• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    徑向電場對(duì)納米管中水分子通量的影響

    2013-09-17 06:58:54葛振朋石彥超李曉毅
    物理化學(xué)學(xué)報(bào) 2013年8期
    關(guān)鍵詞:納米管物理化學(xué)學(xué)報(bào)

    葛振朋 石彥超 李曉毅

    (中國科學(xué)院大學(xué)材料科學(xué)與光電技術(shù)學(xué)院,北京100049)

    1 Introduction

    Water transport in nanopores is crucial to biological activities1-3and important for designing novel fluidic devices.Hummer and coworkers4,5reported the fast water conduction ability of a short carbon nanotube by molecular dynamics(MD)simulations.In 2006,the enhanced water flow through carbon nanotubes(CNTs)was observed experimentally.6Holt et al.6found that the water flow rate through CNTs with radius of 1-2 nm was about 3 orders of magnitude faster than the conventional nonslip hydrodynamic flow.Zheng et al.3found that the relationship between the CNT wall-water interfacial friction stress and slip velocity follows a transition-state-theory-based inverse hyperbolic sine function.Bocquet et al.7studied the interfacial friction of water at graphitic interfaces with various topologies and found that the friction coefficient exhibits a strong curvature dependence,while friction is independent of confinement for the graphene slab.Thus controlling the transport of water across CNTs has attracted considerable attentions.8Osmotic or hydrostatic pressure gradient can drive water flow in a channel.1,2,9An imbalance of chemical,10thermal gradients11could change the movement of water in nanopores.

    Joseph and Aluru12,13found that the water flow across the nanopores is strong coupled with the water dipole orientations and hydrogen bonds.It is easy to tune the dipole orientation of water by external electric field or charge when water molecules are confined.14,15Thus the external electric field or charge is one of the most promising method to control the gating and flowing behaviors of water molecules in a nanochannel.14,16-22Figueras and Faraudo23found that the application of an electric field perpendicular to the axis of the carbon nanotube would disrupt the hydrogen bond structure of the one dimensional(1D)water system and affect the transport properties of water inside the nanotube.Suk and Aluru18found a net flux of 3 water molecules per nanosecond by constantly maintaining water dipole vectors in the direction of the electric field.Su and Guo24have investigated the effect of axial electric field on the transport of single-file water molecules through a CNT.However,controlling of the water net flux in nanopores and the open/close behavior of nanopores for water molecules are far from satisfactory.

    Molecular dynamics simulation has been proved to be a good method for the study of water molecules and nanomaterials.25-27In present work,we utilize the orthogonal electric field to control the net flux of water transport through a carbon nanotube and investigate the on-off gating behavior of a CNT.

    2 Model design and simulation details

    As shown in Fig.1,an uncapped(6,6)single-walled carbon nanotube of 2 nm in length and 0.81 nm in diameter was inserted along the z direction between two graphene layers.The distance between the graphene layers along z direction was 1.84 nm.822 water molecules were added in the up and down reservoirs thus the initial size of total system was 3 nm×3 nm×5 nm.

    Fig.1 Snapshot of simulation system

    All systems were run at an NPT ensemble(101 kPa and 300 K)using the software NAMD V2.828with periodic boundary conditions applied in all directions.CHARMM 27 force field29and TIP3P water model30were employed.The carbon atoms in CNT and graphene were assumed as the carbon atom in benzene which was named CA in CHARMM 27 force field.After 2 ns equilibrium molecular dynamics simulations without any external force,a uniform orthogonal electric field was added along+x direction during the rest 20 ns simulation time.The designed strengths of electric fields(E)are 0.5,1,1.5,2,2.5,2.7,2.8,2.9,3,3.5,4,4.5,and 5 V·nm-1,respectively.A system without any external electric field was also built for comparison.To accelerate the flux through CNT,a pressure difference of 200 MPa along z direction was utilized following the method proposed by Zhu et al.2Particle Mesh Ewald method31was used to calculate the full electrostatics interaction and the cutoff distance of van der Waals interaction was 1.2 nm.A time step of 2 fs was used.Structures were saved every 1 ps.20 ns MD simulation was run for each system and the data of last 15 ns were collected for statistics.To prevent the CNT from being swept away,the CNT and graphene layers were fixed during our simulations.

    3 Results and discussion

    The net flux of water molecules passing through a(6,6)tube for the different strengths of orthogonal electric field is shown in Fig.2a.According to the previous publications,4,9,16,24,32,33the upflux is defined as the total number of water molecules per nanosecond conducted through the CNT from top to bottom along with the direction of the pressure difference,so is the downflux but with the opposite direction.The net flux is the difference between upflux and downflux.We observed that the relationship between the net flux and the external orthogonal electric field strength E could be divided into three stages.At the beginning,when the orthogonal electric field strength E increases from 0 to 0.5 V·nm-1,the net flux of water maintains around 23 molecules·ns-1and is regardless of the E.The downflux is zero in this stage.With E increasing from 0.5 to 3 V·nm-1,the water net flux decreases linearly from 23 to 1 molecules·ns-1.The downflux is very small in this stage.When E increases to the stage of 3 to 5 V·nm-1,the water net flux is almost zero and regardless of E again.

