• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Southern Ocean SST Variability and Its Relationship with ENSO on Inter-Decadal Time Scales

    2013-07-28 09:04:24YANLiDUYanandZHANGLan
    Journal of Ocean University of China 2013年2期

    YAN Li, DU Yan*, and ZHANG Lan

    ?

    Southern Ocean SST Variability and Its Relationship with ENSO on Inter-Decadal Time Scales

    YAN Li, DU Yan, and ZHANG Lan

    ,,,510301,

    Empirical orthogonal function (EOF) analysis reveals a co-variability of Sea surface temperatures (SSTs) in the Southern Hemisphere (0?–60?S). In the South Indian and Atlantic Oceans, there is a subtropical dipole pattern slanted in the southwest-northeast direction. In the South Pacific Ocean, a meridional tripole structure emerges, whose middle pole co-varies with the dipoles in the South Indian and Atlantic Oceans and is used in this study to track subtropical Pacific variability. The South Indian and Atlantic Ocean dipoles and the subtropical Pacific variability are phase-locked in austral summer. On the inter-decadal time scales, the dipoles in the South Indian and Atlantic Oceans weaken in amplitude after 1979/1980. No such weakening is found in the subtropical South Pacific Ocean. Interestingly, despite the reduced amplitude, the correlation of the Indian Ocean and Atlantic dipoles with El Ni?o and Southern Oscillation (ENSO) are enhanced after 1979/1980. The same increase in correlation is found for subtropical South Pacific variability after 1979/1980. These inter-decadal modulations imply that the Southern Hemisphere participates in part of the climate shift in the late 1970s. The correlation between Southern Hemisphere SST and ENSO reduces after 2000.

    Southern Ocean SST; ENSO; subtropical dipole; inter-decadal time scales

    1 Introduction

    In recent years, subtropical dipoles were found in the middle latitude of the Southern Ocean. One is the dipole pattern in the South Indian Ocean (SIOD) (Behera and Yamagata, 2001). The other is the sea surface temperature (SST) dipole pattern in the South Atlantic Ocean (SAOD) (Venegas, 1997, Nnamchi, 2011). Wang (2010a) found two sets of dipole-like pattern in the South Pacific. The eastern SST dipole is referred to as the subtropical dipole mode in the South Pacific Ocean (Huang and Shukla, 2006; Wang, 2010a). Note that this pattern in the South Pacific Ocean (Wang, 2010a) is a coupled mode derived from SST and wind field by the Singular Vector Decomposition (SVD). As the leading pattern, it explains about 10%/9% covariance in ERA-40/NCEP reanalysis. The dipole is the most important inter-annual signal in the southern subtropics. Such SST dipole events could have an impact on the rainfall over the subtropical continents by modulating atmospheric circulation and convection (Reason, 2001; De Almeida, 2007).

    For the SST pattern, a few studies highlighted that dipoles only exist in the South Atlantic and Indian Oceans, concurring with each other (Fauchereau, 2003; Ter-ray, 2011). Meanwhile a meridional tripole pattern exists in the South Pacific Ocean (Terray, 2011), whose middle pole (hereafter the single pole) in this study is used to track subtropical Pacific variability. South Pacific SST tripole pattern is different from the dipole pattern in the South Atlantic and Indian Oceans. This is probably due to the wider Pacific zonal basin.

    A positive (negative) phase of dipole mode is featured by warm (cool) SST anomalies in the southwest and by cool (warm) SST anomalies in the northeast of the South Indian and Atlantic Oceans, respectively. For the formation of dipole, sea-level air pressure anomalies modulate wind anomalies, which makes an SST dipole. In the South Indian/Atlantic Ocean, a positive dipole is produced by strengthened Mascarene/St Helena anticyclone, and vice versa for a negative dipole (Fauchereau, 2003). During the positive event, over the cool pole, stronger anticyclones lead to southeasterlies west of Australia and southern Afria, resulting in increase of evaporation and upper-ocean mixing. The anomalous winds induce offshore Ekman transport and coastal upwelling. All those factors tend to decrease SST in the region. Over the warm pole, anomalous anticyclones induce the decrease of westerlies, which reduces evaporation and upper-ocean mixing and then favors the SST warming (Hermes and Reason, 2005; Wang, 2010a).

    So far, the relationshipbetweendipoleandENSOis still not clear. Early studies suggest that the SIODandENSOareindependent of each other(Behera andYamagata, 2001) or only a weak lead-lag relationship exists (Fauchereau, 2003). Hermes and Reason (2005) showed thatSSTsignal of SIOD/SAODleadsNi?o-3.4 index by about 4/1.5 months. Recent studiesrevealed that the Ni?o-3.4 SST index lags the subtropical dipole by 9–10 months after the mid 1970s’ climate shift (Terray and Dominiak, 2005; Terray, 2011). If so,the subtropicaldipolecan bea good predictor ofENSO.

    However, almost no study pays attention to the subtropical SST variability in strength. Besides, the relationship between the subtropical South Pacific and ENSO has seldom been considered. This paper aims to answer the following questions: how the SST variability in strength varies on inter-decadal scales in these individual Oceans and the entire Southern Ocean? On what time scale, the South Pacific, South Atlantic and Indian Oceans relate with ENSO, and what is the relationship between them? Evidences from reanalysis data will be used to answer these questions in this paper.

    2 Data and Methods

    2.1 Data

    The dataset of National Oceanic and Atmospheric Administration (NOAA) Extended Reconstructed Sea Surface Temperature (ERSST) V3b (Smith, 2008; Xue, 2003) is used in this study. It is a global monthly SST analysis from 1854 to the present, derived from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) data (Woodruff, 2011) with missing data filled in by statistical methods, with a 2.0? latitude by 2.0? longitude resolution.

