲中文av在线| 90打野战视频偷拍视频| 夜夜爽天天搞| 国产一区二区三区综合在线观看| tube8黄色片| avwww免费| 99热只有精品国产| 在线天堂中文资源库| 国产一区二区三区综合在线观看| 国产精品自产拍在线观看55亚洲 | 久久久久视频综合| 中文字幕色久视频| 一级片'在线观看视频| 少妇的丰满在线观看| 校园春色视频在线观看| 高潮久久久久久久久久久不卡| 日日爽夜夜爽网站| 欧美乱色亚洲激情| 日韩免费av在线播放| 一区福利在线观看| 99re6热这里在线精品视频| 国产精品久久久久久人妻精品电影| 国产精品久久视频播放| 在线观看免费午夜福利视频| 亚洲免费av在线视频| 国产精品欧美亚洲77777| 亚洲欧美一区二区三区久久| 午夜视频精品福利| 日韩免费av在线播放| 国产亚洲精品第一综合不卡| 欧美最黄视频在线播放免费 | 午夜影院日韩av| 亚洲成人免费av在线播放| 免费黄频网站在线观看国产| 巨乳人妻的诱惑在线观看| 欧美老熟妇乱子伦牲交| 亚洲精品国产精品久久久不卡| 中文字幕人妻丝袜制服| 天天操日日干夜夜撸| 一边摸一边抽搐一进一小说 | 欧美日韩黄片免| 天天躁狠狠躁夜夜躁狠狠躁| 久久天堂一区二区三区四区| 91精品三级在线观看| 欧美日韩亚洲综合一区二区三区_| 免费看十八禁软件| 日本vs欧美在线观看视频| 久久久久久久久免费视频了| 一边摸一边抽搐一进一出视频| 午夜影院日韩av| 日韩精品免费视频一区二区三区| 亚洲精品久久成人aⅴ小说| 午夜福利,免费看| 欧美日本中文国产一区发布| 亚洲av电影在线进入| 精品国产一区二区三区久久久樱花| 日本a在线网址| 久久精品亚洲av国产电影网| 热99re8久久精品国产| 大码成人一级视频| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区免费欧美| 久久精品国产综合久久久| 在线十欧美十亚洲十日本专区| 亚洲五月色婷婷综合| 国产精品1区2区在线观看. | 久久久久精品人妻al黑| 国产亚洲欧美在线一区二区| 久久人妻熟女aⅴ| 中国美女看黄片| 欧美成狂野欧美在线观看| 亚洲人成电影免费在线| 女人精品久久久久毛片| 熟女少妇亚洲综合色aaa.| 人人澡人人妻人| 久久精品国产综合久久久| 超碰成人久久| 999久久久精品免费观看国产| 亚洲专区中文字幕在线| 国产又爽黄色视频| 一二三四社区在线视频社区8| 日韩欧美免费精品| 大香蕉久久成人网| 精品一区二区三区四区五区乱码| 高清av免费在线| 免费观看精品视频网站| 欧美国产精品va在线观看不卡| 中文亚洲av片在线观看爽 | 国产精品偷伦视频观看了| 美女扒开内裤让男人捅视频| 中文字幕精品免费在线观看视频| 国产视频一区二区在线看| 午夜精品国产一区二区电影| 丁香欧美五月| 精品国产美女av久久久久小说| 久久精品人人爽人人爽视色| 丁香欧美五月| 99国产极品粉嫩在线观看| avwww免费| 女人久久www免费人成看片| 亚洲一码二码三码区别大吗| 国产熟女午夜一区二区三区| 久久久久视频综合| 欧美最黄视频在线播放免费 | 18禁黄网站禁片午夜丰满| 国产亚洲欧美精品永久| 亚洲 欧美一区二区三区| 高清欧美精品videossex| 天堂俺去俺来也www色官网| 极品少妇高潮喷水抽搐| 午夜福利,免费看| 香蕉丝袜av| 国产熟女午夜一区二区三区| 色综合欧美亚洲国产小说| 91精品国产国语对白视频| 国产99白浆流出| 亚洲成人国产一区在线观看| 交换朋友夫妻互换小说| 精品久久蜜臀av无| 国产精品久久久久成人av| 飞空精品影院首页| av在线播放免费不卡| 国产午夜精品久久久久久| 啪啪无遮挡十八禁网站| 99久久精品国产亚洲精品| 成人18禁高潮啪啪吃奶动态图| 亚洲专区字幕在线| 天堂俺去俺来也www色官网| 亚洲第一av免费看| 国产欧美日韩精品亚洲av| 久久久久久久精品吃奶| 国产欧美日韩一区二区精品| 两人在一起打扑克的视频| 国产1区2区3区精品| 少妇 在线观看| 亚洲片人在线观看| 午夜福利在线免费观看网站| 老司机午夜十八禁免费视频| 精品久久久久久久久久免费视频 | 成人手机av| 久久久久国产一级毛片高清牌| 欧美最黄视频在线播放免费 | 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 又黄又爽又免费观看的视频| 亚洲少妇的诱惑av| 人人妻人人爽人人添夜夜欢视频| 交换朋友夫妻互换小说| 女人被狂操c到高潮| 国产1区2区3区精品| 