    Su and Guo24has studied the effect of an axial electric field strength in the range of 0-1 V·nm-1on the transport of water molecules through a carbon nanotube.They observed that the net flux increases with increasing E of axial electric field strength for E<0.07 V·nm-1and maintains 1.1-1.2 molecules·ns-1for E≥0.07 V·nm-1.The net flux is much sensitive to the axial electric field strength than the orthogonal electric field.However,it is easier to control the water net flux transport through CNT precisely by orthogonal electric field because the net flux is almost linear to the orthogonal electric field strength in a wide range of orthogonal electric field strength from 1 to 3 V·nm-1.The filling behavior of water molecules in CNTs can be described by the water occupancy <N>,as shown in Fig.2b.The water occupancy<N> also exhibits three stages of 7-6.5,6.5-1,and 1-0 molecules·ns-1corresponding to the 0-2,2-3,and 3-5 V·nm-1of orthogonal electric field strength,respectively.There is a steep slope of<N> from 6.5 to almost 0 molecules·ns-1when the orthogonal electric field increases from 2 to 3 V·nm-1,which indicates that the orthogonal electric field may be used to turn on/off the nanotube to water molecules.

    Fig.2 (a)Averaged water flux through the CNT and(b)averaged number of water molecules inside the CNT with respect to the orthogonal electric field(E)

    In order to understand the dependence of water net flux or occupancy on the dipole orientation of water molecules inside nanopores,we investigate the dipole orientations at different orthogonal electric field strengths.The probability distributions of the averaged angle <θ> are shown in Fig.3.The angle θ represents the angle between the dipole of a water molecule and the tube axis,and the average is taken over all water molecules inside the CNT.Apparently,the probability distributions with respect to the orthogonal electric strength E exhibit three stages too.In the first stage,when the orthogonal electric strength E increases from 0 to 2 V·nm-1,the peaks of the distribution of<θ> lie around 30°or 150°,in agreement with previous studies.16,24,32-35In the second stage,further increasing E from 2.5 to 3 V·nm-1,the first peak moves from 33°to 42°and the second peak vanishes gradually,as shown in Fig.3b.In the third stage,when E increases from 3.5 to 5 V·nm-1,the only peak moves from 49°to 71°,as shown in Fig.3c.This phenomenon is understandable according to the electrostatics theory.When the orthogonal electric field acts on the water molecules,water molecules rotate their dipole orientations to decrease the electrostatic energy of the system.However,the orthogonal electric field should be strong enough to make water molecules rotate.We have not observed the situation of having water molecules with both directions inside nanotube at the same time,for the nanotube is short in our simulations,which agrees with the results of Fang and co-workers.36

    Fig.3 Probability distribution of the averaged angle<θ>between the water dipole and the tube axis at different orthogonal electric field strengths

    According to Joseph and Aluru,12the water net flux should be in the direction of the aligned water dipoles when there is no other driving force.However,when the driving force is the 200 MPa pressure difference acting on the top of the first layer of water molecules as in our simulations,the averaged water dipole orientation might be opposite to the direction of net flux,which is exhibited in the case of E=0.5 V·nm-1.Comparing Fig.2 and Fig.3,we find that the probability distributions of<θ> is much stronger coupled with the water occupancy <N>rather than the net flux when 200 MPa pressure difference is being applied on water molecules.In the first stage when the peaks of the distribution of<θ> lie around 30°or 150°,the water occupancy <N> maintains a level of 6-7 molecules·ns-1.<N> decreases sharply to 1 molecules·ns-1in the second stage when the first peak moves from 33°to 42°and the second peak gradually vanishes.In the third stage when the only peak moves from 49°to 71°,<N> vanishes to zero.

    The averaged angle<θ> with respect to the simulation time for different E values is also investigated to understand the flipping of water dipoles inside CNT and its sensitivity to the orthogonal electric field,as shown in Fig.4a.We observed that for E=0,0.5 V·nm-1,the water dipole orientations have not reversed their directions from the initial orientation within the 20 ns simulation time.When E is small(≤ 2 V·nm-1),the twostate(30°and 150°)orientation is very clear.With increasing E,the two-state orientation of water dipole is not so clear and there appear more and more middle-states,which means that angle<θ> moves away from 30°or 150°to the middle point of 90°.A flip is defined as <θ> passing through 90°.The average flipping frequency,fflip,is calculated and shown with respect to E in Fig.4b.At 1 V·nm-1of E,the flipping frequency is 0.15 ns-1corresponding to 6 ns of flipping period,which is within the range of 4-6 ns measured in Ref.20.The flipping frequency increases remarkably as the orthogonal electric field strength increases larger than 2 V·nm-1.This is due to the frequent back and forth flip around 90°,corresponding to the appearance of a lot of middle-states of the dipole orientation.It is found that the flipping frequency is also strong coupled with the water occupancy<N>rather than the net flux.

    Fig.4 (a)<θ> vs time at different orthogonal electric field values,(b)flip frequency vs the orthogonal electric field

    The water flux is related to the free energy profile along with the nanotube axis.As shown in Fig.5,the free energy barriers for water transport are less than 1kBT(kBT equals to 4.14×10-21J,which is twice the amount of a particle?s one-dimensional freedom contributing to the internal energy in the ideal gas)when E is less than 2.5 V·nm-1.As E increases to 2.7 V·nm-1,the total tendency of free energy begins to increase along with z direction,which could act as the opposite force to the driving force of the pressure difference on water molecules.

