• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Formation Mechanism for the Anomalous Anticyclonic Circulation over Northeast Asia and the Japan Sea in Boreal Winter 1997/98 and the Spring of 1998

    2013-07-28 09:03:58WANGHaiLIUQinyuandZHENGJian
    Journal of Ocean University of China 2013年2期

    WANG Hai, LIU Qinyu*, and ZHENG Jian

    ?

    Formation Mechanism for the Anomalous Anticyclonic Circulation over Northeast Asia and the Japan Sea in Boreal Winter 1997/98 and the Spring of 1998

    WANG Hai, LIU Qinyu, and ZHENG Jian

    ,,,266100,..

    A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal winter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the background of the vertically sheared winter monsoonal flow, anomalous rainfall in the tropical Indo-Western Pacific warm pool excited a wave train towards East Asia in the upper troposphere during boreal winter of 1997/98. The AAC over Northeast Asia and the Japan Sea is part of the wave train of equivalent barotropic structure. The AAC over the Japan Sea persisted from winter to spring and even intensified in spring 1998. The diagnostic calculations show that the vorticity and temperature fluxes by synoptic eddies are an important mechanism for the AAC over the Japan Sea in spring 1998.

    anomalous anticyclonic circulation; Northeast Asia; Japan Sea; wave train; synoptic eddy

    1 Introduction

    El Ni?o-Southern Oscillation (ENSO) is a coupled ocean-atmosphere phenomenon in the tropical Paci?c. ENSO exerts substantial impacts on short term climate variability on the globe. During the El Ni?o (La Ni?a) maturation in winter, corresponding to the Walker circulation anomaly, the diabatic heating anomaly over the central equatorial Pacific can excite the Pacific North American (PNA) pattern (Wallace and Gutzler, 1981) in the Northern Hemisphere and the Pacific South American (PSA) pattern (Robertson and Mechoso, 2003) in the Southern Hemisphere. Besides the atmospheric diabatic heating anomaly over the central equatorial Pacific, other diabatic heating anomalies appear in both the tropical Western Pacific-East Indian Ocean and the tropical Western Indian Ocean respectively, associated with the Walker circulation anomaly in El Ni?o (La Ni?a) year. Whether they also induce some teleconnection pattern from tropical to middle latitudes in atmosphere troposphere still needs further investigation.

    In boreal winter, the Western Pacific (WP) pattern is also a major teleconnection pattern in wintertime lower troposphere (500hPa) and characterized by a meridional dipole of circulation anomalies over the Far East (155?E,60?N) and tropical Western Pacific (155?E, 30?N) (Wallace and Gutzler, 1981). Remote atmospheric responses to ENSO are known to have a considerable projection onto WP pattern in winter (Horel and Wallace, 1981). A crucial process that conveys the impact of El Ni?o on East Asia is an anomalous low-level circulation feature termed Philippine Sea anticyclone (Wang., 1999; Wang., 2000; Lau and Nath, 2000; Wang and Zhang, 2002). Recently,it is demonstrated that the oceanic forcing from the deep tropical eastern Pacific can instigate the Philippine Sea anticyclone at the 850hPa level and rainfall anomaly over East Asia (Lu., 2011).

    A new teleconnection pattern named as Indo-Western Pacific and East Asia pattern (IWPEA pattern) in the upper troposphere emitted from the Indo-Western Pacific toward East Asia in boreal winter has been demonstrated through statistical and numerical experiments (Zheng., 2013). If the teleconnection pattern of the atmosphere anomaly is ‘low-frequency flow’ in the upper troposphere, there is the possibility of synoptic eddy and low- frequency flow interaction (SELF feedback) in middle latitudes, where the synoptic eddy in the upper troposphere is very strong (Lau, 1988; Jin., 2006a, b; Jin, 2010).

    The 1997/98 El Ni?o is the strongest one since 1950. Besides the stronger PNA teleconnection pattern, there is another weaker teleconnection wave train at the 200hPa level (hereafter H200) in East Asia in the winter 1997/98 (Fig.1a); the wave train in East Asia is induced by ano- malous rainfall in tropical Western Pacific (Zheng., 2013). The positive anomaly of the geopotential height in the upper troposphere over Northeast China and the Japan Sea appears in the boreal winter of 1997/98 (Fig.1a). Besides this typical El Ni?o event, for other three El Ni?o winters (1982/83, 1991/92 and 2002/2003), associated with anomalous rainfall in tropical Western Pacific and Indian Ocean, the winter weaker wave train at the H200 still appears in East Asia (Fig.2a). In spring 1998, there is a stronger AAC over the Japan Sea (Fig.1b), but similar AAC cannot be found over the Japan Sea in the spring of 1983, 1992 and 2003 (Fig.2b) which are El Ni?o second years. Why there is stronger AAC over the Japan Sea only in the spring of 1998?

    Fig.1 Anomalous geopotential height at the 200hPa level (contours interval: 30m) and anomalous precipitation (shaded, mmmon-1) in (a) DJF; (b) MAM in 1997/1998. Red dashed line in (a) and (b) denotes the section position in Figs.3(a) and (b).

