• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent Changes of Northern Indian Ocean Summer Rainfall Based on CMIP5 Multi-Model

    2013-07-28 09:04:10YANGYali1DUYan1ZHANGYuhong1andCHENGXuhua1
    Journal of Ocean University of China 2013年2期

    YANG Yali1), 2), DU Yan1), *, ZHANG Yuhong1), 2), and CHENG Xuhua1)

    ?

    Recent Changes of Northern Indian Ocean Summer Rainfall Based on CMIP5 Multi-Model

    YANG Yali, DU Yan, ZHANG Yuhong, and CHENG Xuhua

    1),,,510301,.2),,100049,..

    This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979-2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distribution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warming in the tropical Indian Ocean, which confirm the mechanism of ‘warmer-get-wetter’ theory. For a long period 1950-2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979-2005, implying possible decadal variation in the NIO summer climate.

    NIO summer rainfall; Indian summer monsoon; inter-decadal changes

    1 Introduction

    The Indian Ocean (IO) is a typical monsoon region, and the monsoon rainfall is crucial to the social and economic activities of local residents. It is important to know the rainfall change in the past and whether the precipitation will increase or decrease in the future under global warming scenario.

    The IO has been experienced a basin-wide warming trend since the 1950s from observational and modeling evidence (Alory., 2007; Du and Xie, 2008; Luffman., 2010). Xie. (2010a) found that the SST trend patterns play a key role in determining the precipitation changes. The tropical mean sea surface temperature (SST) warming leads to an upward trend in the convective threshold over the past 30 years, triggering a global precipitation distribution adjustment (Johnson and Xie, 2010). Levermann. (2009) and Zickfeld. (2005) showed that the Indian summer monsoon can operate in two stable regimes: enhanced summer monsoon or a low rainfall over India. The increase of tropical IO SST may enhance the convection through the troposphere and con-vective outflow at the upper levels, leading to a trend in subsidence over the Indian continent monsoon region (Luffman., 2010). Some studies supposed that the warming is caused by emissions of greenhouse gases from human activities, and Indian summer monsoon rainfall is likely to increase with increased carbon dioxide (Meehl and Washington, 1993; Kitoh., 1997; Hu., 2000). The increased rainfall is related to an enhanced land-ocean thermal gradient driven by increased surface air temperatures over Eurasia in winter and spring (Kumar., 1999; Hu., 2000). Moreover, a larger moisture flux convergence resulting from a warming Indian Ocean can lead to the intensification of the mean rainfall (Meehl., 2003; Ueda., 2006).

    In addition, Hoerling. (2010) found that the major features of regional trend in annual precipitation during 1977-2006 are consistent with an atmospheric response to observed SST variability. They also proposed that the relationships between SST and rainfall changes are not generally symptomatic of human-induced emissions of greenhouse gases. In other researches, the India rainfall showed an obvious decreased trend from the 1950s (Ramesh and Goswami, 2007; Guhathakurta and Rajeevan, 2008; Hoerling., 2010). Several studies indicated that the decadal variations of Indian summer monsoon is strongly correlated with the relationships between El Ni?o-Southern Oscillation (ENSO) and IO climate (Xie., 2010b; Chowdary., 2012; Krishnamurthy and Goswami, 2000; Torrence and Webster, 1999; Kumar and L’Heureux, 2010). Cai. (2010) showed that the asymmetry in ENSO connection is an important factor, which can affect the regional rainfall at a multi-decadal time scale. Moreover, the higher frequency of El Ni?o Modoki (Ashok., 2007) in recent years is considered as a factor, which can not be ignored in investigating the climate changes (Weng., 2007). Recently, there are studies showing a slowdown of the Walker circulation in the past few decades (Deser., 2010; Vecchi and Soden, 2007; Tokinaga., 2012). However, an opposite conclusion indicated an enhanced east-west Walker circulation (Wang., 2012; Luo., 2012) in recent 2–3 decades. How the rainfall patterns changes due to the convective modulation is still an open question.

    Kripalani. (2007) evaluated the coupled climate model in simulating the variability of south Asian summer monsoon rainfall under the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change(IPCC). Their results revealed a significant increase in mean monsoon rainfall and a possible extension of the monsoon period, although the projected summer monsoon circulation appeared to weaken. Nevertheless, there are still discrepancies in numerical models to simulate the observed rainfall on a regional scale (Gadgil and Sajani, 1998; Kang., 2002; Waliser., 2003; Wang., 2004). Using the high-resolution atmospheric general circulation models (AGCMs) and the CMIP5 dataset, Hsu. (2012, 2013) concluded that the global monsoon precipitation (GMP) has an increasing trend over the past three decads and in the future warmer climate. The intensity of GMP is mainly attributed to the increases in moisture convergence and surface evaporation under global warming. They also found that although the water vapor plays a positive role in thermodynamics, it is offset to a certain extent by a weakened monsoon circulation.

    The present study aims to evaluate the simulation of the NIO rainfall changes in the past decades based on the CMIP5 Multi-Model ensemble (MME). We first test whether CMIP5 models can reproduce the rainfall changes similar to the observations, and then verify the ability of CMIP5 models to simulate the long-term variability of the tropical atmospheric circulation.

    The rest of the paper is organized as follows. Section 2 describes CMIP5 datasets. Section 3 assesses the recent 30 years changes of the NIO rainfall based on CMIP5 models. Section 4 explores the land monsoon rainfall trend in the near past 60 years. Section 5 is a summary and discussion.

    2 Data

    The CMIP5 multi-model products of World Climate Research Programme (WCRP), collected and archived by the Working Group on Coupled Models (WGCM) Climate simulation panel and the Program for Climate Model Diagnosis and Inter-comparison (PCMDI), are used in this study. To compare with observations, the analysis focuses on the climate of the 20th century historical runs, which are forced with the observed history of greenhouse gas (GHG) concentrations, solar radiation, and other climate forcing. At the present stage, we have obtained the necessary data from 20 models of them. Table 1 lists the names, institutions, and resolution of the models. Monthly mean outputs, including SST, 10m wind, and rainfall, are used. The scenario experiments span from 1870 to 2005, but this study focuses on the period from 1950 to 2005.

