• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    徑向電場對(duì)納米管中水分子通量的影響

    2013-09-17 06:58:54葛振朋石彥超李曉毅
    物理化學(xué)學(xué)報(bào) 2013年8期
    關(guān)鍵詞:納米管物理化學(xué)學(xué)報(bào)

    葛振朋 石彥超 李曉毅

    (中國科學(xué)院大學(xué)材料科學(xué)與光電技術(shù)學(xué)院,北京100049)

    1 Introduction

    Water transport in nanopores is crucial to biological activities1-3and important for designing novel fluidic devices.Hummer and coworkers4,5reported the fast water conduction ability of a short carbon nanotube by molecular dynamics(MD)simulations.In 2006,the enhanced water flow through carbon nanotubes(CNTs)was observed experimentally.6Holt et al.6found that the water flow rate through CNTs with radius of 1-2 nm was about 3 orders of magnitude faster than the conventional nonslip hydrodynamic flow.Zheng et al.3found that the relationship between the CNT wall-water interfacial friction stress and slip velocity follows a transition-state-theory-based inverse hyperbolic sine function.Bocquet et al.7studied the interfacial friction of water at graphitic interfaces with various topologies and found that the friction coefficient exhibits a strong curvature dependence,while friction is independent of confinement for the graphene slab.Thus controlling the transport of water across CNTs has attracted considerable attentions.8Osmotic or hydrostatic pressure gradient can drive water flow in a channel.1,2,9An imbalance of chemical,10thermal gradients11could change the movement of water in nanopores.

    Joseph and Aluru12,13found that the water flow across the nanopores is strong coupled with the water dipole orientations and hydrogen bonds.It is easy to tune the dipole orientation of water by external electric field or charge when water molecules are confined.14,15Thus the external electric field or charge is one of the most promising method to control the gating and flowing behaviors of water molecules in a nanochannel.14,16-22Figueras and Faraudo23found that the application of an electric field perpendicular to the axis of the carbon nanotube would disrupt the hydrogen bond structure of the one dimensional(1D)water system and affect the transport properties of water inside the nanotube.Suk and Aluru18found a net flux of 3 water molecules per nanosecond by constantly maintaining water dipole vectors in the direction of the electric field.Su and Guo24have investigated the effect of axial electric field on the transport of single-file water molecules through a CNT.However,controlling of the water net flux in nanopores and the open/close behavior of nanopores for water molecules are far from satisfactory.

    Molecular dynamics simulation has been proved to be a good method for the study of water molecules and nanomaterials.25-27In present work,we utilize the orthogonal electric field to control the net flux of water transport through a carbon nanotube and investigate the on-off gating behavior of a CNT.

    2 Model design and simulation details

    As shown in Fig.1,an uncapped(6,6)single-walled carbon nanotube of 2 nm in length and 0.81 nm in diameter was inserted along the z direction between two graphene layers.The distance between the graphene layers along z direction was 1.84 nm.822 water molecules were added in the up and down reservoirs thus the initial size of total system was 3 nm×3 nm×5 nm.

    Fig.1 Snapshot of simulation system

    All systems were run at an NPT ensemble(101 kPa and 300 K)using the software NAMD V2.828with periodic boundary conditions applied in all directions.CHARMM 27 force field29and TIP3P water model30were employed.The carbon atoms in CNT and graphene were assumed as the carbon atom in benzene which was named CA in CHARMM 27 force field.After 2 ns equilibrium molecular dynamics simulations without any external force,a uniform orthogonal electric field was added along+x direction during the rest 20 ns simulation time.The designed strengths of electric fields(E)are 0.5,1,1.5,2,2.5,2.7,2.8,2.9,3,3.5,4,4.5,and 5 V·nm-1,respectively.A system without any external electric field was also built for comparison.To accelerate the flux through CNT,a pressure difference of 200 MPa along z direction was utilized following the method proposed by Zhu et al.2Particle Mesh Ewald method31was used to calculate the full electrostatics interaction and the cutoff distance of van der Waals interaction was 1.2 nm.A time step of 2 fs was used.Structures were saved every 1 ps.20 ns MD simulation was run for each system and the data of last 15 ns were collected for statistics.To prevent the CNT from being swept away,the CNT and graphene layers were fixed during our simulations.

    3 Results and discussion

    The net flux of water molecules passing through a(6,6)tube for the different strengths of orthogonal electric field is shown in Fig.2a.According to the previous publications,4,9,16,24,32,33the upflux is defined as the total number of water molecules per nanosecond conducted through the CNT from top to bottom along with the direction of the pressure difference,so is the downflux but with the opposite direction.The net flux is the difference between upflux and downflux.We observed that the relationship between the net flux and the external orthogonal electric field strength E could be divided into three stages.At the beginning,when the orthogonal electric field strength E increases from 0 to 0.5 V·nm-1,the net flux of water maintains around 23 molecules·ns-1and is regardless of the E.The downflux is zero in this stage.With E increasing from 0.5 to 3 V·nm-1,the water net flux decreases linearly from 23 to 1 molecules·ns-1.The downflux is very small in this stage.When E increases to the stage of 3 to 5 V·nm-1,the water net flux is almost zero and regardless of E again.