    The free energy barrier increases above 3.70kBT after E increases to 3 V·nm-1,and the nanotube is turned off.There is almost no net flux in this case,as shown in Fig.2a,although the pressure difference is still acting on water molecules.Apparently,the free energy barrier acts as the opposite force overcoming the driving force of the pressure difference in this case.

    Hydrogen bond plays an important role in the transportion of water molecules.Water molecules are connected by hydrogen bonds in a special orientation and formed an ordered 1D structure water chain inside nanotube.They move concertedly passing through the nanotube.4,37Orthogonal electric field ruptures the hydrogen-bond network by making an influence on the orientations of water molecules.We oberved that the hydrogen-bond network inside the nanotube become shorter as the electrical field strength increased and we have even observed isolated water moleculars inside the nanotube.The average number of hydrogen bonds inside the nanotube of different orthogonal electric field strength was calculated and we found that the number of hydrogen bonds decreascd as the strength of electrical field increased,as can be seen in Fig.6.Therefore or-thogonal electric field could control the number of water molecules passing through the nanotube by influencing on the orientation of water molecules and the number of hydrogen bonds among water molecules inside nanotube.

    Fig.5 Free energy profiles for water through the channels z is the position coordinate along the tube and F(z)=-kBTln[ρ(z)/ρ0],where ρ(z)is the water density along the channel pore.

    Fig.6 Average number of hydrogen bonds inside the nanotube with different orthogonal electric field strengths

    4 Conclusions

    In this study,we found that not only the net flux of water transported through a CNT could be controlled by an orthogonal electric field,but also the on-off gating behavior of the CNT.With a 200 MPa pressure difference acting on the top of the first layer of water molecules,as E increases from 1 to 3 V·nm-1,the net flux of water decreases linearly.When E increases over 3 V·nm-1,the flow of water molecules through the CNT is turned off and the net flux of water is almost zero.<N>decreases sharply from 6.5 to 1 molecules·ns-1when the E increases from 2 to 3 V·nm-1,which indicates that an orthogonal electric field may be used to turn on/off the flow of water molecules through a CNT.

    When E was in the range of 0-2 V·nm-1,the angle<θ> between the water dipole and CNT axis clearly exhibited two states of 30°and 150°,resulting in <N> of 6.5-7 molecules·ns-1.Further increasing E from 2.5 to 3 V·nm-1caused the first peak of the probability distribution of<θ> to move from 33°to 42°and the second peak to gradually disappear,so <N> decreased rapidly to 1 molecules·ns-1.When E increased from 3.5 to 5 V·nm-1,the only probability distribution peak moved from 49°to 71°,and <N> decreased to zero.Both the orientation of water dipoles and the flipping frequency were strongly correlated with<N>in CNTs.

    After the E was increased to 3 V·nm-1,the free energy barrier increased above 3.70 kBT and acted as an opposing force to overcome the driving force of the 200 MPa pressure difference on the water molecules,causing the net flux of water to decrease almost to zero.

    We also found that the number of hydrogen bonds decreased as E increased.Therefore,an orthogonal electric field could be used to control the number of water molecules passing through a nanotube by influencing the orientation of water molecules and the number of hydrogen bonds between water molecules inside a nanotube.

    Acknowledgment: The results described in this paper are obtained on the Deepcomp7000 of Supercomputing Center,Computer Network Information Center of Chinese Academy of Sciences.

    (1) Zhu,F.Q.;Tajkhorshid,E.;Schulten,K.Biophys.J.2004,86,50.doi:10.1016/S0006-3495(04)74082-5

    (2) Zhu,F.Q.;Tajkhorshid,E.;Schulten,K.Biophys.J.2002,83,154.doi:10.1016/S0006-3495(02)75157-6

    (3) Ma,M.D.;Shen,L.;Sheridan,J.;Liu,J.Z.;Chen,C.;Zheng,Q.Phys.Rev.E 2011,83,036316.doi:10.1103/PhysRevE.83.036316

    (4)Hummer,G.;Rasaiah,J.C.;Noworyta,J.P.Nature 2001,414,188.doi:10.1038/35102535

    (5)Waghe,A.;Rasaiah,J.C.;Hummer,G.J.Chem.Phys.2002,117,10789.doi:10.1063/1.1519861

    (6)Holt,J.K.;Park,H.G.;Wang,Y.M.;Stadermann,M.;Artyukhin,A.B.;Grigoropoulos,C.P.;Noy,A.;Bakajin,O.Science 2006,312,1034.doi:10.1126/science.1126298

    (7) Falk,K.;Sedlmeier,F.;Joly,L.;Netz,R.R.;Bocquet,L.R.Nano Lett.2010,10,4067.doi:10.1021/nl1021046

    (8) Zhang,Z.Q.;Ye,H.F.;Liu,Z.;Ding,J.N.;Cheng,G.G.;Ling,Z.Y.;Zheng,Y.G.;Wang,L.;Wang,J.B.J.Appl.Phys.2012,111,114304.doi:10.1063/1.4724344