    The National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-1 surface wind (Kalnay, 1996; Kistler, 2001) is used in this paper. It is a global monthly, 0.995 sigma level wind data from 1948 to the present, with a 2.5?×2.5? horizontal resolution.

    2.2 Methods

    In order to extract the spatial patterns of variability, Empirical orthogonal function (EOF) analyses of the SST anomalies during 1948 and 2010 are performed on South Indian Ocean (30?E–120?E, 60?S–0?), South Atlantic Ocean (60?W–20?E, 60?S–0?), South Pacific Ocean (150?E–70?W, 60?S–0?), and the entire southern middle latitude ocean (0?–358?E, 60?S–0?). In the subtropics of the Southern Hemisphere, SST has the maximum variability in austral summer (Suzuki, 2004), under the weaker winds and stronger solar radiation over this region. In the light of such a seasonality, previous studies about subtropical SST variability focus on January-February-March (JFM, Fauchereau, 2003; Wang, 2010a; Terray, 2011). We follow this convention and do a seasonal EOF of SST anomalies and wind anomalies in the JFM season. An annual EOF of SST anomalies is performed to make a confirmation. By EOF, key areas of dipoles or single pole are identified.

    A 21-year running root mean square (RMS) represents the strength of the dipoles or individual pole. The 21-year running correlation coefficients between Ni?o-3.4 index and each specific SST index are calculated to represent the lead-lag correlation between ENSO events and Southern Ocean SST variability. Regression coefficients of tropical Pacific SST with each specific Southern Ocean SST index before and after the climate shift are calculated respectively, too. Before the calculations (EOF, 21-year running RMS,), a detrend and a 4–120 months band pass filtering are applied.

    3 Results

    3.1 Spatial Pattern

    Seasonal EOF (Fig.1) shows a SST dipole pattern in the Southern Indian (Fig.1a) and Atlantic Oceans (Fig.1b), respectively. There is a meridional tripole pattern in the Southern Pacific Ocean (Fig.1c). The SST EOF1 spatial patterns (JFM) are consistent with Terray (2011) EOF1 pattern for December-January (DJ) and February-March (FM) months. In the EOF analysis for the entire Southern Ocean (SO), the first mode (Fig.1d) exhibits the same spatial distribution as patterns derived from individual ocean basins. The correlation of the time coefficients illustrates that such SST anomaly patterns change synchronously (Table 1). Specifically, when there is a positive SIOD/SAOD, there is a warm SSTa pole in the subtropical southern Pacific and two cool SSTa poles in the equatorial region and higher latitudes (Fig.1d).

    Table 1 Cross-correlation between the time coefficients of seasonal EOF1

    Note: Cross-correlation between the time coefficients of the leading EOF modes (EOF1) of the South Indian (IO), Atlantic (AO), Pacific (PO) Oceans and the entire Southern Ocean (SO) SSTa during January-February-March season for the 1948–2010 period.

    The synchronization of the three basins’ SST change reflects the oceanic response to the climatic wavenumber-3 anticyclonic winds and the anomalous wavenumber-4 anticyclonic winds (Fauchereau, 2003; Sterl and Hazeleger, 2003; Hermes and Reason, 2005; Wang, 2010a). Our results confirm this point. The leading mode of seasonal EOF for wind anomalies shows that SST dipole is mainly caused by the anticyclonic winds respectively in the South Indian (Fig.1a) and Atlantic (Fig.1b) Oceans. Meanwhile, in the South Pacific (Fig.1c), the single pole is not directly induced by wind anomalies. The distribution of EOF1 of wind anomalies in the Southern Ocean (Fig.1d) is consistent with that of each individual basin. Our results illustrated that the dipole and related anticyclonic winds are not only the dominant coupled mode as shown in previous work (Wang, 2010a), but also the dominant uncoupled mode in the subtropical latitudes. In addition, it is indicated that a positive Wind-Evaporation-SST (WES) feedback (Xie, 1993a, b) is partly responsible for the subtropical dipole SST pattern (Wang, 2010b). Note that Terray’s (2011) and Wang’s (2010a) EOF/SVD domains do not include the area 0?–10?S. In the present study, subtropical dipoles are still the most significant signal even if such tropical regions are included in the Indian and Atlantic Oceans. Basically, the annual EOF results show the same pattern as those from the seasonal EOF: dipole mode in the Indian and Atlantic Oceans, tripole mode in the Pacific Ocean. In the tropical Atlantic Ocean there is an ‘El Ni?o-like’ signal (Fig.2b) similar to that in the Pacific Ocean. In the Indian Ocean, the subtropical SST variability is stronger than that in tropics, since subtropical dipole accounts for a dominant mode throughout the year (Fig.2a).

    The variance contributions of the two leading EOF modes for seasonal/annual EOF suggest that dipole is the typical mode in the South Indian Ocean and Atlantic Ocean (Tables 2 and 3). Furthermore, in the Indian Ocean, the dipole is more typical than in the Atlantic Ocean. In seasonal EOF analysis, for the South Indian Ocean, the dipole mode (, EOF1) accounts for 31% variance contribution, larger than EOF2’s 12% variance contribution, by 19% (Table 2). For the South Atlantic Ocean, variance contribution of EOF1 is larger than that of EOF2 by only 9% (Table 2). In annual EOF analysis, the variance difference between EOF1 and EOF2 is 8% (20% minus 12%) and 5% (19% minus 14%) for Indian and Atlantic Ocean respectively (Table 3). Hence, annual EOF analysis (Table 3) also supports that dipole in the South Indian Ocean is more typical than in the South Atlantic Ocean.