    Su and Guo24has studied the effect of an axial electric field strength in the range of 0-1 V·nm-1on the transport of water molecules through a carbon nanotube.They observed that the net flux increases with increasing E of axial electric field strength for E<0.07 V·nm-1and maintains 1.1-1.2 molecules·ns-1for E≥0.07 V·nm-1.The net flux is much sensitive to the axial electric field strength than the orthogonal electric field.However,it is easier to control the water net flux transport through CNT precisely by orthogonal electric field because the net flux is almost linear to the orthogonal electric field strength in a wide range of orthogonal electric field strength from 1 to 3 V·nm-1.The filling behavior of water molecules in CNTs can be described by the water occupancy <N>,as shown in Fig.2b.The water occupancy<N> also exhibits three stages of 7-6.5,6.5-1,and 1-0 molecules·ns-1corresponding to the 0-2,2-3,and 3-5 V·nm-1of orthogonal electric field strength,respectively.There is a steep slope of<N> from 6.5 to almost 0 molecules·ns-1when the orthogonal electric field increases from 2 to 3 V·nm-1,which indicates that the orthogonal electric field may be used to turn on/off the nanotube to water molecules.

    Fig.2 (a)Averaged water flux through the CNT and(b)averaged number of water molecules inside the CNT with respect to the orthogonal electric field(E)

    In order to understand the dependence of water net flux or occupancy on the dipole orientation of water molecules inside nanopores,we investigate the dipole orientations at different orthogonal electric field strengths.The probability distributions of the averaged angle <θ> are shown in Fig.3.The angle θ represents the angle between the dipole of a water molecule and the tube axis,and the average is taken over all water molecules inside the CNT.Apparently,the probability distributions with respect to the orthogonal electric strength E exhibit three stages too.In the first stage,when the orthogonal electric strength E increases from 0 to 2 V·nm-1,the peaks of the distribution of<θ> lie around 30°or 150°,in agreement with previous studies.16,24,32-35In the second stage,further increasing E from 2.5 to 3 V·nm-1,the first peak moves from 33°to 42°and the second peak vanishes gradually,as shown in Fig.3b.In the third stage,when E increases from 3.5 to 5 V·nm-1,the only peak moves from 49°to 71°,as shown in Fig.3c.This phenomenon is understandable according to the electrostatics theory.When the orthogonal electric field acts on the water molecules,water molecules rotate their dipole orientations to decrease the electrostatic energy of the system.However,the orthogonal electric field should be strong enough to make water molecules rotate.We have not observed the situation of having water molecules with both directions inside nanotube at the same time,for the nanotube is short in our simulations,which agrees with the results of Fang and co-workers.36

    Fig.3 Probability distribution of the averaged angle<θ>between the water dipole and the tube axis at different orthogonal electric field strengths

    According to Joseph and Aluru,12the water net flux should be in the direction of the aligned water dipoles when there is no other driving force.However,when the driving force is the 200 MPa pressure difference acting on the top of the first layer of water molecules as in our simulations,the averaged water dipole orientation might be opposite to the direction of net flux,which is exhibited in the case of E=0.5 V·nm-1.Comparing Fig.2 and Fig.3,we find that the probability distributions of<θ> is much stronger coupled with the water occupancy <N>rather than the net flux when 200 MPa pressure difference is being applied on water molecules.In the first stage when the peaks of the distribution of<θ> lie around 30°or 150°,the water occupancy <N> maintains a level of 6-7 molecules·ns-1.<N> decreases sharply to 1 molecules·ns-1in the second stage when the first peak moves from 33°to 42°and the second peak gradually vanishes.In the third stage when the only peak moves from 49°to 71°,<N> vanishes to zero.

    The averaged angle<θ> with respect to the simulation time for different E values is also investigated to understand the flipping of water dipoles inside CNT and its sensitivity to the orthogonal electric field,as shown in Fig.4a.We observed that for E=0,0.5 V·nm-1,the water dipole orientations have not reversed their directions from the initial orientation within the 20 ns simulation time.When E is small(≤ 2 V·nm-1),the twostate(30°and 150°)orientation is very clear.With increasing E,the two-state orientation of water dipole is not so clear and there appear more and more middle-states,which means that angle<θ> moves away from 30°or 150°to the middle point of 90°.A flip is defined as <θ> passing through 90°.The average flipping frequency,fflip,is calculated and shown with respect to E in Fig.4b.At 1 V·nm-1of E,the flipping frequency is 0.15 ns-1corresponding to 6 ns of flipping period,which is within the range of 4-6 ns measured in Ref.20.The flipping frequency increases remarkably as the orthogonal electric field strength increases larger than 2 V·nm-1.This is due to the frequent back and forth flip around 90°,corresponding to the appearance of a lot of middle-states of the dipole orientation.It is found that the flipping frequency is also strong coupled with the water occupancy<N>rather than the net flux.

    Fig.4 (a)<θ> vs time at different orthogonal electric field values,(b)flip frequency vs the orthogonal electric field

    The water flux is related to the free energy profile along with the nanotube axis.As shown in Fig.5,the free energy barriers for water transport are less than 1kBT(kBT equals to 4.14×10-21J,which is twice the amount of a particle?s one-dimensional freedom contributing to the internal energy in the ideal gas)when E is less than 2.5 V·nm-1.As E increases to 2.7 V·nm-1,the total tendency of free energy begins to increase along with z direction,which could act as the opposite force to the driving force of the pressure difference on water molecules.