又紧又爽又黄一区二区| 午夜福利欧美成人| 国产一区二区三区在线臀色熟女 | 电影成人av| 两人在一起打扑克的视频| 欧美乱色亚洲激情| 日韩免费av在线播放| 天堂动漫精品| 欧美日韩成人在线一区二区| 少妇的丰满在线观看| 日日摸夜夜添夜夜添小说| 亚洲五月色婷婷综合| 一级a爱片免费观看的视频| 欧美日本中文国产一区发布| 午夜福利在线免费观看网站| 波多野结衣一区麻豆| 日韩欧美在线二视频 | 久久久精品免费免费高清| 老司机影院毛片| 无人区码免费观看不卡| 欧美乱色亚洲激情| 午夜福利一区二区在线看| 国产精品成人在线| 水蜜桃什么品种好| 涩涩av久久男人的天堂| cao死你这个sao货| 国产精品一区二区免费欧美| 又紧又爽又黄一区二区| 久久精品熟女亚洲av麻豆精品| 天堂中文最新版在线下载| 三级毛片av免费| 怎么达到女性高潮| 九色亚洲精品在线播放| 一级a爱片免费观看的视频| 视频区欧美日本亚洲| 久久午夜亚洲精品久久| av天堂久久9| 九色亚洲精品在线播放| 亚洲欧美色中文字幕在线| 国产精品九九99| 久久精品亚洲av国产电影网| www.熟女人妻精品国产| 在线十欧美十亚洲十日本专区| 国产深夜福利视频在线观看| 久久中文看片网| 天天操日日干夜夜撸| 久久精品国产99精品国产亚洲性色 | 亚洲精品一二三| 免费在线观看黄色视频的| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区三| 国产成人精品久久二区二区91| 18禁裸乳无遮挡动漫免费视频| 91在线观看av| 国产亚洲精品第一综合不卡| 人人妻人人澡人人爽人人夜夜| 桃红色精品国产亚洲av| 国产精品秋霞免费鲁丝片| 看片在线看免费视频| www.自偷自拍.com| 大香蕉久久网| e午夜精品久久久久久久| 亚洲欧美一区二区三区久久| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 日本wwww免费看| 亚洲av成人一区二区三| av中文乱码字幕在线| 天天添夜夜摸| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 久久久精品免费免费高清| 电影成人av| 91大片在线观看| 亚洲精品中文字幕在线视频| 99国产精品免费福利视频| 久久九九热精品免费| 人人妻人人添人人爽欧美一区卜| 国产无遮挡羞羞视频在线观看| 欧美黑人欧美精品刺激| 国产色视频综合| 久久草成人影院| 美国免费a级毛片| 国产91精品成人一区二区三区| 久久九九热精品免费| 一级毛片精品| 久久久久久免费高清国产稀缺| 亚洲精品美女久久av网站| 国产精品美女特级片免费视频播放器 | 69av精品久久久久久| 国产亚洲欧美98| 久久青草综合色| 亚洲专区中文字幕在线| 男女床上黄色一级片免费看| 一夜夜www| 国产精品久久电影中文字幕 | 精品久久久精品久久久| 丁香欧美五月| 国产精品 国内视频| 久久久久久久久免费视频了| ponron亚洲| 叶爱在线成人免费视频播放| 99久久综合精品五月天人人| 国产精品98久久久久久宅男小说| 国产一卡二卡三卡精品| 国产av又大| 精品国产国语对白av| 欧美在线黄色| a在线观看视频网站| 在线国产一区二区在线| tube8黄色片| 亚洲五月婷婷丁香| 亚洲 欧美一区二区三区| 女人高潮潮喷娇喘18禁视频| 男女免费视频国产| 国产在线精品亚洲第一网站| 老熟妇仑乱视频hdxx| 男女免费视频国产| 欧美精品av麻豆av| 久久久久久免费高清国产稀缺| 亚洲av电影在线进入| www.精华液| 精品国产超薄肉色丝袜足j| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 女性被躁到高潮视频| 国产精品免费一区二区三区在线 | 美女扒开内裤让男人捅视频| 国产成人欧美| 亚洲精品中文字幕一二三四区| 男女高潮啪啪啪动态图| 国产亚洲欧美在线一区二区| 欧美精品人与动牲交sv欧美| av国产精品久久久久影院| 亚洲欧美色中文字幕在线| 中亚洲国语对白在线视频| 日日夜夜操网爽| 成年动漫av网址| 中文字幕人妻熟女乱码| 美国免费a级毛片| 国产免费av片在线观看野外av| 日本一区二区免费在线视频| 高清欧美精品videossex| 国产欧美日韩精品亚洲av| 夜夜夜夜夜久久久久| 久热爱精品视频在线9| 人人妻人人澡人人爽人人夜夜| 中文字幕色久视频| 国产99白浆流出| 中文字幕人妻丝袜制服| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费av在线播放| 久久久久国内视频| 免费观看精品视频网站| 一a级毛片在线观看| 亚洲人成电影免费在线| 色老头精品视频在线观看| 亚洲精品国产精品久久久不卡| 久久热在线av| 日韩精品免费视频一区二区三区| 如日韩欧美国产精品一区二区三区| 欧美国产精品va在线观看不卡| 成人亚洲精品一区在线观看| 国产成人av激情在线播放| 少妇被粗大的猛进出69影院| 亚洲欧美激情综合另类| 国产精品免费视频内射| 国产精品.