    Fig.1 Spatial pattern of seasonal (January-February-March) EOF1 (leading mode) for (a) the southern Indian Ocean (b) southern Atlantic Ocean (c) southern Pacific Ocean and (d) southern Ocean SST anomalies (shadings and contours)/wind anomalies (vectors) during the 1948–2010 period. The positive-negative SST anomalies correspond to positive SIOD/SAOD/SPO events. Black boxes denote the area with large SST variability.

    Fig.2 Same as in Fig.1, but for annual EOF1, without wind anomalies.

    In order to quantify such dipoles and single pole, large SST variability (black boxes in Figs.1 and 2 denote the region) is averaged to form an index. SIOD index is obtained from the SST anomaly difference between the western (45?E–75?E, 50?S–33?S) and eastern (82?E–108?E, 36?S–18?S) subtropical Indian Ocean, then it is divided by 2. Similarly, SAOD index is obtained from the SST anomaly difference between the western (35?W–6?W, 52?S–32?S) and eastern (22?W–10?E, 30?S–16?S) subtropical Atlantic Ocean. South Pacific (SP) index is the average of the SST anomaly in the region (200?E–260?E, 38?S–24?S). We also construct a Southern Ocean (SO) index, which is the mean of SIOD, SAOD and SPO indices.

    Table 2 Seasonal EOF variance contribution of EOF1 and EOF2

    Note: Seasonal EOF variance contribution of the first and second leading EOF modes (EOF1 & EOF2) of the South Indian (IO), Atlantic (AO), Pacific (PO) Oceans and the entire Southern Ocean (SO) SSTa during January-February-March season for the 1948–2010 period.

    Table 3 Annual EOF variance contribution of EOF1 and EOF2

    Note: Same as in Table 2, but for annual EOF.

    3.2 Decadal Variation in Amplitude of the Dipole and Single Pole

    The 21-year running RMSs of SIOD, SAOD, and SPO indices indicate that the two dipoles are phase-locked in JFM,, the austral summer (Fig.3), consistent with previous studies and the EOF analysis above. Both SIOD and SAOD weaken in amplitude after the 1980s (Figs.3a and 3b). Strength of SSTa variability in the subtropical South Pacific (represented by a single pole area) has little change before and after the 1980s (Fig.3c). The maximum of RMS of SPO index exhibits a sign of moving to March-April after the 1980s (Fig.3c). Further, Fig.4 gives the 21-year running RMS of the western and eastern pole of the dipoles. Results show that the weakening of SIOD is mainly attributed to the weakening of its western pole (Fig.4a). Strength of SIOD’s eastern pole keeps stable (Fig.4b). Meanwhile both the western pole (Fig.4c) and eastern pole (Fig.4d) of SAOD are on the wane.

    Fig.4 Twenty-one-year running RMS for (a) SIOD west pole, (b) SIOD east pole, (c) SAOD west pole, and (d) SAOD east pole indices. The years on x-axis denote the centers of sliding windows.

    3.3 Decadal Shift of the Southern Ocean SST Relationship with ENSO

    Fig.5 shows the 21-year running correlation of SIOD, SAOD, SPO, and SO indices with the November(0)–January(1) (ND(0)J(1)) Ni?o-3.4 SST index, as a function of year and calendar month. Note that all the months of-axis in Fig.5 belong to year(0). The years of-axis in Fig.5 denote the centers of sliding windows;, 1958 represents the correlation in the 21-year sliding window of 1948–1968. Fig.5a indicates that the correlation of SIOD leading ENSO by 9–11 months is enhanced after the 1980s. Subtropical Indian Ocean SSTs in January(0)–March(0) (JFM(0)) are highly correlated with ENSO after the 1980s; meanwhile there is no such relationship before the 1980s (Fig.5a). For SAOD and SPO, their relationship with ENSO has a similar decadal shift, except that the year SAOD/SPO-ENSO lead-lag relationship becomes closer slightly later than SIOD (Figs.5b and 5c). In addition, SAOD and ENSO events have a strong synchronous negative-correlation after the 1980s (Fig.5b). For all years, SPO and ENSO events naturally have a strong synchronous negative-correlation (Fig.5c). These reflect the basin differences among the three oceans.

    Southern Ocean JFM(0) SST indices and ND(0)J(1) Ni?o-3.4 index are shown in Fig.6. Before the 1980s, SST variations in subtropical southern hemisphere seem independent of ENSO. After the 1980s, ENSO warm/cold events tend to lag by 9–11 months behind the positive/negative SIOD/SAOD/SPO events (Figs.6a, 6b and 6c). Take SIOD as an example, in years 1982, 1986, and 1997, positive SIOD appears in JFM(0), El Ni?o events occur later in ND(0)J(1); meanwhile in years 1984, 1988, and 1995, La Ni?a events occur 10 months later following negative SIOD events (Fig.6a). However, this strong lead-lag correlation weakens after year 2000. As for the amplitude of correlation, before the 1980s, SAOD and ENSO have a low value (only 0.02); afterwards, it rises to 0.43 (Fig.6b). Correlation of southern SST and Ni?o-3.4 SST index has a similar decadal shift,, from 0.15 to 0.36 for SIOD (Fig.6a), and from 0.1 to 0.5 for SPO (Fig.6c).

    Fig.5 Twenty-one-year running correlation of ND(0)J(1) Ni?o-3.4 index with SST indices: (a) SIOD, (b) SAOD, (c) SPO, and (d) SO. On y-axis, the month 1 represents January(0), the month 12 represents December(0). The years on x-axis denote the centers of sliding windows.