    Fig.2 The average of anomalous geopotential height at the 200hPa level (contours interval: 30m) and anomalous precipitation (shaded, mmmon-1) in (a) DJF; (b) MAM in 1982/1983, 1991/1992 and 2002/2003.

    According to the analysis and comparison above, we proposed that the formation mechanism of the AAC over the Northeast Asia and the Japan Sea is the winter wave train induced by tropical rainfall anomaly in the winter 1997/98 and the formation mechanism of the AAC over the Japan Sea should be the synoptic scale eddies’ effect on the low-frequency system in the spring of 1998. Besides the heating induced teleconnection pattern, the synoptic eddy may also regulate and intensify the low-frequency teleconnection pattern when the heating source weakened.

    The rest of the paper is organized as follows. Section 2 is a brief description of the data and methods used in this study. In Section 3, the wave train in the upper troposphere will be presented in the winter 1997/98. In Section 4, possible reasons of the AAC formation in the spring of 1998 have been detected. Summary and discussion are given in Section 5.

    2 Data and Methodology

    The atmospheric data used in this study are from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset on a 2.5?×2.5? grid (Kalnay., 1996). The monthly data are used from January 1980 to December 2009. The daily data used from December 1, 1997 to May 31, 1998 are calculated based on the 30 years (from January 1980 to December 2009) long term mean.

    According to Takaya and Nakamura (2001), the wave-activity flux (Eq. (1)) is shown to be parallel to the local three-dimensional group velocity of Rossby waves, and hence to be suited for a snapshot diagnosis of the three-dimensional propagation of wave packets of migratory and stationary eddies on a zonally varying basic flow.,in Eq. (1) represents the monthly mean zonal and meridional wind. P is the pressure normalized by 1000hPa anddenotes the monthly anomalous stream function at the 200hPa level with subscripts,refering to their partial differentials in the zonal and meridional direction.

    To measure the feedback of the synoptic eddies onto low-frequency flow, the eddy-induced vorticity and temperature fluxes are defined as follows (Kug., 2010):

    , (2a)

    3 The AAC in Northeast Asia and the Japan Sea in Winter 1997/98

    In winter 1997/98, there is more rainfall over the central equatorial Pacific and tropical Western Indian Ocean and less over the tropical Eastern Indian Ocean-Western Pacific (Fig.1a), which means that besides the atmospheric positive diabatic heating anomaly over the central equatorial Pacific, there is still a positive diabatic heating anomaly center in the Western Indian Ocean and a negative anomaly center in Eastern Indian Ocean-Western Pacific respectively. Corresponding to the rainfall anomaly in Eastern Indian Ocean-Western Pacific and the Western Indian Ocean, the wave train pattern (teleconnection pattern in H200) emitted from the Indo-Western Pacific toward the northeastern China and the Japan Sea appears in winter. This winter teleconnection pattern is induced by the heating anomaly in Eastern Indian Ocean-Western Pacific, and the heating anomaly over the equatorial central Pacific is not important, which has been proved by the analysis through numerical experiments (Zheng,2013). As background circulation, the vertically sheared East Asian winter monsoon should aid in releasing the baroclinic instability energy and in forming a meridional Rossby wave train due to the energy conversion from the heating-induced baroclinic flow anomalies to the barotropic motions near the heating source (Lee, 2009; Wang, 2010; Zheng., 2013).

    As a part of the winter meridian teleconnection wave train, the positive anomaly of the geopotential height at the 200hPa level over Northeast Asia and the Japan Sea appears in the winter 1997/98. It is obvious that there is a slightly poleward-tilted anomalous vorticity field in the upper troposphere over East Asia (Fig.3a), which is caused by the vertically sheared winter monsoon and the thermal difference between the land and ocean contributing to this baroclinic structure as well (Zheng., 2013). The vertical section of the wave train along the dashed line in Fig.1a (from 0?, 95?E to 60?N, 130?E) shows the structure of the winter wave train is equivalent barotropic (Fig.3a), and the maximum anomaly of this low-frequency flow appears in the upper troposphere (250–300hPa).

    Fig.3 The vertical section of the anomalous vorticity (shaded, ×10-5s-1) and the anomalous geopotential height (contours interval: 15m) along the red dashed line in Fig.1a (from 0?, 95?E to 55?N, 130?E) and Fig.1b (from 0?, 100?E to 60?N, 145?E) during (a) DJF (b) MAM in 1997/1998. The corresponding vectors represent the anomalous wind field with scaling at the bottom right corner.