    Table 1 The WCRP CMIP5 models used in this study. In the following figures, the ensemble mean of all models is marked MME

    The rainfall data is the GPCP version 2.2 monthlycombined precipitation, with a resolution of 2.5?×2.5? for the period 1979-2010 (Adler., 2003). For the land rainfall, we use the University of Delaware precipitation for the period from 1900 to 2008 (http: //www.esrl.noaa.gov/psd/data/gridded/data.UD-el_AirT_Precip.html). We also use ERA-40 rainfall from 1958 to 2001 for supplemental reference (Uppala., 2005). The extended reconstructed SST (ERSST) by the National Oceanic and Atmospheric Administration (NOAA) is available on a 2? grid from 1860 to 2011 (Smith., 2008). The Wave- and Anemometer-based Sea-surface Wind (WASWind) data sets are used (Tokinaga and Xie, 2011) with a resolution of 4?×4? for the period 1950-2009. For sea level pressure (SLP), we use the Hadley Centre’s mean SLP data sets version 2 (HadSLP2) with a resolution of 2.5?×2.5? from 1850 to 2004 (Allan and Ansell, 2006). We calculate the linear trend of the summer (June-September) rainfall and surface wind in the NIO for the period of 1979-2005, and obtain the summer rainfall trend of Indian region for the period of 1950-2005. The NIO is defined as the region of 50?E-100?E, 0?-20?N.

    3 Variability of the NIO Rainfall During 1979-2005

    To evaluate the recent changes of rainfall in the NIO based on the 20 CMIP5 models, the time series of sum- mer (June-September) rainfall anomalies from 1950 to 2005 are calculated and shown in Fig.1. Meanwhile, the Models’ results are compared to the GPCP and ERA-40 rainfall data. Note that the GPCP data from 1979 to 2005, and the ERA-40 data spans from 1958 to 2001. In the observations, the summer rainfall in the NIO shows an increased trend from 1979 to 2005. The ERA-40 rainfall, although different in interannual variability, indicates a significant upward trend in recent 22 years. We focus on the long term changes in this work. 14 out of 20 CMIP5 models reproduce a similar rainfall trend to what in observations, and only 2 models display decrease trend from 1979 to 2005, which is opposite to the GPCP rainfall trend. In addition, the rainfall trend in 4 models (IPSL-CM5A-LR; IPSL-CM5A-MR; MIROC5; Nor-ESM1-M) are not significant. In Fig.1, the average of all models is marked as MME (Multi-Model ensemble) composite. Although the magnitude is small, the MME indicates that most models simulate the prominent feature of rainfall trend in the NIO successfully.

    Fig.1 Interannual variability and linear trend of the summer (June-September) precipitation (unit: mmd-1) in theNorthern Indian Ocean.

    Fig.2 shows the spatial distribution of linear trend in regional rainfall and surface wind. Owing to limited satel- lite observations, the rainfall trend is calculated for 1979-2005. The MME trend is calculated for the last 27 year period over both land and oceans. In the observations (Fig.2a), the enhanced rainfall occurs in most parts of the oceanic monsoon regions: the equatorial IO, the Arabian Sea, and the northern Bay of Bangle (BOB). It can explain the upward trend of mean summer rainfall in the NIO (Fig.1). Besides, an increased rainfall occurs in the southeast of the Asian continent and part of the Pacific, mainly in the northwestern, northeastern and southern tropical Pacific. However, a decrease rainfall trend shows at the equatorial zonal regions of Pacific. The drying condition occurs over the southern Indian Peninsula, BOB, and central and eastern equatorial Pacific. Note that the increased rainfall trend is more remarkable in western Pacific than in eastern Pacific. The simulated rainfall trends are consistent with previous studies. (Wang., 2012; Luo., 2012; Luffman., 2010; Hoerling., 2010).

    Fig.2 Spatial distributions of the linear trends in summer (June-September) precipitation (unit: mmd-1 per 27year) and surface wind (unit: ms-1 per 27year) over 1979-2005 for (a) observations and (b) Multi-Model ensemble.

    The MME reproducesan upward rainfall trend in the NIO, similar to observations. However, the increased rain- fallcovers almost all land of the South Asian region and the central and eastern equatorial Pacific, different from observations. Likewise, an increased rainfall in Somali coast is opposite to the observed drought. Specifically half of the 20 models (ACCESS1.0; BCC-CSM1.1; Can- ESM2; FGOALS-S2; GISS-E2-H; HadGEM2-ES; IPSL-CM5A-LR; MIROC-ESM; MPI-ESM-LR; MRI-CGCM3) can reproduce resemble rainfall patterns in the NIO and tropical Pacific, and 7 models (CanESM2; CSIRO-MK3.6; GFDL-ESM2G; GFDL-ESM2M; MIROC-ESM; MPI-ESM-LR; NorESM1-M) reconstruct similar drying condition in the Southern Indian peninsula (Figure not shown).

    Although the patterns of rainfall trend in the MME are similar to the observations, the background circulation is different (Fig.2). Observations indicate a weakening of the summer monsoon circulation in the NIO, with strong easterly in the BOB and northeasterly wind in the Arabian Sea. On the contrary, there is strengthened southeasterly in the southeastern IO and the airflow cross the equator. In the NIO, southwesterly or southerly wind blows over the Arabian Sea and the BOB. The surface wind trend in MME and observations suggest that the similar rainfall trend patterns may be due to different mechanisms associated with the IO. In observations and the MME, the easterlies over equatorial IO are against the prevailing monsoonal wind, and can help to strengthen the airflow convergence in the equatorial IO, resulting in the increase of rainfall (Luffman., 2010). A southwesterly or southerly wind may also be able to bring more water vapor to NIO to intensify rainfall over the Arabian Sea and the BOB in the MME. However, the observed winds weak in strength and without obvious airflow convergence over the Arabian Sea, the BOB and western North Pacific indicate that the the water vapor transport or airflow convergence is not a solid factor contributing to the increased rainfall. Recent researches (Hsu., 2012, 2013) using diagnosis of a column-integrated moisture budget reveal that the increase of surface evaporation plays a positive role in global monsoon rainfall under global warming, which may supply a possible interpretation for the rainfall anomaly.