    Fig.6 ND(0)J(1) Ni?o-3.4 index (red line) and JFM(0) Southern Ocean SST indices (blue line): (a) SIOD index, (b) SAOD index, (c) SPO index, and (d) SO index. In the upper left corner of each sub-figure, correlation between Ni?o-3.4 index and southern SST index is shown for pre-epoch (1948–1979) and post-epoch (1980–2010).

    Through the regressions, we found the impact of Southern Ocean SST on the tropical Pacific SST 9–11 months later. Assume regression equation is=, whererepresents the independent variable (, SIOD index),the dependent variable (tropical Pacific SST),the regression coefficient. Fig.7 shows that before the 1980s, regression is very low (<0.6) over the entire Pacific region whatever upon the SIOD, SAOD or SPO index; after the 1980s, regression can reach 2.5. In Ni?o-3.4 region, regression ranges from 1 to 2.5. In other words, after the climate shift, ENSO can be predicted 9–11 months in advance through the variation in Southern Ocean SST.

    Fig.7 Regression of ND(0)J(1) tropical Pacific SST anomalies (℃) upon JFM(0) southern SST index: (a)–(b) SIOD index, (c)–(d) SAOD index, and (e)–(f) SPO index. The left column shows the pre-epoch (1948–1979), the right column the post-epoch (1980–2010).

    4 Summary and Discussion

    Our analysis found that after the abrupt climate change, subtropical dipoles lead ENSO by 9–11 months. This result confirms those from previous study of Terray (2011). In the post-climate-change epoch, the way for the southern SSTa to influence ENSO is not clear. Tropical southeast Indian Ocean is part of SIOD, this region may play an important role in Southern Ocean SSTa influencing ENSO. At the same time, it is worth noting that ENSO itself experiences an abrupt climate change. Before the climate shift, SST anomalies first emerge near the western coast of South American, and then propagate westward. After the climate shift, SST anomalies first emerge in the central equatorial Pacific, and then propagate eastward to reach the western coast of South American (Wang, 1995). In addition, after the mid-1970s, the frequency of the occurrence of El Ni?o Modoki (or Central Pacific El Ni?o) increases (Yeh, 2009). Those changes for ENSO as well as the SIOD decadal variations may be part of the global decadal variation.

    For the dipole pattern in the southern Oceans, the SIOD shows the strongest variability (Table 2 and Fig.3). The EOF1 mode, SIOD, in Indian Ocean accounts for the largest variance contribution, 31%, while it is 24% for SAOD (Table 2). The former also has larger RMS variation (Figs.3a and 3b). There is an abrupt shift for the strength of SIOD and SAOD in the 1980s (Figs.3a and 3b). Meanwhile the strength of the single pole in the south Pacific is almost unchanged (Fig.3c). As a whole, the evolution of dipoles and single pole in the Southern Oceans is considered to be the oceanic response to the anti- cyclonic winds associated with the subtropical high-pressure system (Fauchereau, 2003; Sterl and Hazeleger, 2003; Hermes and Reason, 2005; Wang, 2010a).

    Although the strength of SIOD and SAOD weaken after the late 1970s, their relationships with ENSO are enhanced (Figs.5, 6 and 7). In addition, South Pacific and ENSO correlation has a decadal shift, which is enhanced in recent decades. The lead-lag relationship between the Southern Ocean SST and ENSO helps to make climate prediction (Fig.7). Interestingly, such high correlation seems reduced after 2000 (Fig.6). Take the South Indian Ocean for an example, SIOD and ENSO events tend to occur independently after year 2000 (, 2001, 2005, 2006, and 2007) (Fig.6a). SAOD and SPO show similar tendency (Figs.6b and 6c). Such reduction of relationship may be associated with decadal background, such as Pacific Decadal Oscillation (PDO) (Mantua, 1997, Deser, 2010). For PDO mode, it has a negative-phase from 1947–1976, and turns to positive-phase from 1977–1998, then to a rather weaker negative phase (Deser, 2010). Note that PDO’s negative-phase corresponds to the period that the southern Ocean SST and ENSO have weak relationship, and vice versa. It is not clear whether PDO is modulated by the global warming. We will work on these interesting issues to enhance our understanding on air-sea interaction in the tropical and subtropical Indo-Pacific region.

    Acknowledgements

    This work is jointly supported by the National Basic Research Program (2012CB955603, 2010CB950302), National High Technology Research and Development Program of China (No. 2010AA012304), and the Knowledge Innovation Program of the Chinese Academy of Sciences (SQ201006 and XDA05090404).

    Behera, S. K., and Yamagata, T., 2001. Subtropical SST dipole events in the southern Indian Ocean., 28: 327-330, DOI: 10.1029/2000GL011451.

    De Almeida, R. A. F., Nobre, P., Haarsma, R. J., and Campos, E. J. D., 2007. Negative ocean–atmosphere feedback in the South Atlantic Convergence Zone., 34, L18809, DOI: 10.1029/2007GL030401.

    Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S., 2010. Sea surface temperature variability: Patterns and mechanisms.,2: 115-43.

    Fauchereau, N., Trzaska, S., Richard, Y., Roucou, P., and Camberlin, P., 2003. SST co-variability in the southern Atlantic and Indian Oceans and its connections with the atmospheric circulation in the Southern Hemisphere., 23: 663-677.

    Hermes, J. C., and Reason, C. J. C., 2005. Ocean model diagnosis of interannual coevolving SST variability in the South Indian and South Atlantic Oceans., 18: 2864-2882.

    Huang, B., and Shukla, J., 2006. Interannual SST variability in the southern subtropical and extra-tropical ocean.223. Center for Ocean-Land-Atmosphere Studies (COLA), Calverton, Maryland, 20pp.

    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project., 77: 437-470.

    Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V.,

    van den Dool, H., Jenne, R., and Fiorino, M., 2001. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation., 82: 247-267.

    Mantua, N., Hare, S. J., Zhang, Y., Wallace, J. M., and Francis, R. C., 1997. A Pacific interdecadal oscillation with impacts on salmon production., 78: 1069-1079.

    Nnamchi, H. C., Li, J., and Anyadike, R. N. C., 2011. Does a dipole mode really exist in the South Atlantic Ocean?, 116, D15104, DOI: 10.1029/2010JD015579.

    Reason, C. J. C., 2001. Subtropical Indian Ocean SST dipole events and southern African rainfall., 28: 2225-2227, DOI: 10.1029/2000GL012735.

    Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J., 2008. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006)., 21: 2283-2296.

    Sterl, A., and Hazeleger, W., 2003. Coupled variability and air-sea interaction in the South Atlantic Ocean.,21: 559-571.

    Suzuki, R., Behera, S. K., Iizuka, S., and Yamagata, T., 2004. Indian Ocean subtropical dipole simulated using a coupled general circulation model., 109, C09001, DOI: 10.1029/2003JC001974.

    Terray, P., 2011. Southern Hemisphere extra-tropical forcing: a new paradigm for El Ni?o-Southern Oscillation., 36: 2171-2199.

    Terray, P., and Dominiak S., 2005. Indian Ocean sea surface temperature and El Ni?o-Southern Oscillation: a new perspective., 18: 1351-1368.

    Venegas, S. A., Mysak, L. A., and Straub, D. N., 1997. Atmosphere–ocean coupled variability in the South Atlantic., 10: 2904-2920.

    Wang, B., 1995. Interdecadal changes in El Ni?o onset in the last four decades., 8: 267-285.

    Wang, F., 2010a. Subtropical dipole mode in the Southern Hemisphere: A global view., 37, L10702, DOI: 10.1029/2010GL042750.

    Wang, F., 2010b. Thermodynamical coupled modes in the tropical atmosphere–ocean: An analytical solution., 67: 1667-1677, DOI: 10.1175/2009JAS3262.1.

    Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Freeman, J. E., Berry, D. I., Brohan, P., Kent, E. C., Reynolds, R. W., Smith, S. R., and Wilkinson, C., 2011. ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive., 31: 951-967.

    Xie, S. P., Kubokawa, A., and Hanawa, K., 1993a. Evaporation-wind feedback and the organizing of tropical convection on the planetary scale. Part I: Quasi-linear instability., 50: 3873-3883.

    Xie, S. P., Kubokawa, A., and Hanawa, K., 1993b. Evaporation-wind feedback and the organizing of tropical convection on the planetary scale. Part II: Nonlinear evolution., 50: 3884-3893.

    Xue, Y., Smith, T. M., and Reynolds, R. W., 2003. Interdecadal changes of 30-yr SST normals during 1871–2000., 16: 1601-1612.

    Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H, Kirtman, B. P., and Jin, F. F., 2009. El Ni?o in a changing climate., 461: 511-514.

    (Edited by Xie Jun)

