• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetric Response of the South China Sea SST to El Ni?o and La Ni?a

    2013-07-28 09:03:22HUANGZhuo1DUYan1WUYanling1andXUHaiming3
    Journal of Ocean University of China 2013年2期

    HUANG Zhuo1), 2), 3), DU Yan1), *, WU Yanling1), and XU Haiming3)

    ?

    Asymmetric Response of the South China Sea SST to El Ni?o and La Ni?a

    HUANG Zhuo, DU Yan1), , WU Yanling, and XU Haiming

    1),,,510301,2),530022,3),,210044,

    The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with El Ni?o/La Ni?a (EN/LN) using monthly products from ICOADS. The SCS SST bears two peaks associated with EN/LN and shows the asymmetric features. Coinciding with the mature phase of EN/LN, the first SST warming/cooling peaks in December(0)–February(1) (DJF(1)) and centers in the southern part. The major difference is in the amplitude associated with the strength of EN/LN. However, the SCS SST anomaly shows distinct difference after the mature phase of EN/LN. The EN SST warming develops a mid-summer peak in June–August(1) (JJA(1)) and persists up to September–October(1), with the same amplitude of the first warming peak. Whereas the LN SST cooling peaks in May(1), it decays slowly until the end of the year, with amplitude much weaker. Comparing with SST and atmospheric circulations, the weak response and early termination of the second cooling is due to the failure of the cyclonic wind anomalies to develop in the northwest Pacific during JJA(1).

    SST; South China Sea (SCS); El Ni?o/La Ni?a; asymmetric responses; interannual variability

    1 Introduction

    ElNi?o-SouthOscillation(ENSO)isthedominantmode of interannual variability in the tropical region and induces a series of global extreme climate events. When the warming/cooling phase of ENSO occurs, the equatorialeastern Pacific SST turns warmer/cooler, with lower/higher pressure and weaker/stronger trade winds. However, the El Ni?o (EN) and La Ni?a (LN) events are not mirror images. The studied of ENSO identifies the asymmetry in amplitude and the phase evolution. EN is often stronger than LN, but the latter persists longer (Jin, 2003; An and Jin, 2004; McPhaden and Zhang, 2009). The nonlinear dynamic heating is regarded as the key to intensify EN but weaken LN (Jin, 2003; An and Jin, 2004; Dong, 2005).

    ENSO has a remarkable impact on the South China Sea (SCS) (Xie, 2003; Liu, 2004; Wang, 2006). During the mature phase of EN/LN, the East Asian winter monsoon becomes weaker/stronger. During the summer following EN/LN, the SCS monsoon is usually weaker/stronger (Chen, 2002). ENSO affects the onset of the SCS summer monsoon, which occurs later/earlier in the decay year of EN/LN (Wu and Wang, 2000; Lau and Nath, 2009; Zhou, 2008). The SCS sea surface temperatures (SSTs) have dramatically changes, with two warming peaks in the winter of the EN developing year and in the following summer (Wang, 2006; Du, 2009), such as the warming event in 1998 (Wang, 2002). Interesting questions are how the SCS acts in the cooling event and whether there are important diffenrences between the cooling event and the warming event.

    This study addresses the asymmetric effect of ENSO on the SCS SST. A major asymmetry is found in the second warming/cooling, both in phase and amplitude. Our analysis shows that the difference in the response of atmospheric circulation is likely a major cause.

    2 Data and Methods

    We use the monthly products from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) provided by NOAA on a 1? latitude×1? longitude grid for the period from January 1979 to December 2006. Since we focus on the interannual variability associated with ENSO, monthly anomalies are calculated relative to the climatology. The linear trend over this period is removed and the data is filtered for 4–84 months band-passing. The Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) is used to obtain the Ni?o3.4 index, averaged over (120?W–170?W, 5?N–5?S). The Simple Ocean Data Assimilation (SODA, version 2.1.6) products are applied for exploring the SCS upper ocean circulation. A SCS transection with 22 grids at different latitudes is selected according to the availability of the ICOADS data. Considering that the interannual variability of the ocean dynamic process mainly occurs near the boundary of the SCS (Xie, 2003; Liu, 2004), the transection is selected as close to the South Vietnam coast as possible (Fig.1).

    Fig.1 Distribution of ICOADS data and selected grids (closed circle) in SCS, shaded color showing the percentage of observation available (%).

    Considering that the ICOADS dataset only provides latent heat parameterQ, the bulk formulas for latent heat flux (LHF) can be expressed as

    ,

    whereρis the surface air density,Lthe latent heat of vaporization,Cthe transfer coefficient,the 10m wind speed, RH the relative humidity,qthe saturation specific humidity at the standard level,qthe saturation specific humidity at sea surface following the Clausius-Clapeyron equation,the gas constant for dry air,Rthe gas constant for water air,the pressure at sea surface,the relative humidity,Tthe surface temperature,the saturation vapor pressure at 273.16K, andthe constant. LHF can be divided into two parts, seasonal cycleand perturbation. The latter consists of the distinct atmospheric forcing and the oceanic response to the SST dependence on evaporation. The oceanic response may be cast as a Newtonian cooling term by linearizing the above bulk formula. Thus the LHF variability caused by the atmospheric forcing (AtF) is

    which is mostly due to the wind speed, relative humidity, and air-sea temperature difference. Similar latent heat flux decomposition methods have been successfully used by many studies to study the SST changes caused by the atmospheric forcing (, de Szoeke, 2007; Du, 2009; Xie, 2010).