    (9)Zuo,G.C.;Shen,R.;Ma,S.J.;Guo,W.L.ACS Nano 2010,4,205.doi:10.1021/nn901334w

    (10) Chaudhury,M.K.;Whitesides,G.M.Science 1992,256,1539.doi:10.1126/science.256.5063.1539

    (11) Linke,H.;Aleman,B.J.;Melling,L.D.;Taormina,M.J.;Francis,M.J.;Dow-Hygelund,C.C.;Narayanan,V.;Taylor,R.P.;Stout,A.Phys.Rev.Lett.2006,96,154502.doi:10.1103/PhysRevLett.96.154502

    (12) Joseph,S.;Aluru,N.R.Phys.Rev.Lett.2008,101,064502.doi:10.1103/PhysRevLett.101.064502

    (13) Joseph,S.;Aluru,N.R.Nano Lett.2008,8,452.doi:10.1021/nl072385q

    (14) Vaitheeswaran,S.;Yin,H.;Rasaiah,J.C.J.Phys.Chem.B 2005,109,6629.doi:10.1021/jp045591k

    (15)Bratko,D.;Daub,C.D.;Leung,K.;Luzar,A.J.Am.Chem.Soc.2007,129,2504.doi:10.1021/ja0659370

    (16) Li,J.Y.;Gong,X.J.;Lu,H.J.;Li,D.;Fang,H.P.;Zhou,R.H.Proc.Natl.Acad.Sci.U.S.A.2007,104,3687.doi:10.1073/pnas.0604541104

    (17) Raghunathan,A.V.;Aluru,N.R.Phys.Rev.Lett.2006,97.

    (18)Suk,M.E.;Aluru,N.R.Phys.Chem.Chem.Phys.2009,11,8614.doi:10.1039/b903541a

    (19) Gong,X.J.;Li,J.Y.;Lu,H.J.;Wan,R.Z.;Li,J.C.;Hu,J.;Fang,H.P.Nat.Nanotechnol.2007,2,709.doi:10.1038/nnano.2007.320

    (20) Won,C.Y.;Joseph,S.;Aluru,N.R.J.Chem.Phys.2006,125,117701.doi:10.1063/1.2338305

    (21) Garate,J.A.;English,N.J.;MacElroy,J.M.D.J.Chem.Phys.2009,131,8.

    (22) Dzubiella,J.;Allen,R.J.;Hansen,J.P.J.Chem.Phys.2004,120,5001.doi:10.1063/1.1665656

    (23) Figueras,L.;Faraudo,J.Mol.Simulat.2012,38,23.doi:10.1080/08927022.2011.599032

    (24) Su,J.Y.;Guo,H.X.ACS Nano 2011,5,351.doi:10.1021/nn1014616

    (25) Lü,Y.J.;Chen,M.Acta Phys.-Chim.Sin.2012,28,1070.[呂勇軍,陳 民.物理化學(xué)學(xué)報(bào),2012,28,1070.]doi:10.3866/PKU.WHXB201202213

    (26) LI,H.L.;Jia,Y.X.;Hu,Y.D.Acta Phys.-Chim.Sin.2012,28,573.[李海蘭,賈玉香,胡仰棟.物理化學(xué)學(xué)報(bào),2012,28,573.]doi:10.3866/PKU.WHXB201112191

    (27)Zhang,X.;Zhang,Q.;Zhao,D.X.Acta Phys.-Chim.Sin.2012,28,1037.[張 霞,張 強(qiáng),趙東霞.物理化學(xué)學(xué)報(bào),2012,28,1037.]doi:10.3866/PKU.WHXB201203072

    (28) Phillips,J.C.;Braun,R.;Wang,W.;Gumbart,J.;Tajkhorshid,E.;Villa,E.;Chipot,C.;Skeel,R.D.;Kale,L.;Schulten,K.J.Comput.Chem.2005,26,1781.

    (29) Vanommeslaeghe,K.;Hatcher,E.;Acharya,C.;Kundu,S.;Zhong,S.;Shim,J.;Darian,E.;Guvench,O.;Lopes,P.;Vorobyov,I.;MacKerell,A.D.J.Comput.Chem.2010,31,671.(30) Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.D.;Impey,R.W.;Klein,M.L.J.Chem.Phys.1983,79,926.doi:10.1063/1.445869

    (31) Essmann,U.;Perera,L.;Berkowitz,M.L.;Darden,T.;Lee,H.;Pedersen,L.G.J.Chem.Phys.1995,103,8577.doi:10.1063/1.470117

    (32) Wan,R.;Lu,H.;Li,J.;Bao,J.;Hu,J.;Fang,H.Phys.Chem.Chem.Phys.2009,11,9898.doi:10.1039/b907926m

    (33) Wan,R.Z.;Li,J.Y.;Lu,H.J.;Fang,H.P.J.Am.Chem.Soc.2005,127,7166.doi:10.1021/ja050044d

    (34)Yang,Y.L.;Li,X.Y.;Jiang,J.L.;Du,H.L.;Zhao,L.N.;Zhao,Y.L.ACS Nano 2010,4,5755.doi:10.1021/nn1014825