    10.1007/s11802-013-2262-1

    ISSN 1672-5182, 2013 12 (2): 287-294

    . Tel: 0086-20-89023180 E-mail:duyan@scsio.ac.cn

    (January 5, 2013; revised February 16, 2013; accepted March 18, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    99久久成人亚洲精品观看| 欧美日韩在线观看h| 国产男人的电影天堂91| 99久久无色码亚洲精品果冻| 亚洲不卡免费看| 国产亚洲精品av在线| 久久久久久九九精品二区国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久热精品热| 少妇的逼好多水| 亚洲va在线va天堂va国产| 蜜桃久久精品国产亚洲av| 国产精品99久久久久久久久| 波多野结衣高清无吗| 久久久久久伊人网av| 一区二区三区四区激情视频| 内地一区二区视频在线| 白带黄色成豆腐渣| 99热网站在线观看| 国产在视频线精品| 国产探花在线观看一区二区| 国产极品精品免费视频能看的| 亚洲综合色惰| 一本一本综合久久| av专区在线播放| 夫妻性生交免费视频一级片| 我的女老师完整版在线观看| 日韩亚洲欧美综合| 亚洲第一区二区三区不卡| 亚洲,欧美,日韩| 汤姆久久久久久久影院中文字幕 | 久久久久久国产a免费观看| 亚洲国产最新在线播放| 亚洲精品一区蜜桃| 亚洲国产高清在线一区二区三| 精品久久久久久电影网 | 日本-黄色视频高清免费观看| 亚洲伊人久久精品综合 | 国产伦在线观看视频一区| 日韩精品青青久久久久久| 色哟哟·www| 久久久久网色| 男人狂女人下面高潮的视频| 国产成人一区二区在线| 黄片wwwwww| 岛国在线免费视频观看| 国产在线一区二区三区精 | 青青草视频在线视频观看| 人妻系列 视频| 欧美变态另类bdsm刘玥| 国产 一区精品| 一夜夜www| 嘟嘟电影网在线观看| 91狼人影院| 日本与韩国留学比较| 舔av片在线| 三级毛片av免费| 免费人成在线观看视频色| 国产女主播在线喷水免费视频网站 | 久久婷婷人人爽人人干人人爱| 国产免费视频播放在线视频 | 99热6这里只有精品| 美女国产视频在线观看| 欧美一区二区精品小视频在线| 欧美三级亚洲精品| 欧美激情久久久久久爽电影| 伦理电影大哥的女人| 少妇丰满av| 国产免费视频播放在线视频 | 久久久久久久久中文| 日韩av不卡免费在线播放| 久久久久久久午夜电影| 国产精品伦人一区二区| 夫妻性生交免费视频一级片| 床上黄色一级片| 亚洲成人久久爱视频| 少妇的逼水好多| 神马国产精品三级电影在线观看| 超碰av人人做人人爽久久| 免费看日本二区| 国内精品一区二区在线观看| 久久久久久伊人网av| 亚洲精品国产av成人精品| 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 七月丁香在线播放| 麻豆成人午夜福利视频| 秋霞伦理黄片| 女人久久www免费人成看片 | 欧美高清成人免费视频www| 欧美日本视频| 啦啦啦观看免费观看视频高清| 不卡视频在线观看欧美| 日本免费在线观看一区| 婷婷色麻豆天堂久久 | 99久久人妻综合| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品合色在线| 一区二区三区高清视频在线| 26uuu在线亚洲综合色| 久久精品综合一区二区三区| 一个人观看的视频www高清免费观看| 久99久视频精品免费| 国产又色又爽无遮挡免| 免费观看a级毛片全部| 卡戴珊不雅视频在线播放| 亚洲国产精品久久男人天堂| 欧美三级亚洲精品| 欧美性感艳星| 亚洲欧美一区二区三区国产| 国产91av在线免费观看| 97热精品久久久久久| 亚洲人与动物交配视频| 日本三级黄在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产真实乱freesex| 国产色婷婷99| 黄色日韩在线| 久久久久精品久久久久真实原创| 中文字幕熟女人妻在线| 一本一本综合久久| 久久精品国产亚洲av天美| 精品少妇黑人巨大在线播放 | 午夜亚洲福利在线播放| 日韩欧美 国产精品| 久久亚洲精品不卡| 日本免费a在线| 国产免费视频播放在线视频 | 亚洲欧美日韩高清专用| 麻豆av噜噜一区二区三区| 久久久久久久亚洲中文字幕| 成人高潮视频无遮挡免费网站| 国产高潮美女av| 五月伊人婷婷丁香| 国产视频首页在线观看| 国模一区二区三区四区视频| 婷婷色av中文字幕| 小蜜桃在线观看免费完整版高清| 免费无遮挡裸体视频| 久久欧美精品欧美久久欧美| 国产精品av视频在线免费观看| 亚洲最大成人av| 精品一区二区三区视频在线| 黄色配什么色好看| 99在线人妻在线中文字幕| 非洲黑人性xxxx精品又粗又长| 欧美日韩国产亚洲二区| av又黄又爽大尺度在线免费看 | 亚洲欧美精品自产自拍| 青青草视频在线视频观看| 蜜桃久久精品国产亚洲av| 国产成人精品久久久久久| 久久久精品欧美日韩精品| 91精品国产九色| 黄色配什么色好看| 久久精品影院6| 亚洲国产精品成人综合色| 欧美成人午夜免费资源| 两个人的视频大全免费| 99久久无色码亚洲精品果冻| 人人妻人人看人人澡| av国产免费在线观看| 最后的刺客免费高清国语| 欧美潮喷喷水| 亚洲欧洲国产日韩| 99热全是精品| 色网站视频免费| 九色成人免费人妻av| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 亚洲熟妇中文字幕五十中出| 精品久久久久久成人av| 国产极品天堂在线| 男插女下体视频免费在线播放| 国产又色又爽无遮挡免| 美女黄网站色视频| 欧美成人精品欧美一级黄| 熟女电影av网| 岛国在线免费视频观看| 欧美97在线视频| 亚洲欧美精品专区久久| 毛片女人毛片| 亚洲性久久影院| 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 深爱激情五月婷婷| 午夜精品一区二区三区免费看| 中文欧美无线码| 欧美xxxx黑人xx丫x性爽| 日韩一区二区视频免费看| 日韩欧美精品v在线| 