    ENSO tends to be phase-locked to the seasonal cycle and its mature phase usually occurs in the boreal winter November-December-January (NDJ) (Trenberth, 1997). By taking 0.5℃ as the threshold of Ni?o3.4 NDJ index, eight warm events and nine cold events are revealed (Fig.2). The ENSO developing year is marked as year ‘(0)’, and the ENSO decaying year as ‘(1)’. Previous studies found that the SCS SST warms up twice, one in the mature phase of EN and the other in the following summer (Wang, 2006; Huang, 2009). With defining a new ‘year’ from October to September, the annual mean SST averaged along the transection is calculated from 1979 to 2006 (Fig.2). The figure clearly shows the SCS warming and cooling during the EN and LN events, respectively. Considering the impact of monsoon on the SST, the annual mean of wind speed anomalies is superimposed. The anomalous wind speed shows a negative relationship with SST, with a correlation coefficient of ?0.84. The positive SST anomalies are accompanied by the negative wind anomalies, following the wind-evaporation-SST feedback (Xie and Philander, 1994).

    Fig.2 Annual mean (averaged from October to September) of SCS SSTa (dark bar, unit: ℃) and wind speed anomaly (light bar, unit: ms-1). Ni?o3.4 NDJ index (black line, detrended and divided by 4) is superimposed.

    3 Results

    3.1 General Feature

    Considering the Ni?o3.4 index and local SST response in the SCS, we choose four significant EN/LN years for the composite analysis. The cases with weaker SST variations in the SCS during the ENSO have been neglected. Years 1982/1983, 1994/1995, 1997/1998, and 2002/2003 are selected for EN events and years 1988/1989, 1995/1996, 1999/2000, and 2005/2006 selected for LN. The effect of ENSO intensities are removed by dividing the each Ni?o3.4 NDJ index and multiplying its standard deviation. As shown in Fig.3, the SCS SSTa has double peaks in the mature and decay phases of ENSO.

    The first SCS SST warming begins in October(0), and peaks in January(1). After the decay of EN in June(1), the SCS warms again with a peak in July–August(1) having an amplitude comparable to the first warming, and even stronger. The first cooling is the same as the first warming with comparable phase and amplitude. Without removing the effect of EN intensity, the first warming reaches 0.8℃, much stronger than the first cooling. With the fact of most EN being stronger than LN, the SCS SST variation depends on the ENSO intensity. The asymmetric response mostly appears in the second cooling, which peaks in May(1) with small amplitude. Besides, the variance of warming is smaller than that of cooling, implying more robust effect associated with EN.

    Fig.3 SSTa composite in the SCS (black line, from 3?N to 20?N, unit: ℃), standard deviation (error bar, unit:℃) and the normalized Ni?o3.4 index composite (grey line).

    3.2 First Warming/Cooling

    Month-latitude distributions of composites of SST, wind, cloudiness, and AtF are shown in Fig.4. In EN developing stage, the atmospheric adjustment, such as the off-equatorial anomalous anticyclone over the western North Pacific (WNPAC) (Wang, 2000; Wu, 2003; Wu, 2010a), slows down the SCS winter monsoon (Fig.4a) and suppresses the loss of latent heat (Fig.4b). The cloud cover is reduced to the minimum in Novem-ber(0) (Fig.4b), increasing the solar radiation. Those processes favor the SST warming. The SCS warming peaks one month lagging behind the cloudiness, for the reaction of the ocean to the atmosphere is usually slow. During LN, the above anomalies are opposite. The cloudiness increases momentously in December(0), benefiting the reduction of the radiation and the SCS cooling. The winds strengthen in November(0)–February(1). Both the increase in cloudi- ness and the intensitification in the winter monsoon over the SCS contribute to the decrease in SST.

    Fig.4 Composite of SCS atmospheric factors along north-south section. a. SCS SSTa (shaded, unit: ℃) and u, v components (vector, unit: ms-1, excluding wind speed<0.5) during EN; b. AtF (shaded, unit: (?102) Wm-2) and cloudiness (contour, unit: okta); c and d are the same as a and b but during LN, respectively.

    Fig.4 shows that the SCS SST variation is smaller in the north than in the south, with large anomaly in the region south of Vietnam. The large SST variation in the south relates to the advection effect by the west boundary circulation, as demonstrated in the study by Liu(2004). Weakened/enhanced west boundary circulation inhabits the cold advection from the north during EN/LN, favoring the SST warming/cooling (Figs.5 and 6, Du and Qu, 2010). The additional dynamical effect, in addition to wind/evaporation and cloud/solar radiation, explains why SST variance maximum appears in the southern SCS in winter.