    (35) Liu,B.;Li,X.Y.;Li,B.L.;Xu,B.Q.;Zhao,Y.L.Nano Lett.2009,9,1386.doi:10.1021/nl8030339

    (36)Wu,K.F.;Zhou,B.;Xiu,P.;Qi,W.P.;Wan,R.Z.;Fang,H.P.J.Chem.Phys.2010,133,204702.doi:10.1063/1.3509396

    (37) Zhu,F.;Schulten,K.Biophys.J.2003,85,236.doi:10.1016/S0006-3495(03)74469-5

    猜你喜歡
    納米管物理化學(xué)學(xué)報(bào)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    《深空探測學(xué)報(bào)》
    国产成人精品无人区| 亚洲欧洲国产日韩| 久久99热6这里只有精品| 99久久中文字幕三级久久日本| 免费看不卡的av| 王馨瑶露胸无遮挡在线观看| 国内揄拍国产精品人妻在线| 亚洲欧美一区二区三区黑人 | 国产精品一区二区在线不卡| 久久女婷五月综合色啪小说| 午夜影院在线不卡| 如何舔出高潮| 午夜老司机福利剧场| 国产亚洲午夜精品一区二区久久| 自拍偷自拍亚洲精品老妇| 久久久久久久久久久免费av| 国产成人午夜福利电影在线观看| 高清在线视频一区二区三区| 老司机亚洲免费影院| 国产成人精品婷婷| 欧美xxⅹ黑人| 亚洲人成网站在线观看播放| 日韩 亚洲 欧美在线| 噜噜噜噜噜久久久久久91| 国产午夜精品久久久久久一区二区三区| 日韩在线高清观看一区二区三区| 性色av一级| 啦啦啦视频在线资源免费观看| 日韩中文字幕视频在线看片| 日韩av不卡免费在线播放| 国产在线视频一区二区| 免费黄频网站在线观看国产| 狂野欧美激情性bbbbbb| 六月丁香七月| 激情五月婷婷亚洲| 精品久久久久久久久亚洲| 熟女电影av网| 日韩成人伦理影院| 大又大粗又爽又黄少妇毛片口| 最近2019中文字幕mv第一页| 成人18禁高潮啪啪吃奶动态图 | 成人综合一区亚洲| 欧美3d第一页| 国语对白做爰xxxⅹ性视频网站| 精品一区在线观看国产| 欧美日韩视频精品一区| 国产欧美亚洲国产| 国产精品麻豆人妻色哟哟久久| 亚洲精品456在线播放app| 精品国产国语对白av| 成人特级av手机在线观看| 一区二区av电影网| 一级,二级,三级黄色视频| 日本黄色日本黄色录像| 中文字幕久久专区| 性色av一级| 插阴视频在线观看视频| av天堂久久9| 丰满人妻一区二区三区视频av| 亚洲熟女精品中文字幕| 国产精品一区二区三区四区免费观看| tube8黄色片| 亚洲欧美日韩另类电影网站| 日韩成人av中文字幕在线观看| 在线观看三级黄色| 日本av免费视频播放| 欧美区成人在线视频| 日韩在线高清观看一区二区三区| 99久久人妻综合| 亚洲国产色片| 嫩草影院新地址| 欧美另类一区| 亚洲一级一片aⅴ在线观看| 久久国产乱子免费精品| 久久人妻熟女aⅴ| 成人免费观看视频高清| 亚洲国产精品999| 午夜影院在线不卡| 国产69精品久久久久777片| 午夜91福利影院| 久久午夜综合久久蜜桃| 一本色道久久久久久精品综合| 久久久亚洲精品成人影院| 亚洲成人av在线免费| 女性生殖器流出的白浆| 国产黄片美女视频| av天堂中文字幕网| 国产淫语在线视频| 亚洲av不卡在线观看| 99热6这里只有精品| 一级毛片我不卡| 91在线精品国自产拍蜜月| www.av在线官网国产| 在线观看人妻少妇| 99久久精品国产国产毛片| 久久99热这里只频精品6学生| 又粗又硬又长又爽又黄的视频| www.色视频.com| 久久久久久久久久久久大奶| 99视频精品全部免费 在线| 在线播放无遮挡| 久久精品国产鲁丝片午夜精品| 最后的刺客免费高清国语| 亚洲精品,欧美精品| 国产精品一区二区在线观看99| 高清视频免费观看一区二区| 男女无遮挡免费网站观看| 久久久a久久爽久久v久久| 日本黄色片子视频| 少妇 在线观看| 热re99久久国产66热| 校园人妻丝袜中文字幕| 丰满乱子伦码专区| 欧美精品国产亚洲| 亚洲欧洲国产日韩| 国产精品福利在线免费观看| 肉色欧美久久久久久久蜜桃| 午夜免费观看性视频| 亚洲国产精品国产精品| 青春草国产在线视频| 日韩欧美精品免费久久| 久久影院123| 国产精品女同一区二区软件| 男女国产视频网站| 国产亚洲午夜精品一区二区久久| 爱豆传媒免费全集在线观看| 国产精品成人在线| 亚洲精品久久久久久婷婷小说| 亚洲av国产av综合av卡| 大话2 男鬼变身卡| 男女免费视频国产| 欧美人与善性xxx| 欧美日本中文国产一区发布| 日韩欧美一区视频在线观看 | 2022亚洲国产成人精品| 欧美日韩综合久久久久久| 一个人免费看片子| 