    The free energy barrier increases above 3.70kBT after E increases to 3 V·nm-1,and the nanotube is turned off.There is almost no net flux in this case,as shown in Fig.2a,although the pressure difference is still acting on water molecules.Apparently,the free energy barrier acts as the opposite force overcoming the driving force of the pressure difference in this case.

    Hydrogen bond plays an important role in the transportion of water molecules.Water molecules are connected by hydrogen bonds in a special orientation and formed an ordered 1D structure water chain inside nanotube.They move concertedly passing through the nanotube.4,37Orthogonal electric field ruptures the hydrogen-bond network by making an influence on the orientations of water molecules.We oberved that the hydrogen-bond network inside the nanotube become shorter as the electrical field strength increased and we have even observed isolated water moleculars inside the nanotube.The average number of hydrogen bonds inside the nanotube of different orthogonal electric field strength was calculated and we found that the number of hydrogen bonds decreascd as the strength of electrical field increased,as can be seen in Fig.6.Therefore or-thogonal electric field could control the number of water molecules passing through the nanotube by influencing on the orientation of water molecules and the number of hydrogen bonds among water molecules inside nanotube.

    Fig.5 Free energy profiles for water through the channels z is the position coordinate along the tube and F(z)=-kBTln[ρ(z)/ρ0],where ρ(z)is the water density along the channel pore.

    Fig.6 Average number of hydrogen bonds inside the nanotube with different orthogonal electric field strengths

    4 Conclusions

    In this study,we found that not only the net flux of water transported through a CNT could be controlled by an orthogonal electric field,but also the on-off gating behavior of the CNT.With a 200 MPa pressure difference acting on the top of the first layer of water molecules,as E increases from 1 to 3 V·nm-1,the net flux of water decreases linearly.When E increases over 3 V·nm-1,the flow of water molecules through the CNT is turned off and the net flux of water is almost zero.<N>decreases sharply from 6.5 to 1 molecules·ns-1when the E increases from 2 to 3 V·nm-1,which indicates that an orthogonal electric field may be used to turn on/off the flow of water molecules through a CNT.

    When E was in the range of 0-2 V·nm-1,the angle<θ> between the water dipole and CNT axis clearly exhibited two states of 30°and 150°,resulting in <N> of 6.5-7 molecules·ns-1.Further increasing E from 2.5 to 3 V·nm-1caused the first peak of the probability distribution of<θ> to move from 33°to 42°and the second peak to gradually disappear,so <N> decreased rapidly to 1 molecules·ns-1.When E increased from 3.5 to 5 V·nm-1,the only probability distribution peak moved from 49°to 71°,and <N> decreased to zero.Both the orientation of water dipoles and the flipping frequency were strongly correlated with<N>in CNTs.

    After the E was increased to 3 V·nm-1,the free energy barrier increased above 3.70 kBT and acted as an opposing force to overcome the driving force of the 200 MPa pressure difference on the water molecules,causing the net flux of water to decrease almost to zero.

    We also found that the number of hydrogen bonds decreased as E increased.Therefore,an orthogonal electric field could be used to control the number of water molecules passing through a nanotube by influencing the orientation of water molecules and the number of hydrogen bonds between water molecules inside a nanotube.

    Acknowledgment: The results described in this paper are obtained on the Deepcomp7000 of Supercomputing Center,Computer Network Information Center of Chinese Academy of Sciences.

    (1) Zhu,F.Q.;Tajkhorshid,E.;Schulten,K.Biophys.J.2004,86,50.doi:10.1016/S0006-3495(04)74082-5

    (2) Zhu,F.Q.;Tajkhorshid,E.;Schulten,K.Biophys.J.2002,83,154.doi:10.1016/S0006-3495(02)75157-6

    (3) Ma,M.D.;Shen,L.;Sheridan,J.;Liu,J.Z.;Chen,C.;Zheng,Q.Phys.Rev.E 2011,83,036316.doi:10.1103/PhysRevE.83.036316

    (4)Hummer,G.;Rasaiah,J.C.;Noworyta,J.P.Nature 2001,414,188.doi:10.1038/35102535

    (5)Waghe,A.;Rasaiah,J.C.;Hummer,G.J.Chem.Phys.2002,117,10789.doi:10.1063/1.1519861

    (6)Holt,J.K.;Park,H.G.;Wang,Y.M.;Stadermann,M.;Artyukhin,A.B.;Grigoropoulos,C.P.;Noy,A.;Bakajin,O.Science 2006,312,1034.doi:10.1126/science.1126298

    (7) Falk,K.;Sedlmeier,F.;Joly,L.;Netz,R.R.;Bocquet,L.R.Nano Lett.2010,10,4067.doi:10.1021/nl1021046

    (8) Zhang,Z.Q.;Ye,H.F.;Liu,Z.;Ding,J.N.;Cheng,G.G.;Ling,Z.Y.;Zheng,Y.G.;Wang,L.;Wang,J.B.J.Appl.Phys.2012,111,114304.doi:10.1063/1.4724344