久久久| 欧美一级毛片孕妇| 精品国产亚洲在线| 一a级毛片在线观看| 午夜精品久久久久久毛片777| 欧美性长视频在线观看| 欧美黄色片欧美黄色片| 在线av久久热| 欧美日韩黄片免| 久久99一区二区三区| 脱女人内裤的视频| 成年动漫av网址| 国产国语露脸激情在线看| av免费在线观看网站| 精品久久久久久久毛片微露脸| 国产高清videossex| 精品亚洲成a人片在线观看| 高清毛片免费观看视频网站 | 久久99一区二区三区| 国产精品电影一区二区三区 | 国产麻豆69| 久热爱精品视频在线9| 成在线人永久免费视频| 久久ye,这里只有精品| 91成人精品电影| 久久午夜亚洲精品久久| www日本在线高清视频| 日韩熟女老妇一区二区性免费视频| 夫妻午夜视频| 新久久久久国产一级毛片| 两性夫妻黄色片| 热99国产精品久久久久久7| 啦啦啦 在线观看视频| 在线播放国产精品三级| 男女午夜视频在线观看| 香蕉国产在线看| 激情在线观看视频在线高清 | 黄色a级毛片大全视频| 午夜福利欧美成人| 午夜老司机福利片| 国产亚洲一区二区精品| 狠狠狠狠99中文字幕| 99国产精品99久久久久| 亚洲成人国产一区在线观看| 国产单亲对白刺激| 男人舔女人的私密视频| 嫁个100分男人电影在线观看| 老司机亚洲免费影院| 亚洲av电影在线进入| 黄色a级毛片大全视频| 午夜福利乱码中文字幕| 女人精品久久久久毛片| 午夜视频精品福利| 欧美日韩成人在线一区二区| 国产精品国产高清国产av | 淫妇啪啪啪对白视频| 亚洲精品久久成人aⅴ小说| 在线av久久热| 国产深夜福利视频在线观看| 午夜精品在线福利| 变态另类成人亚洲欧美熟女 | 亚洲av成人一区二区三| 精品国产美女av久久久久小说| 高清av免费在线| 在线观看一区二区三区激情| 久久这里只有精品19| 纯流量卡能插随身wifi吗| 国产精品偷伦视频观看了| 亚洲精品一卡2卡三卡4卡5卡| 18禁美女被吸乳视频| netflix在线观看网站| 在线天堂中文资源库| 久久久久久久久免费视频了| 另类亚洲欧美激情| 熟女少妇亚洲综合色aaa.| 天天躁狠狠躁夜夜躁狠狠躁| 99久久国产精品久久久| 悠悠久久av| tocl精华| 精品国产亚洲在线| 日韩大码丰满熟妇| 国产精品98久久久久久宅男小说| 亚洲欧美一区二区三区黑人| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品国产精品久久久不卡| 人人澡人人妻人| 国产一卡二卡三卡精品| svipshipincom国产片| 巨乳人妻的诱惑在线观看| 亚洲成国产人片在线观看| 老熟女久久久| 18禁黄网站禁片午夜丰满| 成人av一区二区三区在线看| 大香蕉久久成人网| 精品少妇一区二区三区视频日本电影| 国产精品 国内视频| 亚洲色图av天堂| 满18在线观看网站| 99国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 天天躁日日躁夜夜躁夜夜| 露出奶头的视频| 亚洲av片天天在线观看| 黑丝袜美女国产一区| 欧美日韩国产mv在线观看视频| 大陆偷拍与自拍| 香蕉久久夜色| 欧美日韩乱码在线| 久久精品亚洲熟妇少妇任你| 亚洲黑人精品在线| 亚洲欧美精品综合一区二区三区| 夜夜爽天天搞| 久热爱精品视频在线9| 麻豆av在线久日| 亚洲五月色婷婷综合| 在线观看午夜福利视频| 在线观看免费视频日本深夜| 久久久久国内视频| 午夜两性在线视频| 久久九九热精品免费| 久久婷婷成人综合色麻豆| 麻豆国产av国片精品| 久久久久久人人人人人| 国产极品粉嫩免费观看在线| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 国产成人欧美在线观看 | 一级作爱视频免费观看| 纯流量卡能插随身wifi吗| 99热国产这里只有精品6| 久久人人97超碰香蕉20202| 免费在线观看亚洲国产|