    Corresponding to this winter meridional wave train with equivalent barotropic low-frequency low, there is a positive anomaly of the geopotential height in H200 over Northeast China and the Japan Sea. The low-frequency flow can be demonstrated through the wave-activity flux (Eq. (1)) in H200 (voctors in Fig.4a), which is parallel to the local group velocity of stationary Rossby wave (Takaya and Nakamura, 2001). Contours in Fig.4a and Fig.4b show the vorticity anomalies at the 200hPa and 850hPa level in winter 1997/98 respectively, where the color shading areas represent the rainfall anomaly, which indicates that this winter teleconnection pattern of the H200 may have a significant influence on the winter rainfall anomaly over East Asia. Similar winter precipitation anomaly pattern indicates that tropical oceanic forcing outside the Ni?o regions can also exert significant influence on East Asian climate based on numerical experiments (Lu., 2011). In the lower troposphere (850hPa) the wave-activity fluxes are necessary for the low level anticyclonic circulation (negative voticity) anomaly in tropical Western North Pacific, which is similarto the previous researches about the El Ni?o effect on lower troposphere, such as those by Wang. (1999), Wang. (2000), Wang (2002) and Zhang and Sumi (2002). While in the upper troposphere, the wave-activity fluxes are emitted from the tropics and pointed to Northeast Asia and the Japan Sea, indicating the baroclinic instability energy conversion would benefit the poleward propagation of the Rossby wave in the upper troposphere.

    Therefore, due to the anomalous rainfall in Indo-Western Pacific warm pool and vertically sheared boreal winter monsoon, there is a wave train (positive-negative-positive geopotential height anomaly) from tropical western Pacific to East Asia, which is corresponding to the AAC over Northeast Asia and the Japan Sea during the boreal winter of 1997/98.

    Fig.4 Horizontal wave-activity flux (vectors) derived by Takaya and Nakamura (1999, 2001), whose scaling is given at the top right corner at the (a) 200hPa and (b) 850hPa levels. Anomalous vorticity (contours) at the (a) 200hPa (solid lines marked from 9 and dashed lines marked from ?3 at 3×10-6s-1 intervals) and (b) 850hPa (solid and dashed lines marked from ±2 at 2×10-6s-1 intervals). The shaded areas represent the anomalous precipitation (mmmon-1) in DJF 1997/1998.

    4 The Strongest AAC over the Japan Sea in the Spring of 1998

    In the spring of 1998, it is found that the winter AAC centered at the 200hPa level moves southeastwards into the Japan Sea and forms a stronger AAC, which is the strongest atmospheric anomaly center in Northern Hemisphere as the PNA pattern has become weaker due to the decay of El Ni?o (Fig.1b). In the next section, the formation mechanism of the stronger AAC over the Japan Sea in the spring of 1998 will be investigated.

    4.1 The Strongest AAC over the Japan Sea in the Spring of 1998

    The maximum positive geopotential height anomaly (>120m in H200) over the whole northern hemisphere with barotropic structure (Fig.3b) appears over the Japan Sea, but there is no clear negative geopotential height anomaly to the south of this positive geopotential height anomaly in spring 1998 (Fig.1b and Fig.3b). Therefore, the stronger AAC over the Japan Sea is not a response to the tropical rainfall anomaly in the spring of 1998. It is also proved by horizontal wave-activity flux at the 200 hPa and 850hPa level in the spring of 1998 respectively (vectors in Figs.5a and 5b), because there is not any evident wave-activity flux from tropical to middle latitudes in the upper or lower troposphere in the spring of 1998.

    In order to probe the formation mechanism of the stronger AAC over the Japan Sea, local atmospheric processes that may influence the variation of vorticity needs further investigation. Based on the vorticity equation (Eq. (3)), the factors that decide the variation of the vorticity have been derived by an analysis of the order of magnitude and approximation using the small disturbance analysis. By calculating the linearized right hand side terms of Eq. (3), it shows that the first two terms known as advection and the forth term known as divergence/convergence dominate the largest two order of all the factors that may influence the variation of the vorticity. The negative vorticity advection and the divergence of vorticity may be the key factors that lead to the intensification of the AAC over Japan Sea in the spring of 1998.

    . (3)

    4.2 Role of the Synoptic Eddy

    In order to testify the relationship between synoptic eddies and the AAC, we first checked the anomalous daily H200 from December 1, 1997 to May 31, 1998. During the spring (March 1, 1998 to May 31, 1998), there are about 64 days when the positive anomalous geopotential height over the Japan Sea appears, which is far more than the 38 days in DJF. It is found that during the MAM 1998, there are about 15 anomalous synoptic anticyclonic eddies with the period of 2–7 days over the Japan Sea. Therefore, the effect of the synoptic eddies on the low-frequency flow has to be taken into consideration in understanding the formation mechanism of the AAC over the Japan Sea during the spring of 1998.

    The sum of the zonal and meridional eddy-induced vorticity flux defined in Eq. (2a) at the 200hPa level is shown in Fig.6a during MAM 1998. It is found that there is a negative anomalous center of the eddy-induced vorticity flux (shading in Fig.6a) locates in the AAC center (contours in Fig.6a) at the 200hPa level over the Japan Sea, which illustrates the synoptic eddies providing the negative vorticity flux that helps to maintain and even intensify the AAC over the Japan Sea by generating the anomalous negative vorticity. Besides, we calculated the divergence/convergence of the eddy vorticity flux as shown in Fig.6c. It shows a divergence to the upstream of the AAC center and a convergence to its downstream. This is coherent to the local weather system as the synop-tic eddy is moving from the west to the east and leads to a convergence of the negative eddy-induced vorticity flux over the Japan Sea near the AAC center. Hence we have the confidence that the geopotential height structure in Fig.3 is maintained by the anomalous synoptic scale eddies.