久久精品国产鲁丝片午夜精品| 中文字幕制服av| 中文字幕免费在线视频6| 亚洲成人一二三区av| 亚洲精品456在线播放app| 国产69精品久久久久777片| 国产爽快片一区二区三区| 亚洲人成网站在线播| 美女视频免费永久观看网站| a级毛色黄片| 国产精品熟女久久久久浪| 一级毛片久久久久久久久女| 久久人人爽av亚洲精品天堂| 精品一区在线观看国产| 亚洲av福利一区| 自拍欧美九色日韩亚洲蝌蚪91 | 熟女人妻精品中文字幕| 老司机影院成人| 亚洲欧美清纯卡通| 国产精品久久久久久精品电影小说| 韩国av在线不卡| 日韩亚洲欧美综合| 少妇猛男粗大的猛烈进出视频| 一级毛片久久久久久久久女| 国产高清国产精品国产三级| 国产亚洲欧美精品永久| 国产欧美另类精品又又久久亚洲欧美| 3wmmmm亚洲av在线观看| 精华霜和精华液先用哪个| 中文欧美无线码| av播播在线观看一区| 国产一区二区三区av在线| 高清黄色对白视频在线免费看 | 免费观看性生交大片5| 在线观看美女被高潮喷水网站| 亚洲欧洲日产国产| 亚洲内射少妇av| 激情五月婷婷亚洲| 一级二级三级毛片免费看| 国产av国产精品国产| 欧美少妇被猛烈插入视频| 人人澡人人妻人| 国产黄片视频在线免费观看| 久久精品久久精品一区二区三区| 91久久精品国产一区二区成人| 午夜免费鲁丝| 色视频在线一区二区三区| 日本av手机在线免费观看| 国产精品伦人一区二区| 国产老妇伦熟女老妇高清| 一本久久精品| 国产精品熟女久久久久浪| 一本一本综合久久| 少妇 在线观看| 国产精品久久久久久精品古装| 精品99又大又爽又粗少妇毛片| 九九爱精品视频在线观看| av线在线观看网站| 国产在线一区二区三区精| 日本欧美视频一区| 亚洲欧美成人精品一区二区| 色5月婷婷丁香| 免费看光身美女| 亚洲国产日韩一区二区| av天堂中文字幕网| 永久网站在线| 中文天堂在线官网| 亚洲真实伦在线观看| 久久精品久久久久久噜噜老黄| 大片电影免费在线观看免费| 免费观看性生交大片5| 热99国产精品久久久久久7| 少妇熟女欧美另类| 晚上一个人看的免费电影| 国产欧美日韩精品一区二区| 久久亚洲国产成人精品v| 国产欧美亚洲国产| 国产免费一级a男人的天堂| 日韩av在线免费看完整版不卡| 国产午夜精品久久久久久一区二区三区| 男人舔奶头视频| av免费观看日本| 少妇人妻 视频| 女人精品久久久久毛片| 国产国拍精品亚洲av在线观看| 啦啦啦在线观看免费高清www| 久久久久人妻精品一区果冻| 精品久久久精品久久久| 丝袜脚勾引网站| 国产欧美日韩一区二区三区在线 | 香蕉精品网在线| 一级毛片aaaaaa免费看小| 国产黄片美女视频| 久久久久久久久久人人人人人人| av.在线天堂| 亚洲美女黄色视频免费看| 亚洲av.av天堂| 成人特级av手机在线观看| 免费观看无遮挡的男女| 亚洲欧美一区二区三区国产| 观看免费一级毛片| 欧美日本中文国产一区发布| 91午夜精品亚洲一区二区三区| 日韩欧美 国产精品| 欧美精品一区二区免费开放| 日韩av免费高清视频| 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久成人av| 中文字幕制服av| 国产精品人妻久久久久久| 国产精品99久久久久久久久| 成人毛片60女人毛片免费| 国产黄色免费在线视频| 97超视频在线观看视频| 日韩成人av中文字幕在线观看| 夜夜骑夜夜射夜夜干| 91精品国产九色| 在线观看人妻少妇| 两个人免费观看高清视频 | 色哟哟·www| 黄色毛片三级朝国网站 | 成人亚洲欧美一区二区av| 欧美精品一区二区大全| 日韩中字成人| 久久久国产一区二区| 黄色毛片三级朝国网站 | 国产熟女欧美一区二区| 国产精品成人在线| 日韩中文字幕视频在线看片| 久久99热这里只频精品6学生| 熟女人妻精品中文字幕| 九九爱精品视频在线观看| 国产日韩欧美在线精品| av在线老鸭窝| 少妇被粗大的猛进出69影院 | 亚洲国产精品专区欧美| 亚洲精品国产成人久久av| 99久久精品国产国产毛片| 在线亚洲精品国产二区图片欧美 | 欧美成人午夜免费资源| 久久国产精品男人的天堂亚洲 | 黄色毛片三级朝国网站 | 熟女电影av网| 国产精品无大码| 国产国拍精品亚洲av在线观看| 毛片一级片免费看久久久久| 亚洲精品中文字幕在线视频 | 国产精品一区二区三区四区免费观看| 欧美激情极品国产一区二区三区 | 免费大片18禁| 日韩 亚洲 欧美在线| 国产亚洲av片在线观看秒播厂| 97超碰精品成人国产| 免费观看av网站的网址| 人人妻人人澡人人看| 欧美少妇被猛烈插入视频| 在线 av 中文字幕| 亚洲图色成人| 人妻制服诱惑在线中文字幕| 亚洲欧美精品专区久久| 少妇裸体淫交视频免费看高清| 国产亚洲一区二区精品| 日韩在线高清观看一区二区三区| av网站免费在线观看视频| 