    In the central and eastern Pacific, wind appears to be an important mechanism for rainfall variations (Xie., 2010a). As in the southeastern IO, the strong south-easterlies in the southeastern Pacific cross the equator and converge in the central and eastern equatorial Pacific, leading to an increased rainfall over the region in the MME. The absence of observed anomalous southeasterly and divergence results in rainfall decrease over the central and eastern equatorial Pacific. In addition, the consistency of increasing rainfall with surface convergence exists in the eastern North Pacific.

    Previous studies indicated that the spatial patterns of SST warming plays a key role in determining rainfall changes, based on a ‘warmer-get-wetter’ pattern (Xie., 2010; Luffman., 2010). As illustrated in Fig.3, 15 models and the observations confirm the rainfall changes following the above mechanism. 12 out of the 15 models indicate that the rainfall increase and the local SST warms above the tropical average. The rest 3 models show a reduced rainfall because the local warming falls below the tropical average.

    4 Variability of the Land Monsoon Rainfall from 1950-2005

    Many studies (.., Gadgil and Sajani, 1998; Kang., 2002; Waliser., 2003; Wang., 2004) suggested that there are significant shortages in reproducing the mean monsoon climate and the difficulty to capture major features of the Asian summer monsoon in the present GCMs. Nevertheless, some work indicated that using coupled ocean-atmosphere models, instead of atmospheric models only, can improve the simulation and prediction of the Indian monsoon significantly (Kumar., 2005). In most of the Indian region, the summer monsoon rainfall accounts for nearly 80% of the annual rainfall (Ramesh and Goswami, 2007). The University of Delaware rainfall data is used here to evaluate the long-term changes of simulated land rainfall of India in CMIP5 models.

    The climatology is prepared for the monsoon season (June-September) in the last 56 model years (correspon- ding to the period 1950-2005) and compared with the observed climatology. The spatial distribution and ampli- tude of monsoon climatological seasonal rainfall in Indian monsoon region is shown in Fig.4a. From the MME we can find that the models capture well the major features of the observed climatology rainfall over India and its neighboring region. Especially in the west coast of the Indian peninsula and along the northeast coast of the BOB, the observed rainfall-rich region caused by to- pographic lifting (Xie., 2006) is reproduced precisely by the MME despite some discrepancy in amplitude. The proportion of summer rainfall in total annual rainfall ranges from 55% to 75% (Fig.4b), all being smaller than observations. The simulated monthly rainfall by the 8 models (BCC-CSM1.1; CanESM2; CNRM-CM5; FGOALS-S2; GFDL-ESM2G; GFDL-ESM2M; INMC M4; MPI-ESM-LR; NorESM1-M) is close to observations,.., nearly 30mm per day. Although the rainfall by some models is small in amplitude, the simulated results of mean monsoon climate by the 20 CMIP5 models are encouraging.

    Fig.5 Spatial distribution of the linear trends in land precipitation (unit: mmd-1 per 56year) and surface wind (unit: ms-1 per 56year) in summer (June-September).

    A few recent studies suggested that the Indian monsoon undergoes abrupt shifts and weakens in the past years (.., Ramesh and Goswami, 2007; Guhathakurta and Rajeevan, 2008; Hoerling., 2010; Cook and Vizy, 2010). For the last 5-6 decades, the spatial and temporal extent of continental monsoon rainfall is reducing, even though at larger scale the total mean rainfall may even increase (Ramesh and Goswami, 2007). Fig.5 is a spatial distribution of linear trend in summer (June-September) rainfall and surface wind. In observations, the rainfall trend in India shows an opposite polarity, with rainfall decreased over most part of central and Northern India and increased over the south corner of Indian Peninsula. The Indian summer monsoon is weakening because of lacking obvious cross-equatorial flow and northerly in the Arabian Sea and easterly in the BOB respectively, which blow against the prevailing southwesterly. The MME reproduces the rainfall trend patterns in the southern Indian Peninsula, but an increased trend contrary to observations in the central and northern India. The surface wind in the MME also indicates a reduced Indian summer monsoon, similar to observations and consistent with the weakening rainfall patterns. However, some models (.. INMCM4) indicate a strengthened monsoon. We note that overestimated southeasterlies which prevail over the southeastern IO in 5 models (ACCESSM1.0; CanESM2; HadGEM2-ES; MPI-ESM-LR; MRI-CGCM3); extend southerly wind to the South Asian continent and make the land wet. In some studies the observed rainfall pattern is attributed to the resemblance to the lagged response to ENSO. It is associated with the SST pattern that characterizes the positive anomalies over the NIO (Mishra., 2012). The rainfall pattern may also relate to the land-sea temperature gradient, through enhancing the trades from ocean to land to increase the rainfall. Similar results had been reproduced in previous studies (Meehl and Washington, 1993; Hu., 2000; Kumar., 1999; Meehl., 2003; Ueda., 2006), which explored the potential impact of anthropogenic forcing on the Indian monsoon. The anomalous flows in the MME of Fig.2 suggest discrepancy in simulating the Indian monsoon trend with particular models.