    The synoptic eddies can also feedback to low-frequency flow through eddy-induced temperature flux (Lau and Nath, 1991). Fig.6b shows the sum of zonal and meridional anomalous eddy-induced temperature flux defined in Eq. (2b). There is a positive eddy-induced temperature flux center to the south of the positive geopotential height anomaly. This kind of warm pattern will benefit the strengthening of the local warm high in the upper troposphere compared with that in winter. Thus, the eddy-induced temperature flux also favors reinforcing the positive geopotential height over the Japan Sea in the spring of 1998.

    Based on the analysis above, we could understand that the effect of synoptic eddy-induced vorticity and temperature flux could be the dominant formation mechanism of the stronger AAC over the Japan Sea in the spring of 1998. Because the synoptic eddy is stochastic and the rainfall anomaly is weak in intensity over Indo-Western Pacific, the stronger AAC cannot be found in spring of other El Ni?o second year.

    5 Summary

    Based on the observational data, it is found that there is Anomalous Anticyclonic Circulation (AAC) over Northeast Asia and the Japan Sea in boreal winter 1997/98 and a strongest AAC over the Japan Sea in the spring of 1998. The AAC over Northeast Asia and the Japan Sea is induced by the anomalous rainfall over tropical Indo-Western Pacific in winter 1997/98 during the peak phase of El Ni?o event. The effect of synoptic scale eddy-induced instability at the mid-latitude was finally applied in explaining the intensification of the AAC over the Japan Sea from the winter of 1997/98 to the following spring. The negative vorticity flux and positive temperature flux induced by synoptic eddy jointly help to strengthen the AAC in the upper troposphere.

    As the strongest event up till today, the El Ni?o in 1997/98 contributes the most in statistical analysis due to its historical intensity. In the present study, we just take this case as a typical example to understand the formation mechanism of the anomalous atmospheric circulation from winter to spring. With this example, we can understand why there is AAC over the Japan Sea only in the spring of 1998 and why there is no stronger AAC in the spring of other El Ni?o second year due to the weak rainfall anomaly over Indo-Western Pacific and the stochastic synoptic eddy. The specific role of the synoptic scale eddies in regulating the low-frequency system in the middle latitudes still needs further investigation.

    Acknowledgements

    The authors thank Prof. Feifei Jin for sharing his constructive idea and Prof. Shang-ping Xie, Dr. Chunzai Wang, Dr. Jian Lu for their comments and suggestions. This work is supported by the Ministry of Science and Technology of China (National Basic Research Program of China (Grant No. 2012CB955602)), the National Key Program for Developing Basic Science (Grant No. 2010 CB428904), and the Natural Science Foundation of China (Grant Nos. 40830106, 40921004, 41176006).

    Horel, J. D., and Wallace, J. M., 1981. Planetary-scale atmospheric phenomena associated with the Southern Oscillation., 109: 813-829.

    Jin, F. F., 2010. Eddy-induced instability for low-frequency variability., 67: 1947- 1964.

    Jin, F. F., Pan, L. L., and Watanabe, M., 2006a. Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure., 63: 1677- 1694.

    Jin, F. F., Pan, L. L., and Watanabe, M., 2006b. Dynamics of synoptic eddy and low-frequency flow interaction. Part II: a theory for low-frequency modes., 63: 1695-1708.

    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D., 1996. The NCEP/ NCAR 40-year reanalysis project., 77 (3): 437-472.

    Kug, J. S., Jin, F. F., Park, J., Ren, H. L., and Kang, I. S., 2010. A general rule for synoptic-eddy feedback onto low-frequency flow., 35, 1011-1026.

    Lau, N. C., 1988. Variability of the observed midlatitude stormtracks in relation to low-frequency changes in the circulation pattern., 45: 2718-2743

    Lau, N. C., and Nath, M. J., 1991. Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks., 48: 2589-2613.

    Lau, N. C., and Nath, M. J., 2000. Impact of ENSO on the vari-ability of the Asian-Australian monsoons as simulated in GCM experiments., 13: 4287-4309.

    Lee, S. K., Wang, C., and Mapes, B. E., 2009. A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies., 22: 272-284.

    Lu, J., Zhang, M., Cash, B., and Li, S., 2011. Oceanic forcing for the East Asian rainfall in pace-making AGCM experiments., 38 (L12702), DOI: 20. 1029/2011GL047814.

    Robertson, A. W., and Mechoso, C. R., 2003. Circulation regimes and low-frequency oscillations in the South Pacific sector., 131: 1566-1576.

    Takaya, K., and Nakamura, H., 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow., 58: 608-627.

    Wallace, J. M., and Gutzler, D. S., 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter., 109: 784-812.

    Wang, B., and Zhang, Q., 2002. Pacific-East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Ni?o development?, 15: 1643-1658.

    Wang, B., Wu, R., and Fu, X., 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?, 13: 1517-1536.