各种免费的搞黄视频| 一本久久精品| 老熟女久久久| 内射极品少妇av片p| 精品人妻偷拍中文字幕| 黑人高潮一二区| 一级毛片我不卡| 久热久热在线精品观看| 少妇的逼水好多| 两个人的视频大全免费| 精品国产一区二区久久| 9色porny在线观看| 精品一区二区三区视频在线| 丝袜喷水一区| 国产男女超爽视频在线观看| 国产精品无大码| 人人澡人人妻人| 国产精品一二三区在线看| 久久国产精品男人的天堂亚洲 | 国产精品三级大全| 国产淫片久久久久久久久| 午夜影院在线不卡| 在线天堂最新版资源| 一级毛片 在线播放| 久久国产亚洲av麻豆专区| 欧美3d第一页| 国产成人午夜福利电影在线观看| 日本-黄色视频高清免费观看| 国产成人免费观看mmmm| videossex国产| 精品99又大又爽又粗少妇毛片| 内射极品少妇av片p| 汤姆久久久久久久影院中文字幕| 黑人高潮一二区| 2021少妇久久久久久久久久久| 国产色爽女视频免费观看| 波野结衣二区三区在线| 2022亚洲国产成人精品| 一本色道久久久久久精品综合| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 麻豆成人av视频| 国产真实伦视频高清在线观看| 精品少妇久久久久久888优播| 日本黄色片子视频| 少妇被粗大的猛进出69影院 | 爱豆传媒免费全集在线观看| 国产精品久久久久成人av| 黑人巨大精品欧美一区二区蜜桃 | 丰满迷人的少妇在线观看| 亚洲欧美一区二区三区国产| 久久久国产欧美日韩av| 熟女电影av网| 国产一区亚洲一区在线观看| 插阴视频在线观看视频| av黄色大香蕉| 肉色欧美久久久久久久蜜桃| 国内揄拍国产精品人妻在线| 黄色毛片三级朝国网站 | 国产免费一级a男人的天堂| 久久久国产一区二区| 亚洲国产精品成人久久小说| 黑人巨大精品欧美一区二区蜜桃 | 免费观看性生交大片5| 国产欧美日韩一区二区三区在线 | 少妇的逼水好多| 男女边摸边吃奶| 9色porny在线观看| 国产69精品久久久久777片| 尾随美女入室| 少妇人妻一区二区三区视频| 美女xxoo啪啪120秒动态图| 欧美3d第一页| 久久久久久久久久成人| 69精品国产乱码久久久| 高清不卡的av网站| 久久久a久久爽久久v久久| 久久人妻熟女aⅴ| 国产精品欧美亚洲77777| 青春草国产在线视频| 亚洲欧美日韩东京热| 日韩不卡一区二区三区视频在线| av国产久精品久网站免费入址| 97在线人人人人妻| 精品国产露脸久久av麻豆| 精品国产一区二区久久| 一区二区三区四区激情视频| 如何舔出高潮| 波野结衣二区三区在线| xxx大片免费视频| 欧美日韩av久久| 91精品一卡2卡3卡4卡| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 亚洲不卡免费看| 人体艺术视频欧美日本| 午夜激情久久久久久久| 国产美女午夜福利| 国产伦理片在线播放av一区| 国产一区二区在线观看日韩| 丰满少妇做爰视频| 午夜日本视频在线| 男女国产视频网站| 嘟嘟电影网在线观看| 免费av不卡在线播放| 国产成人精品婷婷| 天堂俺去俺来也www色官网| 久久女婷五月综合色啪小说| 国产精品免费大片| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 丰满乱子伦码专区| 极品教师在线视频| 国产免费福利视频在线观看| 国产精品三级大全| 韩国av在线不卡| 女性生殖器流出的白浆| 亚洲av男天堂| 亚洲人与动物交配视频| 免费看光身美女| 99久久精品热视频| 国产精品一区www在线观看| 十八禁网站网址无遮挡 | 久久精品夜色国产| 国产黄片美女视频| 国产国拍精品亚洲av在线观看| 亚洲精品中文字幕在线视频 | 国产精品成人在线| 在线观看免费高清a一片| 国产精品麻豆人妻色哟哟久久| 婷婷色麻豆天堂久久| av卡一久久| 日韩电影二区| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 久久这里有精品视频免费| 美女主播在线视频| 国内精品宾馆在线| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 夜夜骑夜夜射夜夜干| 国产伦理片在线播放av一区| 九九久久精品国产亚洲av麻豆| 最近2019中文字幕mv第一页| 成人亚洲精品一区在线观看| 搡老乐熟女国产| 久久精品国产鲁丝片午夜精品| 欧美精品一区二区大全| 国产免费福利视频在线观看| 看免费成人av毛片| 午夜免费观看性视频| 欧美日韩在线观看h| 夜夜骑夜夜射夜夜干| 乱码一卡2卡4卡精品| 日日啪夜夜撸| 一区二区三区四区激情视频| 久久久国产欧美日韩av| 精品国产一区二区三区久久久樱花| 一级a做视频免费观看| 秋霞在线观看毛片| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 麻豆成人午夜福利视频| 国产在线视频一区二区| 看非洲黑人一级黄片| 18禁在线播放成人免费| 一级av片app| 国产精品.