    (9)Zuo,G.C.;Shen,R.;Ma,S.J.;Guo,W.L.ACS Nano 2010,4,205.doi:10.1021/nn901334w

    (10) Chaudhury,M.K.;Whitesides,G.M.Science 1992,256,1539.doi:10.1126/science.256.5063.1539

    (11) Linke,H.;Aleman,B.J.;Melling,L.D.;Taormina,M.J.;Francis,M.J.;Dow-Hygelund,C.C.;Narayanan,V.;Taylor,R.P.;Stout,A.Phys.Rev.Lett.2006,96,154502.doi:10.1103/PhysRevLett.96.154502

    (12) Joseph,S.;Aluru,N.R.Phys.Rev.Lett.2008,101,064502.doi:10.1103/PhysRevLett.101.064502

    (13) Joseph,S.;Aluru,N.R.Nano Lett.2008,8,452.doi:10.1021/nl072385q

    (14) Vaitheeswaran,S.;Yin,H.;Rasaiah,J.C.J.Phys.Chem.B 2005,109,6629.doi:10.1021/jp045591k

    (15)Bratko,D.;Daub,C.D.;Leung,K.;Luzar,A.J.Am.Chem.Soc.2007,129,2504.doi:10.1021/ja0659370

    (16) Li,J.Y.;Gong,X.J.;Lu,H.J.;Li,D.;Fang,H.P.;Zhou,R.H.Proc.Natl.Acad.Sci.U.S.A.2007,104,3687.doi:10.1073/pnas.0604541104

    (17) Raghunathan,A.V.;Aluru,N.R.Phys.Rev.Lett.2006,97.

    (18)Suk,M.E.;Aluru,N.R.Phys.Chem.Chem.Phys.2009,11,8614.doi:10.1039/b903541a

    (19) Gong,X.J.;Li,J.Y.;Lu,H.J.;Wan,R.Z.;Li,J.C.;Hu,J.;Fang,H.P.Nat.Nanotechnol.2007,2,709.doi:10.1038/nnano.2007.320

    (20) Won,C.Y.;Joseph,S.;Aluru,N.R.J.Chem.Phys.2006,125,117701.doi:10.1063/1.2338305

    (21) Garate,J.A.;English,N.J.;MacElroy,J.M.D.J.Chem.Phys.2009,131,8.

    (22) Dzubiella,J.;Allen,R.J.;Hansen,J.P.J.Chem.Phys.2004,120,5001.doi:10.1063/1.1665656

    (23) Figueras,L.;Faraudo,J.Mol.Simulat.2012,38,23.doi:10.1080/08927022.2011.599032

    (24) Su,J.Y.;Guo,H.X.ACS Nano 2011,5,351.doi:10.1021/nn1014616

    (25) Lü,Y.J.;Chen,M.Acta Phys.-Chim.Sin.2012,28,1070.[呂勇軍,陳 民.物理化學(xué)學(xué)報(bào),2012,28,1070.]doi:10.3866/PKU.WHXB201202213

    (26) LI,H.L.;Jia,Y.X.;Hu,Y.D.Acta Phys.-Chim.Sin.2012,28,573.[李海蘭,賈玉香,胡仰棟.物理化學(xué)學(xué)報(bào),2012,28,573.]doi:10.3866/PKU.WHXB201112191

    (27)Zhang,X.;Zhang,Q.;Zhao,D.X.Acta Phys.-Chim.Sin.2012,28,1037.[張 霞,張 強(qiáng),趙東霞.物理化學(xué)學(xué)報(bào),2012,28,1037.]doi:10.3866/PKU.WHXB201203072

    (28) Phillips,J.C.;Braun,R.;Wang,W.;Gumbart,J.;Tajkhorshid,E.;Villa,E.;Chipot,C.;Skeel,R.D.;Kale,L.;Schulten,K.J.Comput.Chem.2005,26,1781.

    (29) Vanommeslaeghe,K.;Hatcher,E.;Acharya,C.;Kundu,S.;Zhong,S.;Shim,J.;Darian,E.;Guvench,O.;Lopes,P.;Vorobyov,I.;MacKerell,A.D.J.Comput.Chem.2010,31,671.(30) Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.D.;Impey,R.W.;Klein,M.L.J.Chem.Phys.1983,79,926.doi:10.1063/1.445869

    (31) Essmann,U.;Perera,L.;Berkowitz,M.L.;Darden,T.;Lee,H.;Pedersen,L.G.J.Chem.Phys.1995,103,8577.doi:10.1063/1.470117

    (32) Wan,R.;Lu,H.;Li,J.;Bao,J.;Hu,J.;Fang,H.Phys.Chem.Chem.Phys.2009,11,9898.doi:10.1039/b907926m

    (33) Wan,R.Z.;Li,J.Y.;Lu,H.J.;Fang,H.P.J.Am.Chem.Soc.2005,127,7166.doi:10.1021/ja050044d

    (34)Yang,Y.L.;Li,X.Y.;Jiang,J.L.;Du,H.L.;Zhao,L.N.;Zhao,Y.L.ACS Nano 2010,4,5755.doi:10.1021/nn1014825