    Wang, C., 2002. Atmospheric circulation cells associated with the El Ni?o-Southern Oscillation., 15: 399-419.

    Wang, C., Lee, S. K., and Mechoso, C. R., 2010. Inter-hemis- pheric influence of the Atlantic warm pool on the southeastern Pacific., 23: 404-418.

    Wang, C., Weisberg, R. H., and Virmani, J., 1999. Western Pacific interannual variability associated with the El Ni?o- Southern Oscillation., 104: 5131-5149.

    Zhang, R., and Sumi, A., 2002. Moisture circulation over East Asia during El Ni?o episode in northern winter, spring and autumn., 16: 229-241.

    Zheng, J., Liu,Q., Wang,C., and Zheng,X. T., 2013. Impact of heating anomalies associated with rainfall variations over the Indo-Western Pacific on asian atmospheric circulation in winter., DOI: 10.1007/s00382-012-1478-x.

    (Edited by Xie Jun)

    10.1007/s11802-013-2233-6

    ISSN 1672-5182, 2013 12 (2): 312-317

    . Tel: 0086-532-66782556 E-mail:liuqy@ouc.edu.cn

    (December 3, 2012; revised March 26, 2013; accepted April 1, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    国产极品天堂在线| 丝瓜视频免费看黄片| 日韩电影二区| 欧美日韩一区二区视频在线观看视频在线| 观看av在线不卡| 国产日韩一区二区三区精品不卡| av女优亚洲男人天堂| 免费黄频网站在线观看国产| videosex国产| 亚洲国产欧美在线一区| 免费观看性生交大片5| 一边摸一边做爽爽视频免费| 男女午夜视频在线观看| 大香蕉久久网| av免费观看日本| 久久影院123| 午夜91福利影院| 亚洲国产成人一精品久久久| 国产精品二区激情视频| 母亲3免费完整高清在线观看 | 婷婷色av中文字幕| kizo精华| 一级毛片黄色毛片免费观看视频| 日韩中字成人| 两个人看的免费小视频| 一级黄片播放器| 考比视频在线观看| 边亲边吃奶的免费视频| 一本色道久久久久久精品综合| 男男h啪啪无遮挡| 久久精品久久久久久久性| 80岁老熟妇乱子伦牲交| 大话2 男鬼变身卡| 成年女人毛片免费观看观看9 | 亚洲国产av新网站| 在线观看免费高清a一片| 老汉色∧v一级毛片| 黄片小视频在线播放| 亚洲精品视频女| 有码 亚洲区| 久久久久网色| 青春草视频在线免费观看| 肉色欧美久久久久久久蜜桃| 中国三级夫妇交换| 精品久久久精品久久久| 男女午夜视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 成人国语在线视频| 午夜福利影视在线免费观看| 亚洲少妇的诱惑av| 欧美最新免费一区二区三区| 精品国产一区二区久久| 91精品国产国语对白视频| 香蕉精品网在线| 亚洲久久久国产精品| 亚洲精品日韩在线中文字幕| 久久ye,这里只有精品| 97人妻天天添夜夜摸| 亚洲三级黄色毛片| 狠狠婷婷综合久久久久久88av| 精品一区二区免费观看| 色播在线永久视频| 国产乱人偷精品视频| 亚洲成色77777| 日本wwww免费看| 91精品伊人久久大香线蕉| 久久久久久人妻| 女人久久www免费人成看片| 中文字幕人妻熟女乱码| 高清不卡的av网站| 999久久久国产精品视频| 黄色配什么色好看| 最新中文字幕久久久久| 午夜日韩欧美国产| 97在线人人人人妻| 你懂的网址亚洲精品在线观看| 十分钟在线观看高清视频www| 午夜老司机福利剧场| 国产在线一区二区三区精| 人人妻人人澡人人爽人人夜夜| 黄频高清免费视频| 精品久久久久久电影网| av天堂久久9| 一区二区三区乱码不卡18| 熟妇人妻不卡中文字幕| 免费高清在线观看日韩| 日日撸夜夜添| 超碰成人久久| 涩涩av久久男人的天堂| 免费观看在线日韩| 熟女少妇亚洲综合色aaa.