    3.3 Second Warming/Cooling

    During and after the decay of EN/LN, SCS SST bears a second warming/cooling. Regression and correlation analysis indicate that the change relates to indirect influence of ENSO through the capacitor effect of the Tropical Indian Ocean (Xie, 2009). Our composite analysis (Figs.4 and 7) confirms this point. Previous studies revealed the second warming related with the basin warming in the Indian Ocean (Xie, 2009; Du, 2009, 2011; Wu, 2010a; Wu and Yeh, 2010; Zheng, 2011). The change of cloud cover contributes to the increase/decrease of solar radiation in EN/LN. Weakened/enhanced easterlies decrease/increase the evaporation and favor the increase/decrease of SST anomaly, especially in the southern SCS. The change of SCS monsoon not only contributes to the change of evaporation and thus AtF, but also causes the change of ocean circulation and upwelling (Fig.6), which favor increasing/decreasing the SST during EN/LN, especially in the region southeast of Vietnam (Jing, 2011). Ocean dynamics contributes to the maximum variance of SST along the Vietnam coast in summer.

    The phase and amplitude are different between the second warming and cooling. For the warming case, the basin wide warming in the tropical Indian Ocean (TIO) excites a tropospheric Kelvin Wave that propagates into the western Pacific. The Kelvin wave-induced surface divergence suppresses convection and induces an anomalous anticyclone over the northwest Pacific (Yang, 2007; Xie, 2009; Du, 2011). In the WNPAC exhibit abnormal easterlies over the SCS (Figs.8a and 8c). The local negative heating anomaly in the western North Pacific also contributes to the easterly anomalies in the late spring-early summer via stimulating an atmospheric Rossby wave and thus has impact on the WNPAC. The numerical experiments confirm that while the weakening of the local SSTa leads to a weakening of the WNPAC response, the remote TIO forcing strengthens from June to August (Wu, 2010b). For the cooling case, in the decay year of LN, the SCS SST decreases in March–April(1), and turns weak after May(1). Weak westerly form in southern SCS (Fig.7c). In the northern SCS, the wind anomaly is not clear and may not contribute to the SST cooling. In the large scale, the atmospheric circulation seems to have much noise and has no stable pattern. Especially, the cyclonic wind circulation and low sea level pressure anomalies are not found over the NWP (Figs.8b and 8d). Weak anomalies in LN JJA(1) are found in both the atmospheric circulation and SST, indicating their close relationship, which shows strong coupling in the warming case (Figs. 7, 8a and 8c).

    Fig.5 Composite of atmospheric factors. a. SCS SSTa (shaded, unit: ℃) and u, v component (vector, unit: ms-1, excluding wind speed<0.5) during EN DJF(1); b. AtF (shaded, unit: (?102) Wm-2), and cloudiness (contour, unit: okta); c and d are the same as a and b, but for the period of LN DJF(1).

    Fig.6 Surface anomaly current (in 5m depth; vector, unit: ms-1; excluded current speed<0.03) composite in the mature phase of ENSO DJF(1) and JJA(1)/AMJ(1). Left: EN; right: LN.

    Fig.7 Same as Fig.5, but for the period of EN JJA(1) and LN AMJ(1), respectively.

    Fig.8 Composite of sea level pressure (shaded, unit: hPa) and wind (vector, unit: ms-1) anomaly in summer of EN (left) and LN (right) decay year. Top: MAM(1); bottom: JJA(1).

    4 Summary and Discussion

    This study investigates the processes associated with ENSO-induced warming and cooling in the SCS in the interannual time scale. ENSO affects the global ocean through the atmospheric bridges or teleconnections. As the South China Sea (SCS) locates between the western Pacific Ocean and eastern Indian Ocean, its interannual variation has two peaks, both of them related with ENSO, directly or indirectly. Based on the ICOADS surface observations, we discuss the asymmetric aspects of SCS SST warming/cooling during and after the EN/LN mature phase. Generally, the SCS SST variation associated with EN is more robust than the case associated with LN.

    Considering the asymmetry intensity of the EN and LN, the ENSO has different effects on the atmospheric circulation. We choose the events with notable signals for composite analysis. The first warming and cooling occur during the mature phase of EN/LN, illustrating very similar pattern with different sign and different amplitude inherited from the EN/LN. During the EN mature phase, warming is caused by the anomalies of the winter monsoon, the cloudiness and the ocean circulation. For the asymmetry of EN and LN, the SCS does not show a significant cooling in every LN event. The results approve of Wang’s conclusion (Wang, 2006). The processes are quite different between the second warming and cooling. The second warming forms in May(1) and persists till September(1), while cooling forms in April(1) and decays after June(1). The amplitude of the second cooling is much weaker than that of the second warming. Our analysis confirms that the second warming/cooling is associated with the large scale atmospheric variation over the region, with different atmospheric circulations. The second warming is associated with the anticyclone wind circulation anomaly and high sea level pressure in JJA(1) in the NWP (Xie, 2009), which can explain the high correlation between the Indian Basin Mode and the Ni?o 3.4 SST index at 0.91with a 5-month lag (Yang, 2007). But the second cooling has no such atmospheric correspondence. The wind pattern over the SCS is noisy, and no cyclonic wind circulation develops over the NWP. The surface heat flux anomalies are considered as a major role by Wang’s study (Wang, 2006). The reason for this JJA(1) asymmetry is unclear but the noise level related with intraseasonal oscillation may be a factor. In the JJA(1) warming case, convection over the NW Pacific is reduced, and so is the atmospheric internal variability, allowing the TIO SST capacitor effect to be more strongly manifested than in JJA(1) cooling case.