    (35) Liu,B.;Li,X.Y.;Li,B.L.;Xu,B.Q.;Zhao,Y.L.Nano Lett.2009,9,1386.doi:10.1021/nl8030339

    (36)Wu,K.F.;Zhou,B.;Xiu,P.;Qi,W.P.;Wan,R.Z.;Fang,H.P.J.Chem.Phys.2010,133,204702.doi:10.1063/1.3509396

    (37) Zhu,F.;Schulten,K.Biophys.J.2003,85,236.doi:10.1016/S0006-3495(03)74469-5

    猜你喜歡
    納米管物理化學(xué)學(xué)報(bào)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    《深空探測學(xué)報(bào)》
    天堂√8在线中文| 99久国产av精品| 十八禁国产超污无遮挡网站| 九九在线视频观看精品| 色吧在线观看| 欧美xxxx黑人xx丫x性爽| 色视频www国产| 免费一级毛片在线播放高清视频| 亚洲电影在线观看av| 免费观看a级毛片全部| 国产亚洲最大av| 一区二区三区免费毛片| 如何舔出高潮| 成年版毛片免费区| 美女大奶头视频| 亚洲国产精品专区欧美| 一边亲一边摸免费视频| 精品午夜福利在线看| 噜噜噜噜噜久久久久久91| 一边亲一边摸免费视频| 国产精品一区二区三区四区久久| 午夜福利在线在线| 日本-黄色视频高清免费观看| 欧美激情久久久久久爽电影| 女人久久www免费人成看片 | 亚洲av成人av| 淫秽高清视频在线观看| 麻豆成人午夜福利视频| 青春草视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 有码 亚洲区| 亚洲va在线va天堂va国产| 欧美成人午夜免费资源| 精品不卡国产一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩制服骚丝袜av| 午夜老司机福利剧场| 亚洲精品乱码久久久v下载方式| 天天一区二区日本电影三级| 免费播放大片免费观看视频在线观看 | 成人鲁丝片一二三区免费| 人人妻人人看人人澡| 久久久久久九九精品二区国产| 日韩三级伦理在线观看| 麻豆成人午夜福利视频| 中国美白少妇内射xxxbb| 日韩一本色道免费dvd| 长腿黑丝高跟| 精品无人区乱码1区二区| 久久久欧美国产精品| 亚洲精品自拍成人| 看片在线看免费视频| 成人高潮视频无遮挡免费网站| 深夜a级毛片| 少妇裸体淫交视频免费看高清| 久久99热6这里只有精品| 亚洲av中文字字幕乱码综合| 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 色视频www国产| 久久久久久久久久成人| 成人国产麻豆网| 日韩av在线大香蕉| av线在线观看网站| 天堂中文最新版在线下载 | 免费观看精品视频网站| 久久久久久久久久久丰满| 久热久热在线精品观看| 免费黄色在线免费观看| 麻豆精品久久久久久蜜桃| 成人性生交大片免费视频hd| 大香蕉97超碰在线| 亚洲国产最新在线播放| 日本爱情动作片www.在线观看| 我要看日韩黄色一级片| 精品午夜福利在线看| 国产成人福利小说| 成年女人永久免费观看视频| 久久婷婷人人爽人人干人人爱| 亚洲成人精品中文字幕电影| 黄片wwwwww| 国产视频首页在线观看| 一级毛片我不卡| 欧美极品一区二区三区四区| 高清毛片免费看| 久99久视频精品免费| 婷婷色av中文字幕| 国产单亲对白刺激| 国产精品蜜桃在线观看| 亚洲天堂国产精品一区在线| 观看免费一级毛片| 久久精品熟女亚洲av麻豆精品 | 少妇熟女aⅴ在线视频| 村上凉子中文字幕在线| 毛片一级片免费看久久久久| 青春草视频在线免费观看| 中文天堂在线官网| 色哟哟·www| 欧美色视频一区免费| 中文字幕久久专区| 欧美一区二区精品小视频在线| 国产一区二区亚洲精品在线观看| 欧美3d第一页| 白带黄色成豆腐渣| 国产成年人精品一区二区| 简卡轻食公司| www.av在线官网国产| 草草在线视频免费看| 国模一区二区三区四区视频| 国产在线男女| 热99在线观看视频| 国产精品久久久久久精品电影小说 | 波多野结衣高清无吗| 99九九线精品视频在线观看视频| 老司机福利观看| 一级黄色大片毛片| 久久久久久大精品| 日本三级黄在线观看| 九九在线视频观看精品| 丰满乱子伦码专区| 日本三级黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 日韩成人伦理影院| 高清日韩中文字幕在线| 国产片特级美女逼逼视频| 成人午夜精彩视频在线观看| 3wmmmm亚洲av在线观看| 国语对白做爰xxxⅹ性视频网站| 大又大粗又爽又黄少妇毛片口| 欧美精品一区二区大全| 最近中文字幕高清免费大全6| 国产精品永久免费网站| 中文字幕av成人在线电影| 青春草亚洲视频在线观看| 国产一级毛片在线| 日韩欧美在线乱码| 91精品一卡2卡3卡4卡| 日韩欧美在线乱码| 少妇熟女aⅴ在线视频| 我的老师免费观看完整版| 又粗又爽又猛毛片免费看| 免费播放大片免费观看视频在线观看 | 国产精品1区2区在线观看.