| 最近2019中文字幕mv第一页| 国产又色又爽无遮挡免| 一区二区三区精品91| 久久人人爽av亚洲精品天堂| 香蕉精品网在线| 日韩熟女老妇一区二区性免费视频| 搡女人真爽免费视频火全软件| 精品少妇内射三级| 精品亚洲成a人片在线观看| 国产av码专区亚洲av| 日韩大片免费观看网站| 国产老妇伦熟女老妇高清| 久久婷婷青草| 久久免费观看电影| 久久人人爽av亚洲精品天堂| 少妇精品久久久久久久| 永久免费av网站大全| 免费久久久久久久精品成人欧美视频| 少妇人妻精品综合一区二区| 黄片小视频在线播放| 日本午夜av视频| 在线观看免费高清a一片| av在线app专区| 肉色欧美久久久久久久蜜桃| √禁漫天堂资源中文www| 侵犯人妻中文字幕一二三四区| 亚洲视频免费观看视频| 青草久久国产| 亚洲精品av麻豆狂野| 韩国精品一区二区三区| 国产成人精品久久久久久| 亚洲内射少妇av| 秋霞在线观看毛片| 精品人妻熟女毛片av久久网站| 欧美日韩精品成人综合77777| 99久久综合免费| 日本91视频免费播放| 大话2 男鬼变身卡| 青春草亚洲视频在线观看| 国产无遮挡羞羞视频在线观看| 欧美日本中文国产一区发布| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 久久久久久久亚洲中文字幕| 久久免费观看电影| 最近中文字幕高清免费大全6| 女人被躁到高潮嗷嗷叫费观| 久久女婷五月综合色啪小说| 日韩一卡2卡3卡4卡2021年| 激情视频va一区二区三区| 成年人免费黄色播放视频| 亚洲国产av新网站| 丝袜脚勾引网站| 18禁国产床啪视频网站| 日韩精品有码人妻一区| 夜夜骑夜夜射夜夜干| 巨乳人妻的诱惑在线观看| 这个男人来自地球电影免费观看 | 国产一级毛片在线| 精品国产一区二区三区久久久樱花| 少妇的丰满在线观看| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 国产极品天堂在线| 在线观看免费高清a一片| 波多野结衣av一区二区av| av网站免费在线观看视频| 久久热在线av| 九九爱精品视频在线观看| 日本-黄色视频高清免费观看| 男女国产视频网站| 国产精品久久久久久久久免| 狠狠婷婷综合久久久久久88av| 久久久精品94久久精品| 晚上一个人看的免费电影| 看十八女毛片水多多多| 中文精品一卡2卡3卡4更新| 午夜激情av网站| 国产不卡av网站在线观看| 中文字幕人妻熟女乱码| 老司机影院成人| 国产伦理片在线播放av一区| 久久这里只有精品19| 国产精品熟女久久久久浪| 免费看不卡的av| 久久久久精品久久久久真实原创| 亚洲精品日本国产第一区| 亚洲男人天堂网一区| 精品国产一区二区久久| 亚洲欧美一区二区三区国产| 国产在线视频一区二区| 18禁裸乳无遮挡动漫免费视频| 亚洲五月色婷婷综合| 十八禁网站网址无遮挡| 日韩一卡2卡3卡4卡2021年| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区| 美女国产视频在线观看| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| av免费在线看不卡| 人妻系列 视频| videosex国产| 丰满乱子伦码专区| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠久久av| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 精品福利永久在线观看| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 制服诱惑二区| 日韩免费高清中文字幕av| 熟女av电影| 日韩一卡2卡3卡4卡2021年| 久久精品夜色国产| 女人久久www免费人成看片| 国产激情久久老熟女| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人 | videosex国产| 欧美国产精品一级二级三级| 亚洲伊人色综图| 亚洲精品aⅴ在线观看| 天美传媒精品一区二区| 亚洲国产毛片av蜜桃av| 亚洲美女黄色视频免费看| 人妻人人澡人人爽人人| 热99久久久久精品小说推荐| 性少妇av在线| 免费看av在线观看网站| 免费观看在线日韩| 午夜免费鲁丝| 男人添女人高潮全过程视频| 看非洲黑人一级黄片| 久久久久精品性色| 国产白丝娇喘喷水9色精品| 久久久精品94久久精品| 国产日韩欧美亚洲二区| 青草久久国产| 国产精品久久久久久精品电影小说| 美女高潮到喷水免费观看| 欧美国产精品一级二级三级| 涩涩av久久男人的天堂| 亚洲色图 男人天堂 中文字幕| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放| 欧美日韩亚洲国产一区二区在线观看 | 青草久久国产| 久久久久网色| 女性生殖器流出的白浆| 丰满乱子伦码专区| tube8黄色片| 免费观看a级毛片全部| 五月天丁香电影| 岛国毛片在线播放| 国产亚洲最大av| av在线app专区| 制服诱惑二区| 最近的中文字幕免费完整| 久久女婷五月综合色啪小说| 久久综合国产亚洲精品| 美女午夜性视频免费| 日韩伦理黄色片| 国产黄色视频一区二区在线观看| 人体艺术视频欧美日本| 免费观看无遮挡的男女| 18+在线观看网站| 中国三级夫妇交换| 午夜精品国产一区二区电影| av在线观看视频网站免费| 国产在视频线精品| 黄色一级大片看看| 在线观看国产h片| 国产色婷婷99| 精品一区二区免费观看| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| av国产久精品久网站免费入址| 欧美人与善性xxx| 午夜激情久久久久久久| 韩国精品一区二区三区| 成人黄色视频免费在线看| 欧美日韩av久久| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 亚洲第一av免费看| 国产一区二区在线观看av| 日韩中文字幕欧美一区二区 | 国产精品一区二区在线观看99| 亚洲精品国产一区二区精华液| 乱人伦中国视频| 两性夫妻黄色片| 久久久久网色| av.