    Acknowledgements

    This work is supported by the National Basic Research Program of China (2012CB955603, 2010CB950302), and the Chinese Academy of Sciences (XDA05090404, LT- 0ZZ1202).

    An, S. I., and Jin, F. F., 2004. Nonlinearity and asymmetry of ENSO., 17: 2399-2412.

    Chen, W., 2002. Impacts of El Ni?o and La Ni?a on the cycle of the east Asian winter and summer monsoon., 26 (5): 595-610.

    de Szoeke, S. P., Xie, S. P., Miyama, T., Richards, K. J., and Small, R. J. O., 2007. What maintains the SST front north of the eastern Pacific equatorial cold tongue?, 20: 2500-2514.

    Dong, B., 2005. Asymmetry between El Ni?o and La Ni?a in a global coupled GCM with an eddy-permitting ocean resolution., 18: 3373-3387.

    Du, Y., and Qu, T., 2010. Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation., 50 (2): 233-256, DOI: 10.1016/j.dynatmoce.2010.04.001.

    Du, Y., Xie, S. P., Huang, G., and Hu, K. M., 2009. Role of air-sea interaction in the long persistence of El Ni?o-induced North Indian Ocean warming., 22: 1424-1445.

    Du, Y., Yang, L., and Xie, S. P., 2011. Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Ni?o., 24: 315-322.

    Huang, Z., Xu, H. M., Du, Y., and Xie, Q., 2009. Two sea surface temperature warming events during and after El Ni?o in the South China Sea., 28 (5): 49-55.

    Jin, F. F., An, S. I., Timmermann, A., and Zhao, J., 2003. Strong El Ni?o events and nonlinear dynamical heating., 30 (3), 1120, DOI: 10.1029/2002GL016356.

    Jing, Z., Qi, Y., and Du, Y., 2011. Upwelling in the continental shelf of northern South China Sea associated with 1997–1998 El Ni?o., 116: C02033, DOI: 10.1029/2010JC006598.

    Lau, N. C., and Nath, M. J., 2009. A model investigation of the role of air-sea interaction in the climatological evolution and ENSO-related variability of the summer monsoon over the South China Sea and western North Pacific., 22: 4771-4792.

    Liu, Q. Y., Jiang, X., Xie, S. P., and Liu, W. T., 2004. A gap in the Indo-Pacific warm pool over the South China Sea., 109: C07012, DOI: 10.1029/2003JC002179.

    McPhaden, M. J., and Zhang, X. B., 2009. Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies., 36: L13703, DOI: 10.1029/ 2009GL038774.

    Trenberth, K. E., 1997. The definition of El Ni?o., 78: 2771-2777.

    Wang, B., Wu, R. G., and Fu, X. H., 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?, 13: 1517-1536.

    Wang, Q., Xie, Q., Du, Y., Wang, W., and Chen, J., 2002. The 1997–1998 warm event in the South China Sea., 47 (14): 1221-1227.

    Wang, C. Z., Wang, W. Q., Wang, D. X., and Wang, Q., 2006. Interannual variability of the South China Sea associated with El Ni?o., 113: C03023, DOI: 10.1029/2005JC003333.

    Wu, B., Li, T., and Zhou, T., 2010a. Asymmetry of atmospheric circulation anomalies over the Western North Pacific between El Ni?o and La Ni?a., 23: 4807-4822, DOI: 10.1175/2010JCLI3222.1.

    Wu, B., Li, T., and Zhou, T., 2010b. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacific anomalous anticyclone during the El Ni?o decaying summer., 23: 2974-2986, DOI: 10.1175/2010JCLI3300.1.

    Wu, R. G., and Wang, B., 2000. Interannual variability of summer monsoon onset over the Western North Pacific and the underlying processes., 13: 2483-2501.

    Wu, R. G., and Yeh, S. W., 2010. A further study of the tropical Indian Ocean asymmetric mode in boreal spring., 115: D08101, DOI: 10.1029/2009JD-012999.

    Wu, R. G., Hu, Z. Z., and Kirtman, B. P., 2003. Evolution of ENSO-related rainfall anomalies in East Asia., 16: 3741-3757.

    Xie, S. P., and Philander, S. G. H., 1994. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific., 46A: 340-350.

    Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010. Global warming pattern formation: Sea surface temperature and rainfall., 23: 966-986.

    Xie, S. P., Hu, K. M., Jan, H., Tokinaga, H., Du, Y., Huang, G., and Sampe, T., 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Ni?o., 22: 730-747.

    Xie, S. P., Xie, Q., Wang, D. X., and Liu, W. T., 2003. Summer upwelling in the South China Sea and its role in regional climate variations., 108 (C8), 3261, DOI: 10.1029/2003JC001867.

    Yang, J. L., Liu, Q. Y., Xie, S. P., Liu, Z. Y., and Wu, L. X., 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon., 34: L02708, DOI: 10.1029/2006GL028571.