| 91午夜精品亚洲一区二区三区| 久久久久久九九精品二区国产| av在线观看视频网站免费| 色噜噜av男人的天堂激情| 国产私拍福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品午夜福利在线看| 精品久久久久久久末码| 特大巨黑吊av在线直播| 久久久久免费精品人妻一区二区| 日本免费在线观看一区| 一级黄色大片毛片| 亚洲成人中文字幕在线播放| 69人妻影院| 免费黄网站久久成人精品| 中文字幕av在线有码专区| 亚洲中文字幕日韩| 菩萨蛮人人尽说江南好唐韦庄 | 一个人观看的视频www高清免费观看| 在现免费观看毛片| 亚洲人成网站在线播| 亚洲自偷自拍三级| av卡一久久| 干丝袜人妻中文字幕| 国产伦精品一区二区三区四那| 欧美精品一区二区大全| 亚洲熟妇中文字幕五十中出| 美女xxoo啪啪120秒动态图| 国产精品一区www在线观看| 免费一级毛片在线播放高清视频| 久久久午夜欧美精品| 国产亚洲午夜精品一区二区久久 | 99久久中文字幕三级久久日本| 日日干狠狠操夜夜爽| 一级av片app| 亚洲色图av天堂| 国产精品一及| 日日干狠狠操夜夜爽| 国语对白做爰xxxⅹ性视频网站| 国产免费又黄又爽又色| 国产成人精品久久久久久| 久久精品影院6| 好男人在线观看高清免费视频| 免费人成在线观看视频色| 成人毛片60女人毛片免费| 久久久久久久久久黄片| 国产人妻一区二区三区在| 国产探花在线观看一区二区| 我的老师免费观看完整版| 精品久久久久久久久av| 乱系列少妇在线播放| 97超碰精品成人国产| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 午夜久久久久精精品| 国产免费福利视频在线观看| 亚洲内射少妇av| 人妻系列 视频| 伦精品一区二区三区| 美女大奶头视频| 国产免费视频播放在线视频 | 国产探花在线观看一区二区| 午夜福利高清视频| 欧美性猛交╳xxx乱大交人| 国产精品嫩草影院av在线观看| 国产色爽女视频免费观看| 波野结衣二区三区在线| 久久久午夜欧美精品| 亚洲国产欧美人成| 一区二区三区免费毛片| 国产乱来视频区| 欧美日韩国产亚洲二区| 日韩制服骚丝袜av| 日本黄色片子视频| 搞女人的毛片| 亚洲精品亚洲一区二区| 日韩制服骚丝袜av| 欧美成人a在线观看| 成年av动漫网址| 久久久欧美国产精品| 亚洲精品aⅴ在线观看| 免费观看a级毛片全部| 丰满人妻一区二区三区视频av| 久久久久久大精品| 亚洲国产色片| 国产大屁股一区二区在线视频| 伦理电影大哥的女人| 国产三级在线视频| 搡老妇女老女人老熟妇| 美女高潮的动态| 欧美人与善性xxx| av在线观看视频网站免费| 69人妻影院| 国产精品永久免费网站| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 搡老妇女老女人老熟妇| 狂野欧美白嫩少妇大欣赏| 中文字幕久久专区| 亚洲欧美精品自产自拍| 日韩三级伦理在线观看| 国产精品美女特级片免费视频播放器| 麻豆成人av视频| 亚洲精品乱久久久久久| av线在线观看网站| 黄片wwwwww| 午夜激情福利司机影院| 边亲边吃奶的免费视频| 99久久精品国产国产毛片| 久久久久国产网址| 听说在线观看完整版免费高清| 午夜久久久久精精品| 少妇人妻一区二区三区视频| 三级国产精品片| 日本黄色视频三级网站网址| 嫩草影院入口| 亚洲最大成人中文| 久久久精品欧美日韩精品| av在线老鸭窝| 日韩精品有码人妻一区| 少妇人妻精品综合一区二区| 两个人的视频大全免费| 少妇猛男粗大的猛烈进出视频 | av国产免费在线观看| 成年女人永久免费观看视频| 午夜激情福利司机影院| 久久精品国产亚洲av涩爱| 国产精品国产三级专区第一集| 成人国产麻豆网| 少妇猛男粗大的猛烈进出视频 | 国产女主播在线喷水免费视频网站 | 久久久久免费精品人妻一区二区| 国产白丝娇喘喷水9色精品| eeuss影院久久| 国产高清国产精品国产三级 | 男插女下体视频免费在线播放| 色尼玛亚洲综合影院| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 成人二区视频| av天堂中文字幕网| 久久这里只有精品中国| 99久国产av精品国产电影| 国产精品电影一区二区三区| 