在线天堂| 黄色毛片三级朝国网站| 亚洲,欧美精品.| 亚洲av福利一区| 伊人久久国产一区二区| av福利片在线| 亚洲av综合色区一区| 纵有疾风起免费观看全集完整版| 99久久综合免费| 91精品三级在线观看| 少妇人妻 视频| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 人妻人人澡人人爽人人| 亚洲经典国产精华液单| av国产精品久久久久影院| 国产精品国产av在线观看| 亚洲一级一片aⅴ在线观看| 天天躁夜夜躁狠狠躁躁| 欧美人与性动交α欧美精品济南到 | 亚洲国产毛片av蜜桃av| 美女国产视频在线观看| www.自偷自拍.com| 欧美日韩精品成人综合77777| 国产精品国产三级国产专区5o| 男女下面插进去视频免费观看| 国语对白做爰xxxⅹ性视频网站| 国产成人精品福利久久| 天美传媒精品一区二区| 深夜精品福利| 国产一区二区 视频在线| 久久婷婷青草| 熟女少妇亚洲综合色aaa.| 丝袜喷水一区| 性少妇av在线| 国产在线一区二区三区精| 最黄视频免费看| 国产亚洲一区二区精品| 这个男人来自地球电影免费观看 | 人妻 亚洲 视频| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩一级在线毛片| 国产精品久久久久久久久免| 亚洲天堂av无毛| 久久久精品区二区三区| 国产精品国产三级专区第一集| 九色亚洲精品在线播放| 伊人亚洲综合成人网| 色婷婷久久久亚洲欧美| 亚洲av日韩在线播放| 一级毛片我不卡| 亚洲人成77777在线视频| av在线播放精品| 99re6热这里在线精品视频| 91久久精品国产一区二区三区| 亚洲三级黄色毛片| 大片电影免费在线观看免费| 亚洲国产看品久久| 高清av免费在线| 国产精品久久久av美女十八| 一本—道久久a久久精品蜜桃钙片| 国产在线一区二区三区精| 人人妻人人澡人人看| 999精品在线视频| 在线观看免费日韩欧美大片| 99热全是精品| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 日韩av不卡免费在线播放| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| 亚洲精品日本国产第一区| 久久精品国产亚洲av高清一级| 性色avwww在线观看| 亚洲成色77777| 亚洲成人手机| 精品国产一区二区三区久久久樱花| 精品卡一卡二卡四卡免费| 看十八女毛片水多多多| videossex国产| 久久久国产精品麻豆| 国产精品女同一区二区软件| 国产毛片在线视频| 天堂8中文在线网| 人妻一区二区av| 丰满迷人的少妇在线观看| 熟女av电影| 成人漫画全彩无遮挡| 免费看不卡的av| 国产精品一区二区在线不卡| 国产精品不卡视频一区二区| 黑人欧美特级aaaaaa片| 伦精品一区二区三区| 久久影院123| 尾随美女入室| 黄色怎么调成土黄色| 欧美+日韩+精品| 久久热在线av| 久久鲁丝午夜福利片| 国精品久久久久久国模美| 亚洲在久久综合| 丰满迷人的少妇在线观看| 国产成人一区二区在线| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 久久97久久精品| 国产精品.久久久| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| 欧美激情极品国产一区二区三区| 91精品国产国语对白视频| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 亚洲国产色片| 亚洲av中文av极速乱| 一区二区三区激情视频| av免费观看日本| 免费黄网站久久成人精品| 精品一区二区三区四区五区乱码 | 亚洲欧美清纯卡通| 大话2 男鬼变身卡| 少妇 在线观看| 久久99蜜桃精品久久| 久久久精品区二区三区| 国产欧美日韩综合在线一区二区| 涩涩av久久男人的天堂| 欧美日韩亚洲国产一区二区在线观看 | 国产高清国产精品国产三级| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜| 一级毛片我不卡| 亚洲国产精品一区二区三区在线| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 国产麻豆69| 日日啪夜夜爽| 国产男人的电影天堂91| 18+在线观看网站| 观看美女的网站| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| 国产精品免费视频内射| 