    Zheng, X. T., Xie, S. P., and Liu, Q. Y., 2011. Response of the Indian Ocean basin mode and its capacitor effect to global warming., 24: 6146-6164, DOI: 10.1175/2011JCLI4169.1.

    Zhou, T., Yu, R., Li, H., and Wang, B., 2008. Ocean forcing to changes in global monsoon precipitation over the recent half century., 21 (15): 3833-3852.

    (Edited by Xie Jun)

    10.1007/s11802-013-2169-x

    ISSN 1672-5182, 2013 12 (2): 272-278

    . Tel: 0086-20-89023180 E-mail:duyan@scsio.ac.cn

    (October 16, 2012; revised November 26, 2012; accepted February 5, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    www日本在线高清视频| 免费搜索国产男女视频| 欧美黑人欧美精品刺激| 一级a爱片免费观看的视频| 国产野战对白在线观看| 最好的美女福利视频网| av中文乱码字幕在线| 国产爱豆传媒在线观看| 一进一出抽搐gif免费好疼| 俄罗斯特黄特色一大片| 欧美在线黄色| 免费在线观看影片大全网站| 麻豆久久精品国产亚洲av| 精品人妻1区二区| 久久国产乱子伦精品免费另类| 好男人电影高清在线观看| 精品电影一区二区在线| 日韩欧美 国产精品| 亚洲一区二区三区色噜噜| 久久人人精品亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 国产真实伦视频高清在线观看 | 亚洲av成人av| 亚洲熟妇中文字幕五十中出| 欧美黄色片欧美黄色片| 99热只有精品国产| 99国产综合亚洲精品| 亚洲国产精品成人综合色| 久9热在线精品视频| 久久久国产成人免费| 一级作爱视频免费观看| 老司机午夜福利在线观看视频| 国产又黄又爽又无遮挡在线| 午夜久久久久精精品| 欧美日韩国产亚洲二区| 亚洲va日本ⅴa欧美va伊人久久| 精品福利观看| av天堂中文字幕网| 日本黄大片高清| 精华霜和精华液先用哪个| 国产国拍精品亚洲av在线观看 | 亚洲成人久久爱视频| 国产成人aa在线观看| 很黄的视频免费| 99在线视频只有这里精品首页| 给我免费播放毛片高清在线观看| 国产精华一区二区三区| 日韩欧美精品免费久久 | 国产淫片久久久久久久久 | 99国产精品一区二区蜜桃av| 狠狠狠狠99中文字幕| 日本 欧美在线| 女警被强在线播放| 日本三级黄在线观看| 亚洲在线自拍视频| 欧美日本视频| 日韩中文字幕欧美一区二区| 老熟妇仑乱视频hdxx| www.色视频.com| 欧美日韩中文字幕国产精品一区二区三区| 一夜夜www| 国产精品 国内视频| 日韩亚洲欧美综合| 给我免费播放毛片高清在线观看| 精品久久久久久成人av| 人妻丰满熟妇av一区二区三区| 精品久久久久久久人妻蜜臀av| 无限看片的www在线观看| 变态另类成人亚洲欧美熟女| 激情在线观看视频在线高清| 国内少妇人妻偷人精品xxx网站| 国产免费av片在线观看野外av| 亚洲熟妇熟女久久| 欧美一区二区国产精品久久精品| 19禁男女啪啪无遮挡网站| 午夜亚洲福利在线播放| 天天躁日日操中文字幕| 日韩有码中文字幕| 久久伊人香网站| 亚洲欧美精品综合久久99| 成人鲁丝片一二三区免费| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久亚洲中文字幕 | 日本一本二区三区精品| 国产亚洲精品综合一区在线观看| 国产精品99久久99久久久不卡| 波野结衣二区三区在线 | 亚洲成人精品中文字幕电影| 国产一区二区在线av高清观看| 舔av片在线| 天美传媒精品一区二区| 日本一二三区视频观看| 免费在线观看成人毛片| 中文字幕精品亚洲无线码一区| 午夜视频国产福利| 啦啦啦免费观看视频1| 久久6这里有精品| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品一区二区www| 村上凉子中文字幕在线| 老鸭窝网址在线观看| 久久久久精品国产欧美久久久| 一级黄色大片毛片| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 99久久九九国产精品国产免费| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 淫妇啪啪啪对白视频| 老熟妇仑乱视频hdxx| 亚洲国产欧美网| 亚洲精品一区av在线观看| 