亚洲va在线va天堂va国产| 秋霞伦理黄片| 久久久午夜欧美精品| 亚洲av一区综合| 如何舔出高潮| 国产精品一区二区在线观看99 | 偷拍熟女少妇极品色| 国产在线一区二区三区精 | 老司机影院成人| 内射极品少妇av片p| av免费在线看不卡| 免费看av在线观看网站| 精品熟女少妇av免费看| 国产免费视频播放在线视频 | 亚洲精品自拍成人| 国产亚洲av嫩草精品影院| 亚洲成av人片在线播放无| 亚洲国产精品专区欧美| 国产v大片淫在线免费观看| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 三级男女做爰猛烈吃奶摸视频| 九九在线视频观看精品| 亚洲人成网站在线播| 国产成人a区在线观看| h日本视频在线播放| 日本与韩国留学比较| 久久久精品94久久精品| 水蜜桃什么品种好| 99热精品在线国产| 纵有疾风起免费观看全集完整版 | 在线a可以看的网站| 久久精品国产自在天天线| 视频中文字幕在线观看| 蜜桃亚洲精品一区二区三区| 亚洲,欧美,日韩| 97人妻精品一区二区三区麻豆| 男女视频在线观看网站免费| 精品少妇黑人巨大在线播放 | 久久精品国产亚洲av涩爱| 亚州av有码| 久久草成人影院| 麻豆久久精品国产亚洲av| 嫩草影院新地址| 成人一区二区视频在线观看| 亚州av有码| 晚上一个人看的免费电影| 成人毛片60女人毛片免费| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 少妇的逼好多水| av线在线观看网站| 黄片wwwwww| 午夜激情欧美在线| 成人毛片a级毛片在线播放| 亚洲国产精品成人综合色| 亚洲人成网站在线观看播放| 少妇的逼好多水| 亚洲精品一区蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| 在线观看66精品国产| 综合色丁香网| 日韩成人伦理影院| 日韩强制内射视频| 免费人成在线观看视频色| 久久99热这里只有精品18| 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 久久久久九九精品影院| 成人高潮视频无遮挡免费网站| 丰满乱子伦码专区| 夜夜爽夜夜爽视频| 国产精品人妻久久久影院| 亚洲美女搞黄在线观看| 亚洲精品成人久久久久久| 简卡轻食公司| 欧美人与善性xxx| 国产极品天堂在线| 欧美+日韩+精品| 久久这里只有精品中国| 春色校园在线视频观看| 黄色欧美视频在线观看| 亚洲成人精品中文字幕电影| 久久午夜福利片| 国产色婷婷99| av播播在线观看一区| 免费大片18禁| 99久久人妻综合| 午夜福利网站1000一区二区三区| 亚洲精品国产成人久久av| 中文字幕亚洲精品专区| 美女脱内裤让男人舔精品视频| 国产精品三级大全| 欧美另类亚洲清纯唯美| 纵有疾风起免费观看全集完整版 | 人人妻人人澡人人爽人人夜夜 | 在线观看av片永久免费下载| 听说在线观看完整版免费高清| 久久久久九九精品影院| 亚洲图色成人| 亚洲激情五月婷婷啪啪| 男人的好看免费观看在线视频| 赤兔流量卡办理| 深夜a级毛片| 丰满少妇做爰视频| 99久久精品一区二区三区| 黄片wwwwww| 久久99热这里只频精品6学生 | 欧美区成人在线视频| 亚洲欧洲日产国产| 久久精品久久久久久久性| 成年版毛片免费区| 国产国拍精品亚洲av在线观看| 成年免费大片在线观看| 国产精品1区2区在线观看.| 久久久久久久久大av| 极品教师在线视频| av.在线天堂| 亚洲av电影在线观看一区二区三区 | 在线观看66精品国产| 欧美一区二区亚洲| 国产在线一区二区三区精 | 国产成人福利小说| 男人的好看免费观看在线视频| 亚洲,欧美,日韩| 日日撸夜夜添| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 久久久色成人| 中文字幕av在线有码专区| 国产亚洲5aaaaa淫片| 亚洲婷婷狠狠爱综合网| 国产高清三级在线| 亚洲欧美成人综合另类久久久 | 寂寞人妻少妇视频99o| 成人av在线播放网站| 中文在线观看免费www的网站| 日韩精品青青久久久久久| 一区二区三区乱码不卡18| 国产精品野战在线观看| 看非洲黑人一级黄片| 搡老妇女老女人老熟妇| 少妇的逼水好多| 久久这里只有精品中国| 在线免费观看不下载黄p国产| 看十八女毛片水多多多| 精品午夜福利在线看| 韩国av在线不卡| 欧美日韩国产亚洲二区| 久久精品综合一区二区三区| 99久国产av精品| 国产老妇女一区| 国产成人精品婷婷| 国产69精品久久久久777片| 老司机影院毛片| 一个人免费在线观看电影| 欧美高清成人免费视频www| 精品国产三级普通话版| 国产亚洲av嫩草精品影院| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 一级黄片播放器| 永久网站在线| 亚洲国产最新在线播放| 午夜福利成人在线免费观看| 91午夜精品亚洲一区二区三区| 日本av手机在线免费观看| 欧美一级a爱片免费观看看| 精品人妻视频免费看| 熟女人妻精品中文字幕| 国产高清不卡午夜福利| 亚洲av电影在线观看一区二区三区 | 欧美三级亚洲精品| 欧美一区二区亚洲| kizo精华| 精品人妻偷拍中文字幕| 国产高清有码在线观看视频| 又爽又黄a免费视频| 日韩一本色道免费dvd| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区 | 中文资源天堂在线| 高清日韩中文字幕在线| 嘟嘟电影网在线观看| 夫妻性生交免费视频一级片| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 村上凉子中文字幕在线| 国产精品一区www在线观看| 国内精品一区二区在线观看| 国产精品爽爽va在线观看网站| 国产大屁股一区二区在线视频| 国产精品福利在线免费观看| 一区二区三区免费毛片| 中文字幕av在线有码专区| 国产成人福利小说| 国产综合懂色| 3wmmmm亚洲av在线观看| 国产美女午夜福利| 白带黄色成豆腐渣| 中国国产av一级| 精品久久久久久成人av| 村上凉子中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 国产在线男女| 免费观看人在逋| 岛国毛片在线播放| 亚洲综合精品二区| 一区二区三区高清视频在线| 人妻系列 视频| 少妇人妻一区二区三区视频| 一卡2卡三卡四卡精品乱码亚洲| 久久这里只有精品中国| 国产成人a区在线观看| 床上黄色一级片| 日韩欧美在线乱码| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 亚洲五月天丁香| av.