    5 Summary

    This study evaluates the simulation of the NIO summer rainfall changes with the CMIP5. The IO shows an upward summer rainfall trend for the period 1979–2005, especially a remarkable increased rainfall in the equatorial IO (Figs.1-2). Most of the models show an upward trend as do the observations. The MME of the CMIP5 models has a similar spatial distribution of rainfall trend in the NIO and an easterly surface wind trend over the equatorial IO. Both in observations and the MME, the increased rainfall trend patterns in the equatorial IO are controlled by the SST warming, which confirms the mechanism of ‘warmer-get-wetter’ theory (Xie., 2010a). The warming leads to a strengthened convergence over the equatorial IO. In observations, however, neither the horizontal advection nor the water convergence can explain the positive rainfall anomaly in the Arabian Sea, the BOB and the west Northern Pacific. For a longer period 1950-2005, the land monsoon rainfall trend patterns are compared. The rainfall shows a decreasing trend pattern over major part of India and a increasing one in the south conner of Indian Peninsula in observations. The MME simulates an opposite rainfall trend in the central and northern India. Half of the models have a similar pattern to that in observations. The surface wind trends in observations and the MME both indicate weakened monsoon circulation. The difference in north India rainfall, which increases in the 1979-2005 period and decreases in the 1950-2005 period, suggests a multi-decadal variation in rainfall variation in the NIO.

    Acknowledgements

    This work was supported by the National Basic Research Program of China (2012CB955603, 2010CB- 950302), and the Chinese Academy of Sciences (XDA 05090404, LTOZZ1202).

    Adler, R. F., Huffman G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E., 2003. The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present)., 4: 1147-1167.

    Allan, R., and Ansell, T., 2006. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004., 19: 5816-5842.

    Alory, G., Wijffels, S., and Meyers, G., 2007. Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms., 34 (2), L02606, DOI: 10.1029/2006GL028044.

    Ashok, K., Behera, S. K., Rao, S. A., Weng, H. Y., and Yamagata, T., 2007. El Ni?o Modoki and its possible teleconnection., 112: C11007, 27pp, DOI:10.1029/2006JC003798.

    Cai, W. J., van Rensch, P., Cowan, T., and Sullivan, A., 2010. Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact., 23 (18): 4944-4955.

    Chowdary, J. S., Xie, S. P., Tokinaga, H., Okumura, Y. M., Kubota, H., Johnson, N. C., and Zheng, X. T., 2012. Inter-decadal variations in ENSO teleconnection to the Indo-western Pacific for 1870–2007., 25: 1722-744.

    Cook, K. H., and Vizy, E. K., 2010. Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation., 23 (6): 1477-1494.

    Deser, C., Phillips, A. S., and Alexander, M. A., 2010. Twentieth century tropical sea surface temperature trends revisited., 37, L10701, DOI: 10.1029/2010GL043321.

    Du, Y., and Xie, S. P., 2008. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models., 35, L08712.

    Gadgil, S., and Sajani, S., 1998. Monsoon precipitation in the AMIP runs., 14: 659-689.

    Guhathakurta, P., and Rajeevan, M., 2008. Trends in the rainfall pattern over India., 28: 1453-1469.

    Hoerling, M., Eischeid, J., and Perlwitz, J., 2010. Regional precipitation trends: distinguishing natural variability from anthropogenic forcing., 23 (8): 2131- 2145.

    Hsu, P., Li, T., Luo, J. J., Murakami, H., Kitoh, A., and Zhao, M., 2012. Increase of global monsoon area and precipitation under global warming: A robust signal?, 39, L06701, DOI:10.1029/2012GL051037.

    Hsu, P., Li, T., Murakami, H., and Kitoh, A., 2013. Future change of the global monsoon revealed from 19 CMIP5 models., 118: 1-14.

    Hu, Z. Z., Latif, M., Roeckner, E., and Bengtsson, L., 2000. Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations., 27: 2681-2684.

    Johnson, N. C., and Xie, S.-P., 2010. Changes in the sea surface temperature threshold for tropical convection., 3 (12): 842-845.

    Kang, I. S., Jin, K., Wang, B., Lau, K. M., Shukla, J., Krishnamurthy, V., Schubert, S. D., Wailser, D. E., Stern, W. F., Kitoh, A., Meehl, G. A., Kanamitsu, M., Galin, V. Y., Satyan, V., Park, C. K., and Liu, Y., 2002. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs., 19: 383-395.

    Kitoh, A., Yukimoto, S., Noda, A., and Motoi, T., 1997. Simulated changes in the Asian summer monsoon at times of increased atmospheric CO., 75: 1019-1031.

    Kripalani, R. H., Oh, J. H., Kulkarni, A., Sabade, S. S., and Chaudhari, H. S., 2007. South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4., 90: 133-159.

    Krishnamurthy, V., and Goswami, B. N., 2000. Indian monsoon-ENSO relationship on interdecadal timescale., 13 (3): 579-595.

    Kumar, A., Jha, B., and L’Heureux, M., 2010. Are tropical SST trends changing the global teleconnection during La Ni?a?, 37, L12702, DOI: 10.1029/ 2010GL043394.

    Kumar, K. K., Hoerling, M., and Rajagopalan, B., 2005. Advancing dynamical prediction of Indian monsoon rainfall., 32, L08704, DOI: 10.1029/ 2004GL021979.

    Kumar, K. K., Rajagopalan, B., and Cane, M. A., 1999. On the weakening relationship between Indian monsoon and ENSO., 284: 2156-2159.

    Levermann, A., Schewe, J., Petoukhov, V., and Held, H., 2009. Basic mechanism for abrupt monsoon transitions., 106: 20572-20577.

    Luffman, J. J., Taschetto, A. S., and England, M. H., 2010. Global and regional climate response to late twentieth-century warming over the Indian Ocean., 23: 1660-1674.

    Luo, J. J., Sasakia, W., and Masumotoa, Y., 2012. Indian Ocean warming modulates Pacific climate change.,109 (46): 18701-18706.

    Meehl, G. A., and Washington, W. M., 1993. South Asian summer monsoon variability in a model with doubled atmospheric carbon dioxide concentration., 260: 1101- 1104.

    Meehl, G. A., Arblaster, J., and Loschnigg, J., 2003. Coupled ocean-atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO., 16 (13): 2138-2158.

    Mishra, V., Smoliak, B. V., Lettenmaier, D. P., and Wallace, J. M., 2012. A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall., 109 (19): 7213-7217.

    Ramesh, K. V., and Goswami, P., 2007. The shrinking Indian summer monsoon. CSIR Centre for Mathematical Modelling and Computer Simulation.0709.

    Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J., 2008. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006)., 21: 2283-2296.

    Tokinaga, H., and Xie, S. P., 2011. Wave and Anemometer-based Sea Surface Wind (WASWind) for climate change analysis., 24: 267-285.

    Tokinaga, H., Xie, S. P., Deser, C., Kosaka, Y., and Okumura, Y. M., 2012. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming., DOI: 10.1038/nature11576.

    Tokinaga, H., Xie, S. P., Timmermann, A., McGregor, S., Ogata, T., Kubota, H., and Okumura, Y. M., 2012. Regional patterns of tropical Indo-Pacific climate change: evidence of the walker circulation weakening., 25 (5): 1689-1710, DOI: 10.1175/JCLI-D-11-00263.1

    Torrence, C., and Webster, P. J., 1999. Interdecadal Changes in the ENSO-Monsoon System., 12: 2679- 2690.

    Ueda, H., Iwai, A., Kuwako, K., and Hori, M. E., 2006. Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs., 33 (6), DOI: 10.1029/2005GL025336.

    Uppala, S. M., Kallberg, P. W. , Simmons, A. J., Andrae, U., Bechtold, V. D., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Van De Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Holm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J. F., Morcrette, J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J., 2005. The ERA-40 re-analysis.. 131 (612): 2961-3012, DOI: 10.1256/qj. 04.176.

    Vecchi, G. A., and Soden, B. J. 2007. Global warming and the weakening of the tropical circulation., 20: 4316-4340.

    Waliser, D. E., Jin, K., Kang, I. S., Stern, W. F., Schubert, S. D., Wu, M. L. C., Lau, K. M., Lee, M. I., Krishnamurthy, V., Kitoh, A., Meehl, G. A., Galin, V. Y., Satyan, V., Mandke, S. K., Wu, G., Liu, Y., and Park, C. K., 2003. AGCM simulations of intra-seasonal variability associated with the Asian summer monsoon., 21: 423-446.

    Wang, B., Kang, I. S., and Lee, J. Y., 2004. Ensemble simulation of Asian–Australian monsoon variability by 11 AGCMs.,17: 699-710.

    Wang, B., Liu, J., Kim, H. J., Webster, P. J., and Yim, S. Y., 2012. Recent change of the global monsoon precipitation (1979–2008)., 39: 1123-1135.

    Weng, H., Ashok, K., Behera, S. K., Rao, S. A., and Yamagata, T., 2007. Impacts of recent El Ni?o Modoki on dry/wet conditions in the Pacific rim during boreal summer., DOI: 10.1007/ s00382-007-0234-0.

    Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010a. Global warming pattern formation: Sea surface temperature and rainfall., 23: 966-986.

    Xie, S. P., Du, Y., Huang, G., Zheng, X. T., Tokinaga, H., Hu, K., and Liu, Q., 2010b. Decadal shift in El Ni?o influences on Indo-western Pacific and East Asian climate in the 1970s., 23: 3352-3368.

    Xie, S. P., Xu, H., Saji, N. H., Wang, Y. Q., and Liu, W. T., 2006. Role of narrow mountains in large-scale organization of Asian monsoon convection., 19: 3420- 3429.

    Zickfeld, K., Knopf, B., Petoukhov, V., and Schellnhuber, H., 2005. Is the Indian summer monsoon stable against global change?, 32, L15707, DOI: 10.1029/2005GL022771.

    (Edited by Xie Jun)