久久久久久大精品| 老司机午夜福利在线观看视频| 岛国在线观看网站| 91麻豆精品激情在线观看国产| 日本一二三区视频观看| 人人妻人人看人人澡| 亚洲乱码一区二区免费版| а√天堂www在线а√下载| 国产精品久久电影中文字幕| 亚洲成人久久性| 露出奶头的视频| 少妇人妻精品综合一区二区 | 欧美乱色亚洲激情| 国产一区在线观看成人免费| 青草久久国产| 色综合婷婷激情| 国产午夜精品久久久久久一区二区三区 | 欧美黄色片欧美黄色片| e午夜精品久久久久久久| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 男插女下体视频免费在线播放| 国产欧美日韩精品一区二区| 91av网一区二区| 母亲3免费完整高清在线观看| xxx96com| 亚洲乱码一区二区免费版| 亚洲国产精品成人综合色| 真实男女啪啪啪动态图| 91字幕亚洲| 亚洲av一区综合| 色尼玛亚洲综合影院| 国产一区二区三区视频了| 久久久久久久午夜电影| 精品99又大又爽又粗少妇毛片 | 免费无遮挡裸体视频| 欧美黄色片欧美黄色片| 亚洲精品456在线播放app | 91九色精品人成在线观看| 精品国产亚洲在线| 女生性感内裤真人,穿戴方法视频| 美女cb高潮喷水在线观看| 欧美一级毛片孕妇| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看| 国产又黄又爽又无遮挡在线| 精品久久久久久,| 色精品久久人妻99蜜桃| 中文资源天堂在线| 在线免费观看的www视频| 国产成人aa在线观看| 天天一区二区日本电影三级| 精品乱码久久久久久99久播| 少妇的丰满在线观看| 变态另类成人亚洲欧美熟女| av在线天堂中文字幕| 内地一区二区视频在线| 12—13女人毛片做爰片一| 香蕉丝袜av| 国产精品 欧美亚洲| 日本黄大片高清| 极品教师在线免费播放| 亚洲人成网站高清观看| 美女免费视频网站| 成人性生交大片免费视频hd| 欧美绝顶高潮抽搐喷水| 19禁男女啪啪无遮挡网站| 老司机午夜福利在线观看视频| 熟女电影av网| 国产伦人伦偷精品视频| 99热精品在线国产| 九九久久精品国产亚洲av麻豆| 亚洲国产色片| 中文资源天堂在线| 老汉色av国产亚洲站长工具| 日韩欧美在线二视频| 精品国产超薄肉色丝袜足j| 一个人免费在线观看的高清视频| xxx96com| 国产野战对白在线观看| 一级作爱视频免费观看| 成人国产综合亚洲| 黄色视频,在线免费观看| 黄色丝袜av网址大全| 午夜福利高清视频| 亚洲精品久久国产高清桃花| 无限看片的www在线观看| 久久久成人免费电影| 在线观看免费午夜福利视频| 午夜两性在线视频| av视频在线观看入口| 国产成人a区在线观看| 国产男靠女视频免费网站| 夜夜爽天天搞| 国产伦在线观看视频一区| 一进一出好大好爽视频| 久久久国产成人精品二区| 午夜两性在线视频| 免费搜索国产男女视频| 国产成+人综合+亚洲专区| 日韩欧美一区二区三区在线观看| 久久久国产成人精品二区| 亚洲成人免费电影在线观看| 日韩欧美免费精品| 国产欧美日韩精品一区二区| 亚洲,欧美精品.| 国产97色在线日韩免费| 一区二区三区高清视频在线| 欧美xxxx黑人xx丫x性爽| 波多野结衣巨乳人妻| 久久精品夜夜夜夜夜久久蜜豆| 麻豆成人午夜福利视频| 国产精品99久久99久久久不卡| 九九热线精品视视频播放| 午夜福利成人在线免费观看| 日本黄大片高清| 日韩欧美免费精品| 国产欧美日韩精品一区二区| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲内射少妇av| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟哟哟哟哟| 欧美日韩乱码在线| 真人做人爱边吃奶动态| 国产精品一及| 欧美一级毛片孕妇| 亚洲精品在线观看二区| 1024手机看黄色片| 国产精品98久久久久久宅男小说| 亚洲七黄色美女视频| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 亚洲成av人片免费观看| h日本视频在线播放| 久久久久久大精品| 日韩大尺度精品在线看网址| 国产精品av视频在线免费观看| 热99re8久久精品国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲无线在线观看| 国产成人av激情在线播放| 最新中文字幕久久久久| 在线视频色国产色| 国产亚洲av嫩草精品影院| 99国产精品一区二区三区| 最新中文字幕久久久久| 夜夜夜夜夜久久久久| 久久精品91蜜桃| 亚洲av一区综合| 人妻丰满熟妇av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 国产精品1区2区在线观看.