久久久| 国产男人的电影天堂91| 欧美日韩av久久| 久久这里有精品视频免费| 精品国产乱码久久久久久小说| 欧美日韩国产mv在线观看视频| av视频免费观看在线观看| 国产精品无大码| 国产在视频线精品| 午夜视频国产福利| 亚洲av.av天堂| 国产精品一二三区在线看| 制服丝袜香蕉在线| av天堂久久9| 国产高清三级在线| 91aial.com中文字幕在线观看| 久久久久精品性色| 国产午夜精品一二区理论片| 全区人妻精品视频| 国产精品秋霞免费鲁丝片| 丰满少妇做爰视频| 麻豆成人av视频| 亚洲av男天堂| 免费看日本二区| 色网站视频免费| 综合色丁香网| 亚洲第一av免费看| 国产熟女午夜一区二区三区 | 亚洲av成人精品一二三区| 三级国产精品片| 看十八女毛片水多多多| 97超视频在线观看视频| 嘟嘟电影网在线观看| 男的添女的下面高潮视频| av国产精品久久久久影院| 亚洲不卡免费看| 最新的欧美精品一区二区| 国产精品嫩草影院av在线观看| 亚洲精品一二三| 在线观看三级黄色| 欧美成人精品欧美一级黄| 亚洲精品乱码久久久久久按摩| 日韩免费高清中文字幕av| 高清视频免费观看一区二区| 久久人人爽人人爽人人片va| 久久久久久人妻| 伊人亚洲综合成人网| 我要看黄色一级片免费的| 久久精品国产亚洲av涩爱| a级毛片免费高清观看在线播放| 国产欧美日韩一区二区三区在线 | 精品人妻熟女毛片av久久网站| 美女国产视频在线观看| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 亚洲欧洲精品一区二区精品久久久 | 蜜臀久久99精品久久宅男| 少妇猛男粗大的猛烈进出视频| 午夜免费男女啪啪视频观看| 国产一区二区在线观看av| 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 亚洲精品国产色婷婷电影| 日韩视频在线欧美| 少妇人妻一区二区三区视频| 久久精品久久久久久久性| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花| 免费观看无遮挡的男女| 国产欧美日韩精品一区二区| 日本vs欧美在线观看视频 | 国产片特级美女逼逼视频| 国产av精品麻豆| 国产高清国产精品国产三级| 日本欧美视频一区| 国产精品无大码| 五月天丁香电影| 人妻制服诱惑在线中文字幕| 女人精品久久久久毛片| 国产精品伦人一区二区| 午夜日本视频在线| 午夜老司机福利剧场| 国产白丝娇喘喷水9色精品| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| 自线自在国产av| 国产精品福利在线免费观看| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线| 我要看日韩黄色一级片| 久热这里只有精品99| 精品一区二区免费观看| 97在线人人人人妻| 婷婷色综合大香蕉| 美女视频免费永久观看网站| 22中文网久久字幕| 精品一区二区三区视频在线| 永久网站在线| 18禁在线无遮挡免费观看视频| h日本视频在线播放| 欧美日韩视频高清一区二区三区二| 少妇被粗大的猛进出69影院 | 久久久精品94久久精品| 97在线人人人人妻| 免费播放大片免费观看视频在线观看| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 国产亚洲精品久久久com| 久久久久久久久久人人人人人人| 久久人人爽av亚洲精品天堂| 国产伦在线观看视频一区| 一级毛片电影观看| 久久这里有精品视频免费| 国产精品人妻久久久影院| 免费少妇av软件| 日韩制服骚丝袜av| 伊人久久国产一区二区| 99热国产这里只有精品6| 久久久久久久国产电影| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区国产| 永久网站在线| 中文乱码字字幕精品一区二区三区| 色网站视频免费| 99九九在线精品视频 | 18禁裸乳无遮挡动漫免费视频| 日韩视频在线欧美| 亚洲欧洲日产国产| 蜜桃在线观看..| 国产黄片视频在线免费观看| 五月开心婷婷网| 午夜91福利影院| 久久99一区二区三区| 亚洲欧美一区二区三区国产| 男女边吃奶边做爰视频| 国产日韩欧美亚洲二区| kizo精华| 蜜臀久久99精品久久宅男| 久久久久人妻精品一区果冻| 99久国产av精品国产电影| 中国美白少妇内射xxxbb| 亚洲久久久国产精品| 亚洲综合色惰| 久久午夜福利片| 久久久久久久久久久免费av|