    10.1007/s11802-013-2269-7

    ISSN 1672-5182, 2013 12 (2): 201-208

    . Tel: 0086-20-89023180 E-mail:duyan@scsio.ac.cn

    (January 5, 2013; revised February 20, 2013; accepted March 27, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    精品午夜福利在线看| 国内揄拍国产精品人妻在线| 国产高潮美女av| 国产女主播在线喷水免费视频网站 | 婷婷六月久久综合丁香| 91久久精品电影网| 亚洲电影在线观看av| 国语自产精品视频在线第100页| 婷婷亚洲欧美| 亚洲色图av天堂| 亚洲成人免费电影在线观看| 成人av一区二区三区在线看| 人人妻,人人澡人人爽秒播| 午夜福利18| 久久这里只有精品中国| 精品乱码久久久久久99久播| 色哟哟·www| 91在线精品国自产拍蜜月| videossex国产| 亚洲av不卡在线观看| 中文资源天堂在线| 亚洲精品日韩av片在线观看| 校园人妻丝袜中文字幕| 极品教师在线视频| 黄色配什么色好看| 男人舔女人下体高潮全视频| 最近中文字幕高清免费大全6 | 免费av不卡在线播放| 精华霜和精华液先用哪个| 极品教师在线免费播放| bbb黄色大片| 大又大粗又爽又黄少妇毛片口| 全区人妻精品视频| 他把我摸到了高潮在线观看| 99久久精品国产国产毛片| 久久久久精品国产欧美久久久| 伊人久久精品亚洲午夜| 少妇人妻一区二区三区视频| 欧美性感艳星| 中出人妻视频一区二区| 一个人看的www免费观看视频| 国产老妇女一区| 国语自产精品视频在线第100页| 亚洲 国产 在线| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器| 免费av观看视频| 亚洲av中文av极速乱 | 日本熟妇午夜| 99久久精品热视频| 久久九九热精品免费| 国产大屁股一区二区在线视频| 亚洲专区国产一区二区| 天堂动漫精品| 人妻少妇偷人精品九色| 国产在线男女| 日日啪夜夜撸| 国产黄色小视频在线观看| 成人二区视频| 久久久久国产精品人妻aⅴ院| 18禁黄网站禁片免费观看直播| 一夜夜www| 亚洲精品456在线播放app | 春色校园在线视频观看| 国产欧美日韩精品一区二区| 亚洲精品一区av在线观看| 舔av片在线| 在线免费观看不下载黄p国产 | 亚洲国产精品成人综合色| 一卡2卡三卡四卡精品乱码亚洲| 欧美精品啪啪一区二区三区| 久久久久久伊人网av| www.www免费av| 中文字幕人妻熟人妻熟丝袜美| 少妇高潮的动态图| 亚洲av免费在线观看| 国内精品宾馆在线| 亚洲av中文字字幕乱码综合| 精品人妻视频免费看| 一个人免费在线观看电影| 91精品国产九色| 日韩,欧美,国产一区二区三区 | 日韩大尺度精品在线看网址| 婷婷精品国产亚洲av在线| 亚洲最大成人av| 亚洲人成伊人成综合网2020| 日韩精品中文字幕看吧| 亚洲av美国av| 久久精品国产亚洲网站| 黄色一级大片看看| 亚洲国产欧洲综合997久久,| 日本撒尿小便嘘嘘汇集6| 亚洲性久久影院| 亚洲精品成人久久久久久| 亚洲国产精品成人综合色| 亚洲第一电影网av| 一区二区三区激情视频| 亚洲精品国产成人久久av| 97超级碰碰碰精品色视频在线观看| av在线亚洲专区| 国产真实伦视频高清在线观看 | 小说图片视频综合网站| 国产黄a三级三级三级人| 午夜激情欧美在线| 少妇熟女aⅴ在线视频| 国产一区二区在线观看日韩| 美女cb高潮喷水在线观看| 成人美女网站在线观看视频| 自拍偷自拍亚洲精品老妇| 精品免费久久久久久久清纯| 午夜久久久久精精品| 久久精品91蜜桃| 精品久久久久久久久av| 老司机午夜福利在线观看视频| 人妻制服诱惑在线中文字幕| 搡女人真爽免费视频火全软件 | 免费看美女性在线毛片视频| 1000部很黄的大片| 在线天堂最新版资源| 亚洲精品亚洲一区二区| 欧美bdsm另类| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久精品吃奶| 在线免费十八禁| 中文字幕免费在线视频6| 日日摸夜夜添夜夜添小说| 真人做人爱边吃奶动态| 国产精品1区2区在线观看.| 日韩精品青青久久久久久| 在线免费观看的www视频| 久久6这里有精品| 精品无人区乱码1区二区| 中文在线观看免费www的网站| .国产精品久久| 国产成年人精品一区二区| 简卡轻食公司| 老熟妇乱子伦视频在线观看| 麻豆国产97在线/欧美| 久久99热6这里只有精品| 亚洲av五月六月丁香网| 男女边吃奶边做爰视频| 国产精品久久电影中文字幕| 成年女人看的毛片在线观看| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 日本成人三级电影网站| 亚洲最大成人av| 一卡2卡三卡四卡精品乱码亚洲| 成人特级黄色片久久久久久久| 色哟哟·www| 亚洲精品456在线播放app | 亚洲av熟女| 天堂影院成人在线观看| av天堂在线播放| 欧美在线一区亚洲| 十八禁国产超污无遮挡网站| 村上凉子中文字幕在线| 嫁个100分男人电影在线观看| 国产精品野战在线观看| 久久婷婷人人爽人人干人人爱| 一本一本综合久久| 久久久久国产精品人妻aⅴ院| 国产精品国产三级国产av玫瑰| 简卡轻食公司| 波野结衣二区三区在线| 露出奶头的视频| 亚洲久久久久久中文字幕| 国产一区二区三区视频了| 狂野欧美激情性xxxx在线观看| 婷婷丁香在线五月| 大型黄色视频在线免费观看| 国模一区二区三区四区视频| 搡老熟女国产l中国老女人| 最近在线观看免费完整版| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| 一个人观看的视频www高清免费观看| 午夜久久久久精精品| 亚洲精品亚洲一区二区| 嫁个100分男人电影在线观看| 欧美高清成人免费视频www| avwww免费| 久久久久九九精品影院| 午夜精品一区二区三区免费看| 最好的美女福利视频网| 麻豆国产av国片精品| 欧美激情国产日韩精品一区| 亚洲18禁久久av| 日本撒尿小便嘘嘘汇集6| 波野结衣二区三区在线| 亚洲av一区综合| 午夜久久久久精精品| 欧美又色又爽又黄视频| 亚洲最大成人手机在线| 