九九在线视频观看精品| 久久久久久伊人网av| 超碰av人人做人人爽久久| 99热这里只有是精品在线观看| 亚洲精华国产精华液的使用体验| 亚洲精品乱码久久久久久按摩| 国产精品精品国产色婷婷| 亚洲av不卡在线观看| 国产精品乱码一区二三区的特点| 26uuu在线亚洲综合色| 少妇猛男粗大的猛烈进出视频 | 一边摸一边抽搐一进一小说| 联通29元200g的流量卡| 国产一区二区在线观看日韩| 国产精品伦人一区二区| 日本与韩国留学比较| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 最后的刺客免费高清国语| 大香蕉久久网| 久久综合国产亚洲精品| 亚洲国产日韩欧美精品在线观看| 久久久精品94久久精品| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 精品久久久久久成人av| 黄片wwwwww| 欧美3d第一页| 少妇人妻一区二区三区视频| 免费看日本二区| 波多野结衣高清无吗| 久久久国产成人免费| 99视频精品全部免费 在线| 国产免费视频播放在线视频 | 久久精品国产自在天天线| 亚洲一区高清亚洲精品| 国产一区二区三区av在线| 久久精品国产亚洲网站| 久久99精品国语久久久| 欧美xxxx性猛交bbbb| 午夜福利网站1000一区二区三区| 久久久国产成人免费| 国产午夜福利久久久久久| 性色avwww在线观看| 99久久九九国产精品国产免费| 天美传媒精品一区二区| 少妇熟女aⅴ在线视频| 亚洲av一区综合| 国产又色又爽无遮挡免| 综合色av麻豆| 久久久久久久久中文| 亚洲内射少妇av| 天堂网av新在线| 七月丁香在线播放| 国产一区有黄有色的免费视频 | 男女国产视频网站| 亚洲精华国产精华液的使用体验| 成人漫画全彩无遮挡| 免费一级毛片在线播放高清视频| 男女国产视频网站| 亚洲国产日韩欧美精品在线观看| 久久综合国产亚洲精品| 国产探花极品一区二区| 深爱激情五月婷婷| 不卡视频在线观看欧美| 搡老妇女老女人老熟妇| av在线亚洲专区| 长腿黑丝高跟| 99久久成人亚洲精品观看| 亚洲中文字幕一区二区三区有码在线看| 国产欧美另类精品又又久久亚洲欧美| av女优亚洲男人天堂| 久久久久国产网址| 嫩草影院精品99| 尤物成人国产欧美一区二区三区| 一级黄色大片毛片| 亚洲一级一片aⅴ在线观看| 久久草成人影院| 边亲边吃奶的免费视频| 亚洲aⅴ乱码一区二区在线播放| 欧美97在线视频| 国产不卡一卡二| 亚洲人与动物交配视频| 精品酒店卫生间| 一级二级三级毛片免费看| 中文字幕久久专区| 亚洲欧美成人综合另类久久久 | 成年版毛片免费区| 国产精品,欧美在线| 日韩亚洲欧美综合| 亚洲人成网站在线观看播放| 精华霜和精华液先用哪个| av视频在线观看入口| 老司机福利观看| 日本免费一区二区三区高清不卡| 嫩草影院精品99| 久久久久久久久久久丰满| 国产精品国产三级专区第一集| 一级毛片我不卡| 国产精品99久久久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人三级黄色视频| 中文字幕制服av| 亚洲欧美成人综合另类久久久 | 久久久久久久午夜电影| 尾随美女入室| 女人十人毛片免费观看3o分钟| 国产精品乱码一区二三区的特点| 六月丁香七月| 永久网站在线| 久久精品夜色国产| 深夜a级毛片| 女的被弄到高潮叫床怎么办| 午夜a级毛片| 九九爱精品视频在线观看| 精品一区二区免费观看| 天堂网av新在线| 有码 亚洲区| 18+在线观看网站| 嫩草影院精品99| 特级一级黄色大片| 99久久无色码亚洲精品果冻| 高清午夜精品一区二区三区| 成人av在线播放网站| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 神马国产精品三级电影在线观看| 成人鲁丝片一二三区免费| 午夜日本视频在线| 国产淫片久久久久久久久| 国产乱人偷精品视频| 中文字幕制服av| 中文字幕av成人在线电影| 欧美激情在线99| 久久这里有精品视频免费| 日韩中字成人| 大香蕉97超碰在线| 少妇高潮的动态图| 色哟哟·www| 丝袜喷水一区| 九九久久精品国产亚洲av麻豆| 狂野欧美白嫩少妇大欣赏| 欧美日韩综合久久久久久| 日韩成人av中文字幕在线观看| 亚洲人成网站在线观看播放| 国产精品一区二区三区四区久久| 蜜桃亚洲精品一区二区三区| 自拍偷自拍亚洲精品老妇| 亚洲欧美清纯卡通| 天天一区二区日本电影三级| 18禁在线播放成人免费| 26uuu在线亚洲综合色| 亚洲最大成人手机在线| 午夜免费男女啪啪视频观看| 国产一区二区在线观看日韩| 成人av在线播放网站| 亚洲av二区三区四区| 欧美性猛交╳xxx乱大交人| 亚洲图色成人| 成人三级黄色视频| 国产亚洲一区二区精品| 欧美日本视频| 一个人免费在线观看电影| 国产精品乱码一区二三区的特点| 18禁裸乳无遮挡免费网站照片| 欧美三级亚洲精品| 麻豆乱淫一区二区| 91aial.com中文字幕在线观看| 内地一区二区视频在线| 亚洲av成人av| 赤兔流量卡办理| 超碰av人人做人人爽久久| 亚洲成色77777| 在现免费观看毛片| 国产精品福利在线免费观看| 亚洲av电影不卡..