两性夫妻黄色片| 亚洲精品国产av蜜桃| av片东京热男人的天堂| 亚洲精品久久成人aⅴ小说| 制服人妻中文乱码| 日本黄色日本黄色录像| 精品国产国语对白av| 亚洲欧美一区二区三区黑人 | 国产 一区精品| 9热在线视频观看99| 中文字幕人妻丝袜制服| 少妇人妻精品综合一区二区| 两性夫妻黄色片| 久久久久久人妻| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆| 欧美bdsm另类| 国产欧美日韩一区二区三区在线| 最近最新中文字幕免费大全7| 天天躁夜夜躁狠狠躁躁| 少妇被粗大猛烈的视频| 黑人巨大精品欧美一区二区蜜桃| 国产男人的电影天堂91| 尾随美女入室| 色播在线永久视频| 人成视频在线观看免费观看| 日韩中文字幕欧美一区二区 | 国产精品国产三级专区第一集| 黄色 视频免费看| 哪个播放器可以免费观看大片| 精品99又大又爽又粗少妇毛片| 色吧在线观看| 午夜福利一区二区在线看| 精品第一国产精品| 日韩熟女老妇一区二区性免费视频| 国产在视频线精品| 亚洲av国产av综合av卡| 在线亚洲精品国产二区图片欧美| 国产97色在线日韩免费| 久久精品aⅴ一区二区三区四区 | 18+在线观看网站| 一区二区三区四区激情视频| 熟女电影av网| 久久人人爽人人片av| 国产毛片在线视频| 国产免费一区二区三区四区乱码| 亚洲精品aⅴ在线观看| 久久久精品区二区三区| 极品人妻少妇av视频| 久久婷婷青草| 久久青草综合色| 亚洲成人av在线免费| 欧美日韩精品网址| 中文字幕人妻熟女乱码| 国产日韩欧美在线精品| 人人澡人人妻人| 波野结衣二区三区在线| 九色亚洲精品在线播放| 国产欧美日韩综合在线一区二区| 欧美在线黄色| 黄色怎么调成土黄色| 国产有黄有色有爽视频| 国产乱来视频区| 99热国产这里只有精品6| 亚洲国产毛片av蜜桃av| 国产一区二区 视频在线| 亚洲av电影在线进入| 黄色视频在线播放观看不卡| 欧美日韩一级在线毛片| 亚洲三级黄色毛片| 免费观看性生交大片5| 肉色欧美久久久久久久蜜桃| 国产精品一二三区在线看| 国产一区二区在线观看av| 日韩一区二区视频免费看| 欧美日韩视频高清一区二区三区二| 午夜福利在线免费观看网站| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| av在线老鸭窝| 久久影院123| 黑丝袜美女国产一区| 久久精品夜色国产| 日本wwww免费看| 人妻 亚洲 视频| 卡戴珊不雅视频在线播放| 寂寞人妻少妇视频99o| 青春草国产在线视频| 国产麻豆69| 80岁老熟妇乱子伦牲交| 亚洲成人手机| 亚洲精品视频女| av线在线观看网站| 一级毛片电影观看| 久久女婷五月综合色啪小说| 一二三四在线观看免费中文在| 日韩精品有码人妻一区| 人妻 亚洲 视频| 国产成人a∨麻豆精品| 国产成人精品无人区| 国产无遮挡羞羞视频在线观看| 成人国语在线视频| 亚洲,欧美,日韩| 美国免费a级毛片| 免费人妻精品一区二区三区视频| 在线观看人妻少妇| 在线观看美女被高潮喷水网站| 熟女电影av网| 亚洲精品在线美女| 久久久久国产一级毛片高清牌| 中文字幕人妻丝袜一区二区 | av在线老鸭窝| 午夜免费鲁丝| 男女下面插进去视频免费观看| 晚上一个人看的免费电影| av网站在线播放免费| 久久精品国产亚洲av涩爱| 色婷婷久久久亚洲欧美| 欧美日韩一级在线毛片| 久久精品aⅴ一区二区三区四区 | 99re6热这里在线精品视频| 2021少妇久久久久久久久久久| 91国产中文字幕| 日本91视频免费播放| 国产成人av激情在线播放| 肉色欧美久久久久久久蜜桃| 蜜桃国产av成人99| 一边亲一边摸免费视频| 国产在线免费精品| 国产成人aa在线观看| 菩萨蛮人人尽说江南好唐韦庄| 赤兔流量卡办理| 日韩欧美精品免费久久| 久久99蜜桃精品久久| 午夜影院在线不卡| 免费观看性生交大片5| 成人毛片a级毛片在线播放| 在线亚洲精品国产二区图片欧美| 夫妻午夜视频| 免费高清在线观看日韩| 久久久精品区二区三区| 中文精品一卡2卡3卡4更新| av有码第一页| 侵犯人妻中文字幕一二三四区| 女人精品久久久久毛片| 99国产精品免费福利视频| 亚洲av免费高清在线观看| 欧美bdsm另类| 国产成人午夜福利电影在线观看| 婷婷色综合www| 美女主播在线视频| 一区二区日韩欧美中文字幕| av卡一久久| 婷婷色麻豆天堂久久| 国产亚洲av片在线观看秒播厂| 亚洲情色 制服丝袜| 满18在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 成人漫画全彩无遮挡| 在线看a的网站| 欧美成人午夜免费资源| 美女xxoo啪啪120秒动态图| 国产免费福利视频在线观看| 久久久久久人妻| 亚洲av电影在线观看一区二区三区| 一级毛片黄色毛片免费观看视频| 欧美 日韩 精品 国产| 一级毛片电影观看| 日本免费在线观看一区| 午夜精品国产一区二区电影| 欧美精品av麻豆av| 亚洲欧美一区二区三区黑人 | 国产亚洲欧美精品永久| 伦理电影大哥的女人| 日韩中文字幕欧美一区二区 | 亚洲伊人久久精品综合| 国产毛片在线视频| 亚洲国产精品成人久久小说| 国产麻豆69| 亚洲在久久综合| 国产精品免费视频内射| 少妇的丰满在线观看|