精品福利观看| 欧美性猛交╳xxx乱大交人| 日韩欧美国产在线观看| 亚洲乱码一区二区免费版| 中亚洲国语对白在线视频| 国产伦精品一区二区三区四那| 美女免费视频网站| 三级毛片av免费| 少妇高潮的动态图| 极品教师在线免费播放| 国产精品电影一区二区三区| 高清日韩中文字幕在线| 亚洲人成伊人成综合网2020| 国产一区二区三区视频了| 天美传媒精品一区二区| 天堂av国产一区二区熟女人妻| 午夜a级毛片| 一进一出抽搐动态| 看十八女毛片水多多多| 在线观看美女被高潮喷水网站| 国产又黄又爽又无遮挡在线| 精品久久久久久久久亚洲 | 亚洲欧美日韩无卡精品| bbb黄色大片| 欧美最新免费一区二区三区| 嫩草影院新地址| 人妻丰满熟妇av一区二区三区| 成人三级黄色视频| 麻豆成人午夜福利视频| 国产精品久久久久久久电影| 91久久精品国产一区二区成人| 啦啦啦韩国在线观看视频| 国产一区二区在线观看日韩| 国产亚洲欧美98| 精品一区二区三区视频在线观看免费| 欧美黑人巨大hd| 国产在线男女| 久久人人爽人人爽人人片va| 老司机福利观看| 老熟妇仑乱视频hdxx| 丝袜美腿在线中文| 国产精品不卡视频一区二区| 亚洲精品色激情综合| 91麻豆av在线| 午夜免费成人在线视频| 国产人妻一区二区三区在| 免费无遮挡裸体视频| 噜噜噜噜噜久久久久久91| 精品久久久久久久久久久久久| 国产av在哪里看| 亚洲四区av| 国产伦在线观看视频一区| 亚洲精品色激情综合| 成人亚洲精品av一区二区| 欧美+亚洲+日韩+国产| 日韩高清综合在线| 婷婷亚洲欧美| 久久久精品欧美日韩精品| 亚洲在线自拍视频| 免费电影在线观看免费观看| 欧美中文日本在线观看视频| 亚洲真实伦在线观看| 春色校园在线视频观看| 欧美精品啪啪一区二区三区| 一级毛片久久久久久久久女| 亚洲成av人片在线播放无| 美女高潮喷水抽搐中文字幕| 亚洲天堂国产精品一区在线| avwww免费| 在线看三级毛片| 国产午夜福利久久久久久| 亚洲aⅴ乱码一区二区在线播放| 真人做人爱边吃奶动态| 少妇的逼好多水| 精品人妻一区二区三区麻豆 | 国产极品精品免费视频能看的| 亚洲自偷自拍三级| 性插视频无遮挡在线免费观看| 别揉我奶头 嗯啊视频| 久久香蕉精品热| 免费av毛片视频| 久久国内精品自在自线图片| 亚洲在线自拍视频| 男女啪啪激烈高潮av片| 久久久久久国产a免费观看| 乱系列少妇在线播放| 麻豆一二三区av精品| 欧美+亚洲+日韩+国产| 免费大片18禁| 性欧美人与动物交配| 国产毛片a区久久久久| 国内揄拍国产精品人妻在线| 性色avwww在线观看| 日本一本二区三区精品| 22中文网久久字幕| 18禁在线播放成人免费| 亚洲久久久久久中文字幕| 男人舔奶头视频| 丝袜美腿在线中文| 人人妻人人看人人澡| 亚洲av成人av| 日韩大尺度精品在线看网址| 亚洲熟妇中文字幕五十中出| 天堂网av新在线| 色综合亚洲欧美另类图片| 国产精品伦人一区二区| 无遮挡黄片免费观看| 非洲黑人性xxxx精品又粗又长| 麻豆久久精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 伊人久久精品亚洲午夜| 嫩草影院新地址| 搡老熟女国产l中国老女人| 琪琪午夜伦伦电影理论片6080| 亚洲在线观看片| 久久久久久伊人网av| 亚洲人成网站在线播| 亚洲精品日韩av片在线观看| 中出人妻视频一区二区| eeuss影院久久| 女人被狂操c到高潮| 97碰自拍视频| 可以在线观看的亚洲视频| 色哟哟哟哟哟哟| a在线观看视频网站| 国产精品98久久久久久宅男小说| 久久亚洲真实| h日本视频在线播放| 欧美成人性av电影在线观看| 久久久久免费精品人妻一区二区| 久久久精品欧美日韩精品| 天堂av国产一区二区熟女人妻| 亚洲国产欧洲综合997久久,| 国产aⅴ精品一区二区三区波| 成人国产麻豆网| 精品午夜福利视频在线观看一区| 亚洲自拍偷在线| 日本撒尿小便嘘嘘汇集6| 欧美+亚洲+日韩+国产| 乱系列少妇在线播放| 麻豆久久精品国产亚洲av| 国产亚洲精品久久久com| 免费av不卡在线播放| 免费人成视频x8x8入口观看| 国产精品一区二区三区四区免费观看 | 特级一级黄色大片| 亚洲av一区综合| 尾随美女入室| 国产一区二区在线av高清观看| 性欧美人与动物交配| 国产午夜福利久久久久久| 国产高清有码在线观看视频| 欧美激情久久久久久爽电影| 少妇猛男粗大的猛烈进出视频 | 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 波多野结衣巨乳人妻| 色哟哟·www| 窝窝影院91人妻| 十八禁网站免费在线| 日本一本二区三区精品| 波多野结衣高清作品| 亚洲在线自拍视频| 国产黄a三级三级三级人| 中文字幕久久专区| 欧美一区二区国产精品久久精品| 国产亚洲精品综合一区在线观看| a级毛片免费高清观看在线播放| 国产av麻豆久久久久久久| 久久人人爽人人爽人人片va| 麻豆一二三区av精品| 久久精品综合一区二区三区| 日韩在线高清观看一区二区三区 | 精品一区二区三区av网在线观看| 哪里可以看免费的av片| 赤兔流量卡办理| 成年女人永久免费观看视频| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 18+在线观看网站| or卡值多少钱| 不卡视频在线观看欧美| 69av精品久久久久久| 免费无遮挡裸体视频| 男女视频在线观看网站免费| 在线观看66精品国产| 最后的刺客免费高清国语| 熟女电影av网| 亚洲四区av| 人妻夜夜爽99麻豆av| 在线免费十八禁| 亚洲专区中文字幕在线| 麻豆精品久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 女人被狂操c到高潮| 亚洲成人中文字幕在线播放| 欧美国产日韩亚洲一区| 美女黄网站色视频| 啦啦啦韩国在线观看视频| 男女边吃奶边做爰视频| 国产午夜精品论理片| 搡老妇女老女人老熟妇| 精品福利观看| 毛片女人毛片| 午夜福利高清视频| aaaaa片日本免费| 免费看a级黄色片| 啦啦啦啦在线视频资源| 最新中文字幕久久久久| 观看免费一级毛片| 精品久久国产蜜桃| 国产成人一区二区在线| 99久久无色码亚洲精品果冻| 成人特级黄色片久久久久久久| 久久午夜亚洲精品久久| 欧美日韩黄片免| 在线免费十八禁| 波多野结衣高清无吗| 最新在线观看一区二区三区| 