在线观看| 亚洲国产欧美在线一区| 欧美日韩国产亚洲二区| 亚洲精品影视一区二区三区av| 免费观看在线日韩| 免费黄色在线免费观看| 日韩精品有码人妻一区| 免费观看精品视频网站| 18禁在线播放成人免费| 亚洲成人av在线免费| 免费大片18禁| 在线观看66精品国产| 日本猛色少妇xxxxx猛交久久| 亚洲国产日韩欧美精品在线观看| 亚洲精品影视一区二区三区av| 精品一区二区三区人妻视频| 久久久国产成人精品二区| 亚洲国产精品专区欧美| 小蜜桃在线观看免费完整版高清| 成人午夜高清在线视频| 色综合色国产| 天天躁日日操中文字幕| 成年版毛片免费区| 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区 | 十八禁国产超污无遮挡网站| 草草在线视频免费看| 99热这里只有精品一区| av国产免费在线观看| 亚洲欧美精品综合久久99| av播播在线观看一区| 久久人人爽人人片av| 日韩精品青青久久久久久| 国产精华一区二区三区| 国产av码专区亚洲av| 国产精品久久视频播放| 久久久久国产网址| 亚洲av熟女| 成年版毛片免费区| 丝袜美腿在线中文| 黄色一级大片看看| 99国产精品一区二区蜜桃av| 国产成人freesex在线| av国产久精品久网站免费入址| 午夜福利网站1000一区二区三区| 99久国产av精品| 国产精品人妻久久久影院| 亚洲欧美成人精品一区二区| 国产免费视频播放在线视频 | 精品午夜福利在线看| 国产午夜精品论理片| 最后的刺客免费高清国语| 波多野结衣高清无吗| 成人亚洲精品av一区二区| 国产亚洲91精品色在线| 亚洲最大成人中文| 精品一区二区三区视频在线| 少妇被粗大猛烈的视频| 中文字幕久久专区| 成人午夜高清在线视频| 边亲边吃奶的免费视频| 一卡2卡三卡四卡精品乱码亚洲| 久久精品影院6| 人妻制服诱惑在线中文字幕| 亚洲国产色片| 日韩中字成人| 日韩一区二区视频免费看| 日日摸夜夜添夜夜爱| 你懂的网址亚洲精品在线观看 | 欧美日韩精品成人综合77777| 久久久精品大字幕| 午夜亚洲福利在线播放| 天堂中文最新版在线下载 | av在线天堂中文字幕| 欧美最新免费一区二区三区| 成人性生交大片免费视频hd| 久久亚洲精品不卡| 麻豆一二三区av精品| 综合色丁香网| 精品国产露脸久久av麻豆 | 蜜桃亚洲精品一区二区三区| 亚洲熟妇中文字幕五十中出| 精品少妇黑人巨大在线播放 | 国产成人精品久久久久久| 嘟嘟电影网在线观看| 国产精品av视频在线免费观看| 中文字幕久久专区| 一级毛片久久久久久久久女| 国产一级毛片七仙女欲春2| 女人被狂操c到高潮| 色综合亚洲欧美另类图片| 在线播放无遮挡| 美女cb高潮喷水在线观看| 亚洲国产精品sss在线观看| 久久久精品大字幕| 精品免费久久久久久久清纯| 边亲边吃奶的免费视频| 午夜激情欧美在线| 国产极品天堂在线| 中文在线观看免费www的网站| 久久综合国产亚洲精品| 日日摸夜夜添夜夜添av毛片| 日韩av在线大香蕉| 男人舔奶头视频| 国产综合懂色| 久久99热这里只频精品6学生 | 插阴视频在线观看视频| 国产真实伦视频高清在线观看| 午夜精品一区二区三区免费看| 亚洲av熟女| 亚洲精品自拍成人| 真实男女啪啪啪动态图| 一个人免费在线观看电影| 成人毛片60女人毛片免费| 欧美成人午夜免费资源| 听说在线观看完整版免费高清| 国产午夜福利久久久久久| 女的被弄到高潮叫床怎么办| a级毛片免费高清观看在线播放| 欧美区成人在线视频| 美女高潮的动态| 天堂√8在线中文| 亚洲经典国产精华液单| 日本黄色片子视频| 99在线人妻在线中文字幕| .国产精品久久| 麻豆精品久久久久久蜜桃| 国产精品一区二区三区四区久久| 白带黄色成豆腐渣| 青春草国产在线视频| 日韩三级伦理在线观看| 欧美不卡视频在线免费观看| 久久久久性生活片| 五月玫瑰六月丁香| 三级经典国产精品| 人妻系列 视频| 国产亚洲91精品色在线| 黄色日韩在线| 国产亚洲一区二区精品| 高清av免费在线| 精品不卡国产一区二区三区| 国产一级毛片在线| 成人特级av手机在线观看| 亚洲电影在线观看av| 亚洲人成网站在线播| 成人漫画全彩无遮挡| 边亲边吃奶的免费视频| 国产在视频线在精品| 国产黄色小视频在线观看| 久久久久久九九精品二区国产| 国产又黄又爽又无遮挡在线| 69av精品久久久久久| 国产精品国产三级专区第一集|