| 淫秽高清视频在线观看| 亚洲av成人精品一区久久| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 香蕉久久夜色| 淫秽高清视频在线观看| 国产探花在线观看一区二区| 色吧在线观看| 91麻豆av在线| 日本与韩国留学比较| 欧美成狂野欧美在线观看| 成人高潮视频无遮挡免费网站| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 婷婷精品国产亚洲av在线| 亚洲五月婷婷丁香| 国产黄片美女视频| 18禁美女被吸乳视频| 国产色爽女视频免费观看| av国产免费在线观看| 国产麻豆成人av免费视频| 亚洲精品在线美女| 日韩高清综合在线| 久久国产精品影院| 男女视频在线观看网站免费| 欧美不卡视频在线免费观看| 香蕉丝袜av| 小蜜桃在线观看免费完整版高清| 国产av不卡久久| 在线播放国产精品三级| 国产精品久久久人人做人人爽| 色视频www国产| 欧美日韩黄片免| 国产精品久久视频播放| 免费无遮挡裸体视频| 18禁在线播放成人免费| 在线观看舔阴道视频| 亚洲精品色激情综合| 亚洲第一欧美日韩一区二区三区| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 亚洲成人免费电影在线观看| 嫁个100分男人电影在线观看| 国产精品国产高清国产av| 噜噜噜噜噜久久久久久91| 窝窝影院91人妻| 午夜免费观看网址| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 成人性生交大片免费视频hd| 欧美一区二区精品小视频在线| 日韩欧美精品免费久久 | 搡老岳熟女国产| 无人区码免费观看不卡| 国产极品精品免费视频能看的| 嫩草影院入口| 日韩精品中文字幕看吧| 两个人视频免费观看高清| 中文字幕av在线有码专区| 亚洲av成人av| 久久久精品大字幕| 国产精品一及| 一本精品99久久精品77| 国产欧美日韩一区二区三| 国产精品久久久久久久久免 | 国产成人系列免费观看| av片东京热男人的天堂| 在线观看av片永久免费下载| 国产欧美日韩一区二区精品| 精品一区二区三区人妻视频| 最后的刺客免费高清国语| 亚洲欧美日韩东京热| 黄色视频,在线免费观看| 人人妻人人看人人澡| 中文字幕人妻丝袜一区二区| 国产高清videossex| 欧美bdsm另类| 久久伊人香网站| 亚洲精品日韩av片在线观看 | 12—13女人毛片做爰片一| 午夜免费激情av| 一级黄色大片毛片| 久久6这里有精品| 好看av亚洲va欧美ⅴa在| 女生性感内裤真人,穿戴方法视频| 国产在线精品亚洲第一网站| 黄片小视频在线播放| 亚洲av不卡在线观看| 午夜免费成人在线视频| 国产日本99.免费观看| 波多野结衣高清无吗| 麻豆国产av国片精品| 久久香蕉精品热| 国产成人影院久久av| 欧美最新免费一区二区三区 | 亚洲av免费高清在线观看| 国产老妇女一区| 午夜福利在线观看吧| 亚洲国产精品合色在线| 亚洲精品影视一区二区三区av| 少妇高潮的动态图| 夜夜爽天天搞| av天堂中文字幕网| 男插女下体视频免费在线播放| 小说图片视频综合网站| www.www免费av| 亚洲人成网站在线播放欧美日韩| 69人妻影院| 亚洲最大成人中文| 一个人免费在线观看电影| 9191精品国产免费久久| 免费看美女性在线毛片视频| 国产午夜精品论理片| 日韩欧美免费精品| 在线十欧美十亚洲十日本专区| 精品免费久久久久久久清纯| 欧美激情久久久久久爽电影| 岛国在线免费视频观看| 精品福利观看| 午夜老司机福利剧场| 一级黄色大片毛片| 男人的好看免费观看在线视频| av天堂中文字幕网| 欧美成狂野欧美在线观看| 午夜福利在线观看免费完整高清在 | 操出白浆在线播放| 波多野结衣高清无吗| 午夜激情欧美在线| 国产午夜精品久久久久久一区二区三区 | 在线国产一区二区在线| 18禁在线播放成人免费| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久人妻精品电影| 少妇高潮的动态图| 中国美女看黄片| 欧美区成人在线视频| 中文字幕熟女人妻在线| 久久人妻av系列| 他把我摸到了高潮在线观看| 一本一本综合久久| 久久香蕉国产精品| 国产高清视频在线观看网站| 国产在视频线在精品| 中文字幕人成人乱码亚洲影| aaaaa片日本免费| 成人av一区二区三区在线看| 一个人观看的视频www高清免费观看| 无限看片的www在线观看| 亚洲精品国产精品久久久不卡| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利高清视频| 禁无遮挡网站| 亚洲精品在线美女| 十八禁人妻一区二区| av福利片在线观看| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av涩爱 | 高清在线国产一区| 91久久精品电影网| 99riav亚洲国产免费| 日韩国内少妇激情av| 天天添夜夜摸| 亚洲国产欧美网| 久久精品影院6| 久久久久久久亚洲中文字幕 | 精品久久久久久久毛片微露脸| 中文字幕久久专区| 日韩欧美三级三区| 亚洲第一电影网av| 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 