少妇丰满av| 在线播放国产精品三级| 久久人人爽人人爽人人片va| netflix在线观看网站| 在线观看美女被高潮喷水网站| 亚洲国产精品合色在线| 最后的刺客免费高清国语| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产色片| 久久人人精品亚洲av| 人妻久久中文字幕网| 国产高清激情床上av| 最近最新中文字幕大全电影3| 欧美黑人欧美精品刺激| 午夜视频国产福利| 在线观看美女被高潮喷水网站| 欧美激情久久久久久爽电影| 高清毛片免费观看视频网站| 国产高潮美女av| 亚洲欧美激情综合另类| 精品久久久久久久久亚洲 | 欧美日韩中文字幕国产精品一区二区三区| 成人永久免费在线观看视频| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 99精品久久久久人妻精品| 午夜免费成人在线视频| 亚洲久久久久久中文字幕| 精品乱码久久久久久99久播| 中文字幕高清在线视频| 午夜亚洲福利在线播放| 在线观看免费视频日本深夜| av女优亚洲男人天堂| av中文乱码字幕在线| 午夜福利成人在线免费观看| 我的女老师完整版在线观看| a级一级毛片免费在线观看| 一级毛片久久久久久久久女| 三级男女做爰猛烈吃奶摸视频| 禁无遮挡网站| 国产三级中文精品| 亚洲av电影不卡..在线观看| 午夜福利欧美成人| 日本黄色片子视频| 国产爱豆传媒在线观看| 亚洲中文字幕日韩| 麻豆成人午夜福利视频| 亚洲乱码一区二区免费版| 亚洲男人的天堂狠狠| 亚州av有码| 国产在线男女| 久久久久久久精品吃奶| 国产一区二区三区视频了| 亚洲欧美激情综合另类| 国产高清激情床上av| 天堂网av新在线| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看| 1024手机看黄色片| 亚洲欧美日韩无卡精品| 国产综合懂色| 国产私拍福利视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久久久久伊人网av| av黄色大香蕉| 久久精品国产清高在天天线| 色尼玛亚洲综合影院| 黄色女人牲交| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 真实男女啪啪啪动态图| 男人舔女人下体高潮全视频| 成年免费大片在线观看| 亚洲av中文av极速乱 | 1000部很黄的大片| 午夜福利视频1000在线观看| 波野结衣二区三区在线| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区| 国产伦人伦偷精品视频| 国产伦在线观看视频一区| 极品教师在线免费播放| 亚洲午夜理论影院| 色哟哟·www| 国产精品电影一区二区三区| 久久精品影院6| 99热精品在线国产| 亚洲av成人av| 99精品在免费线老司机午夜| 国产欧美日韩精品亚洲av| 国产探花在线观看一区二区| 亚洲av美国av| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久av| 精品国内亚洲2022精品成人| 18禁在线播放成人免费| 欧美日韩综合久久久久久 | 中文亚洲av片在线观看爽| 精品无人区乱码1区二区| 搡女人真爽免费视频火全软件 | 日韩,欧美,国产一区二区三区 | 亚洲乱码一区二区免费版| 黄色丝袜av网址大全| 久久久久久久午夜电影| 免费无遮挡裸体视频| 国产真实乱freesex| 婷婷色综合大香蕉| 人妻丰满熟妇av一区二区三区| 国产伦人伦偷精品视频| 国产一区二区三区视频了| 欧美3d第一页| 99热只有精品国产| 老司机深夜福利视频在线观看| 国产亚洲精品久久久com| 国产午夜精品久久久久久一区二区三区 | 国产精品美女特级片免费视频播放器| 五月伊人婷婷丁香| 精品国内亚洲2022精品成人| 丝袜美腿在线中文| 在线观看av片永久免费下载| 成人亚洲精品av一区二区| 九色成人免费人妻av| 国产探花极品一区二区| 午夜精品在线福利| 国产真实伦视频高清在线观看 | 我要搜黄色片| 不卡一级毛片| 女的被弄到高潮叫床怎么办 | 熟妇人妻久久中文字幕3abv| 午夜精品在线福利| 欧美日韩精品成人综合77777| 大又大粗又爽又黄少妇毛片口| 国产高清有码在线观看视频| 91久久精品电影网| 蜜桃亚洲精品一区二区三区| 亚洲国产欧洲综合997久久,| 欧美激情久久久久久爽电影| 可以在线观看的亚洲视频| 搡女人真爽免费视频火全软件 | 亚洲色图av天堂| 51国产日韩欧美| 国产免费av片在线观看野外av| 赤兔流量卡办理| 在线观看午夜福利视频| 久久人人精品亚洲av| 精品一区二区三区av网在线观看| 国产高清有码在线观看视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品乱码久久久v下载方式| 淫秽高清视频在线观看| 国产精品久久久久久久电影| 老司机午夜福利在线观看视频| 天堂√8在线中文| 伦理电影大哥的女人| 热99re8久久精品国产| 香蕉av资源在线| 久久久久久久久久成人| 久久午夜亚洲精品久久| 在线观看一区二区三区| 午夜免费男女啪啪视频观看 | 久久久久久久亚洲中文字幕| 精品免费久久久久久久清纯| 午夜福利高清视频| 又爽又黄a免费视频| 一级毛片久久久久久久久女| av在线蜜桃| 亚洲avbb在线观看| 中文字幕熟女人妻在线| 成人特级黄色片久久久久久久| 国产精品久久久久久久久免| 变态另类丝袜制服| 国产毛片a区久久久久| 美女 人体艺术 gogo| 久久久久久伊人网av| 国产免费男女视频| 国产精品一区www在线观看 | 国产精品人妻久久久久久| 美女cb高潮喷水在线观看| 婷婷色综合大香蕉| 赤兔流量卡办理| 春色校园在线视频观看| 国产不卡一卡二| 小蜜桃在线观看免费完整版高清| 亚洲欧美清纯卡通| 午夜福利欧美成人| 日韩在线高清观看一区二区三区 | 欧美最新免费一区二区三区| 啦啦啦啦在线视频资源| 变态另类丝袜制服| 女同久久另类99精品国产91| 中出人妻视频一区二区| a级毛片免费高清观看在线播放| 全区人妻精品视频| 欧美日韩亚洲国产一区二区在线观看| a级毛片a级免费在线| 免费观看在线日韩| 国产精品久久电影中文字幕| 国产精品精品国产色婷婷| 12—13女人毛片做爰片一| 又爽又黄a免费视频| 69人妻影院| 99国产极品粉嫩在线观看|