在线天堂| 在线免费十八禁| 亚洲精品自拍成人| 极品教师在线视频| 国产精品一及| a级一级毛片免费在线观看| 亚洲精品国产成人久久av| 91狼人影院| 亚洲aⅴ乱码一区二区在线播放| 免费av不卡在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲第一区二区三区不卡| 成人av在线播放网站| 日本五十路高清| 国产精品久久久久久久久免| 久久久久久久久大av| 天堂网av新在线| 国产一区二区亚洲精品在线观看| 高清视频免费观看一区二区 | 精品久久久久久成人av| 日韩三级伦理在线观看| 国产精品人妻久久久久久| 搡老妇女老女人老熟妇| 欧美日韩综合久久久久久| 国产精品嫩草影院av在线观看| 91午夜精品亚洲一区二区三区| 国产69精品久久久久777片| 久久精品久久久久久噜噜老黄 | 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看| 亚洲四区av| 91午夜精品亚洲一区二区三区| 女人被狂操c到高潮| 婷婷六月久久综合丁香| 久久精品熟女亚洲av麻豆精品 | 美女内射精品一级片tv| 纵有疾风起免费观看全集完整版 | 亚洲国产精品sss在线观看| 国产久久久一区二区三区| 亚洲自偷自拍三级| 综合色丁香网| 久久久久久久久久久免费av| 国产亚洲av嫩草精品影院| 久久精品人妻少妇| 欧美成人精品欧美一级黄| 亚洲av男天堂| 日本一本二区三区精品| 嫩草影院精品99| 亚洲欧美日韩东京热| 最后的刺客免费高清国语| 亚洲精品aⅴ在线观看| 少妇熟女欧美另类| 亚洲美女视频黄频| 亚洲丝袜综合中文字幕| 青青草视频在线视频观看| 亚洲成色77777| 1024手机看黄色片| 精品人妻偷拍中文字幕| 亚洲欧美中文字幕日韩二区| 精品一区二区三区人妻视频| 天堂中文最新版在线下载 | 成人二区视频| 又粗又爽又猛毛片免费看| 国产亚洲精品久久久com| av天堂中文字幕网| 午夜爱爱视频在线播放| av免费观看日本| 国产 一区 欧美 日韩| 男女边吃奶边做爰视频| 成人高潮视频无遮挡免费网站| 亚洲欧美清纯卡通| 只有这里有精品99| 国产在视频线在精品| 麻豆国产97在线/欧美| 内射极品少妇av片p| 日韩欧美精品免费久久| 波多野结衣高清无吗| 蜜桃久久精品国产亚洲av| 又粗又硬又长又爽又黄的视频| 中国美白少妇内射xxxbb| 亚洲婷婷狠狠爱综合网| 男女啪啪激烈高潮av片| 欧美高清性xxxxhd video| 99在线人妻在线中文字幕| 一个人看视频在线观看www免费| 插阴视频在线观看视频| 久久久午夜欧美精品| 高清毛片免费看| 天堂√8在线中文| 欧美+日韩+精品| 午夜免费激情av| 亚洲av中文av极速乱| 欧美成人午夜免费资源| 欧美一区二区国产精品久久精品| 亚洲色图av天堂| 国产淫片久久久久久久久| 91av网一区二区| 99热这里只有是精品50| 在线观看美女被高潮喷水网站| 全区人妻精品视频| 美女高潮的动态| 美女黄网站色视频| 麻豆成人av视频| 一级毛片我不卡| 亚洲av中文av极速乱| 别揉我奶头 嗯啊视频| 麻豆国产97在线/欧美| 国产精品国产高清国产av| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕 | av在线亚洲专区| 久久精品综合一区二区三区| 欧美潮喷喷水| 国产一区二区亚洲精品在线观看| 久久这里有精品视频免费| 变态另类丝袜制服| 夜夜爽夜夜爽视频| 亚洲欧洲日产国产| 国产又色又爽无遮挡免| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| 日韩成人av中文字幕在线观看| 一个人看视频在线观看www免费| 国产黄片视频在线免费观看| 大香蕉久久网| 久久午夜福利片| 熟女电影av网| 精品欧美国产一区二区三| 国产乱人视频| 中文字幕精品亚洲无线码一区| 亚洲精品,欧美精品| 亚洲精品456在线播放app| 黄片wwwwww| 又爽又黄a免费视频| 黑人高潮一二区| 久久这里有精品视频免费| 亚洲最大成人av| 欧美日本视频| 18禁裸乳无遮挡免费网站照片| 汤姆久久久久久久影院中文字幕 | 午夜视频国产福利| 美女内射精品一级片tv| av在线观看视频网站免费| 又黄又爽又刺激的免费视频.| 嫩草影院新地址| 国产高潮美女av| 国产91av在线免费观看| 国产视频首页在线观看| 国产熟女欧美一区二区| 精品无人区乱码1区二区| 国产精品,欧美在线| 日韩国内少妇激情av| 人妻少妇偷人精品九色| 国产成人91sexporn| 国产成人一区二区在线| 1024手机看黄色片| 热99在线观看视频| 久久亚洲国产成人精品v| 99久国产av精品国产电影| www日本黄色视频网| 麻豆一二三区av精品| 丰满少妇做爰视频| 亚洲国产精品sss在线观看| 国产淫语在线视频| 国产成人a∨麻豆精品| 日产精品乱码卡一卡2卡三| 国产成人a区在线观看| 日日摸夜夜添夜夜爱| 中文字幕av成人在线电影| videos熟女内射| 我要搜黄色片| 欧美一区二区精品小视频在线| 99久久成人亚洲精品观看| 综合色丁香网| 久久热精品热| 国产又黄又爽又无遮挡在线| 国产高清有码在线观看视频| 男人舔奶头视频| 亚洲av成人精品一区久久| 一二三四中文在线观看免费高清| 日韩一本色道免费dvd| 国产又黄又爽又无遮挡在线| 91在线精品国自产拍蜜月| 亚洲激情五月婷婷啪啪| 十八禁国产超污无遮挡网站| 99国产精品一区二区蜜桃av| 神马国产精品三级电影在线观看| 国产成人精品一,二区| 一个人观看的视频www高清免费观看| 亚洲真实伦在线观看| 亚洲三级黄色毛片| 18禁在线无遮挡免费观看视频| 国产精品无大码| 看片在线看免费视频| 禁无遮挡网站| 国产不卡一卡二| 中文资源天堂在线| 成人性生交大片免费视频hd| 99久久中文字幕三级久久日本|