亚洲av日韩精品久久久久久密| 久久久精品大字幕| 久久这里只有精品中国| 97超级碰碰碰精品色视频在线观看| 欧美日韩黄片免| 日韩av在线大香蕉| netflix在线观看网站| 搡女人真爽免费视频火全软件 | 成人高潮视频无遮挡免费网站| 国产成人影院久久av| 又黄又爽又免费观看的视频| 色综合亚洲欧美另类图片| 欧美中文日本在线观看视频| 日韩欧美国产一区二区入口| tocl精华| 小说图片视频综合网站| 亚洲国产精品成人综合色| 香蕉久久夜色| 亚洲狠狠婷婷综合久久图片| 中文字幕久久专区| 黄片小视频在线播放| 操出白浆在线播放| 无遮挡黄片免费观看| 99热这里只有精品一区| 亚洲人成网站在线播放欧美日韩| 国产美女午夜福利| 五月伊人婷婷丁香| 级片在线观看| 国产成人福利小说| 好看av亚洲va欧美ⅴa在| 免费人成视频x8x8入口观看| 国产午夜福利久久久久久| 热99re8久久精品国产| 亚洲国产精品sss在线观看| www.熟女人妻精品国产| 麻豆国产97在线/欧美| 一本综合久久免费| 亚洲五月天丁香| 人妻夜夜爽99麻豆av| av片东京热男人的天堂| 丰满的人妻完整版| 一级毛片高清免费大全| 国产高清有码在线观看视频| 亚洲成人免费电影在线观看| 亚洲人成伊人成综合网2020| 最新中文字幕久久久久| 精品国内亚洲2022精品成人| 男女之事视频高清在线观看| 亚洲电影在线观看av| 18禁黄网站禁片午夜丰满| 亚洲成人中文字幕在线播放| 最新美女视频免费是黄的| 国产一区二区激情短视频| 国产成+人综合+亚洲专区| 天天躁日日操中文字幕| 一区二区三区高清视频在线| 91麻豆av在线| 男女床上黄色一级片免费看| 99久久99久久久精品蜜桃| 男女视频在线观看网站免费| 一区二区三区高清视频在线| 老司机午夜福利在线观看视频| 国产精品,欧美在线| a级一级毛片免费在线观看| 51午夜福利影视在线观看| 在线观看免费视频日本深夜| x7x7x7水蜜桃| 国产伦精品一区二区三区视频9 | 99久久久亚洲精品蜜臀av| 性欧美人与动物交配| 午夜免费观看网址| 国产亚洲精品av在线| 色播亚洲综合网| 99久久久亚洲精品蜜臀av| 国产精品久久久久久久久免 | 舔av片在线| 亚洲色图av天堂| 国产精品嫩草影院av在线观看 | 搞女人的毛片| 久久性视频一级片| 国产真实伦视频高清在线观看 | 欧美一级毛片孕妇| 国产高清视频在线观看网站| 欧美+日韩+精品| 午夜福利视频1000在线观看| 国产三级在线视频| 国产高清三级在线| 国内毛片毛片毛片毛片毛片| 亚洲成人免费电影在线观看| 美女高潮的动态| 色吧在线观看| 国产成+人综合+亚洲专区| 18禁裸乳无遮挡免费网站照片| 神马国产精品三级电影在线观看| 欧美另类亚洲清纯唯美| 成年女人永久免费观看视频| 757午夜福利合集在线观看| 毛片女人毛片| 女人高潮潮喷娇喘18禁视频| 国产 一区 欧美 日韩| 十八禁网站免费在线| 成人永久免费在线观看视频| 午夜免费激情av| 国产精品影院久久| 在线播放国产精品三级| 嫩草影院精品99| h日本视频在线播放| 黄色片一级片一级黄色片| 国产一区在线观看成人免费| 精品国内亚洲2022精品成人| 色播亚洲综合网| 1000部很黄的大片| 色av中文字幕| 免费高清视频大片| 日韩精品中文字幕看吧| 麻豆成人午夜福利视频| 五月伊人婷婷丁香| 日日摸夜夜添夜夜添小说| 啪啪无遮挡十八禁网站| 亚洲精品亚洲一区二区| 午夜久久久久精精品| 淫秽高清视频在线观看| 熟女电影av网| av片东京热男人的天堂| 欧美黑人欧美精品刺激| 少妇熟女aⅴ在线视频| 好男人在线观看高清免费视频| 久久人人精品亚洲av| 亚洲天堂国产精品一区在线| 亚洲av一区综合| 亚洲电影在线观看av| 免费看日本二区| 亚洲av成人av| 亚洲最大成人中文| 国产麻豆成人av免费视频| 黄色女人牲交| 国产精品亚洲美女久久久| 欧美成狂野欧美在线观看| 亚洲精品成人久久久久久| 夜夜躁狠狠躁天天躁| 我要搜黄色片| 我的老师免费观看完整版| 亚洲欧美精品综合久久99| 国产成人福利小说| av天堂中文字幕网| 老司机午夜十八禁免费视频| 亚洲精品色激情综合| 老司机深夜福利视频在线观看| 午夜精品久久久久久毛片777| av欧美777| 亚洲午夜理论影院| 男插女下体视频免费在线播放| 人人妻人人澡欧美一区二区| 亚洲欧美日韩高清在线视频| 国产高清有码在线观看视频| 国产乱人视频| 久久国产精品人妻蜜桃| 舔av片在线| 精品一区二区三区人妻视频| 久久草成人影院| 女生性感内裤真人,穿戴方法视频| 国产精品1区2区在线观看.| 97超级碰碰碰精品色视频在线观看| 亚洲18禁久久av| 亚洲va日本ⅴa欧美va伊人久久| 可以在线观看的亚洲视频| 男人舔女人下体高潮全视频| 午夜日韩欧美国产| 亚洲五月婷婷丁香| 少妇人妻一区二区三区视频| 99久久精品一区二区三区| 欧美黑人巨大hd| 国产三级在线视频| 久久久精品大字幕| 一个人观看的视频www高清免费观看| 亚洲真实伦在线观看|