• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Distribution and Variability of Simulated Chlorophyll Concentration over the Tropical Indian Ocean from Five CMIP5 Models

    2013-07-28 09:03:08LIULinFENGLinYUWeidongWANGHuiwuLIUYanliangandSUNShuangwen
    Journal of Ocean University of China 2013年2期

    LIU Lin*, FENG Lin, YU Weidong, WANG Huiwu, LIU Yanliang, and SUN Shuangwen

    ?

    The Distribution and Variability of Simulated Chlorophyll Concentration over the Tropical Indian Ocean from Five CMIP5 Models

    LIU Lin, FENG Lin, YU Weidong, WANG Huiwu, LIU Yanliang, and SUN Shuangwen

    ,,,266061,

    Performances of 5 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating the chlorophyll concentration over the tropical Indian Ocean are evaluated. Results show that these models are able to capture the dominant spatial distribution of observed chlorophyll concentration and reproduce the maximum chlorophyll concentration over the western part of the Arabian Sea, around the tip of the Indian subcontinent, and in the southeast tropical Indian Ocean. The seasonal evolution of chlorophyll concentration over these regions is also reproduced with significant amplitude diversity among models. All of 5 models is able to simulate the interannual variability of chlorophyll concentration. The maximum interannual variation occurs at the same regions where the maximum climatological chlorophyll concentration is located. Further analysis also reveals that the Indian Ocean Dipole events have great impact on chlorophyll concentration in the tropical Indian Ocean. In the general successful simulation of chlorophyll concentration, most of the CMIP5 models present higher than normal chlorophyll concentration in the eastern equatorial Indian Ocean.

    Indian Ocean; chlorophyll concentration; climatology; seasonal variability; interannual variability

    1 Introduction

    Primary production is an important part of the carbon cycle in the Earth system. However, it is difficult to quantify primary production at this scale because of the variety of habitats and the impact of weather conditions on the earth. Oceans occupy over 2/3 of the Earth’s surface and play an important role in climate (Li, 2006; Wang, 2009, 2012; Wang and Wang, 2012). In the ocean, the physical, chemical, and biological processes are closely linked (Tang, 2002; Xiu and Liu, 2006), which greatly influences ocean dynamics and air-sea interaction. Marine primary production can be assessed directly using field flux measurements. However, it can be costly to carry out these measurements. As an alternative, sea surface chlorophyll is often used in models of photosynthesis to study the marine primary production because of its easy accessibility from the world ocean database. Examples include a number of chlorophyll studies in the tropical Indian Ocean (Tang, 2002; Dey and Singh, 2003; Vinayachandran, 2004; Susanto and Marra, 2005; Sarma, 2006; Lévy, 2007; Sarangi, 2008; Liu, 2012; Li, 2012).

    Similar to the Pacific Ocean, the Indian Ocean possesses strong interannual variability. The Indian Ocean Dipole (IOD) is a basin-scale ocean–atmosphere coupled mode in the interannual time scale, characterized by a zonal contrast of a positive and a negative sea surface temperature anomaly (SSTA) along the equatorial Indian Ocean and a zonal wind anomaly over the central equatorial Indian Ocean (Saji, 1999; Webster, 1999; Hu and Liu, 2005; Yu, 2005; Sun, 2010; Liu, 2011). A number of studies show that the convection associated with IOD exert great impact on the climate variability in Africa, South Asia, East Asia, and other remote regions (Saji and Yamagata, 2003a, b; Ashok, 2004; Behera, 2005; Matthew, 2006; Wang, 2006). IOD events are a key to understand the underlying mechanisms responsible for climate change as well as biochemical processes in the tropical Indian Ocean. Sarma (2006) pointed out the close relationships between chlorophyll and SSTA, and between chlorophyll and sea surface height anomaly in the Arabian Sea during IOD events. Rahul Chand Reddy and Salvekar (2008) and Wiggert(2009) demonstrated the close relationships between chlorophyll concentration in the southeast, tropical Indian Ocean and IOD events respectively.

    Although many researches have focused on chlorophyll in the tropical Indian Ocean via direct observations as well as remote sensing outputs, numerical simulations of chlorophyll is lagging behind. The CMIP5 models have the capability in generating bio-chemical parameters, providing a good chance to assess the numerical models’ performances on simulating chlorophyll concentration. By using 5 of CMIP5 models this study evaluates the simulated chlorophyll in the tropical Indian Ocean.

    2 Data

    The primary datasets used for this study are the output from five CMIP5 models (HadGEM2-CC, HadGEM2-ES, MPI-ESM-LR, IPSL-CM5A-MR, CanESM2). The model variables include sea surface temperature and chlorophyll concentration under the Climate of the Twentieth-Century Experiment (20c3M, a historical run). The forcings of this experiment include greenhouse gases (CO, CH, NO, and CFCs), sulfate aerosol direct effects, volcanoes, and solar forcing (Taylor, 2012; http://cmip-pcmdi.llnl. gov/cmip5/). The simulated chlorophyll concentration be- tween January 1998 and December 2005 is used to compare with observations. And the climatological annual cycle is calculated based on this period. A longer period from January 1850 to December 2005 is also chosen for the interannual variability analysis and the interannual anomalies are obtained by subtracting the monthly mean variables from their respective climatological annual cycles.

    For comparison with observations, ocean color data are applied. Surface chlorophyll concentration is derived from the measurements by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (McClain, 1998, 2004). In the present research, the 9km resolution 8-day mean data are downloaded from the Earth Sciences Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html) to calculate the monthly mean data between January 1998 and December 2005.

    3 Mean State and Seasonal Variation

    Fig.1 shows the annual mean chlorophyll distribution from the observations and the CMIP5 models and their difference. The pattern correlation coefficient between them is 0.46, which is significant at the 99% confidence level. It is obvious that the CMIP5 ensemble mean over-estimates chlorophyll concentration in most part of the tropical Indian Ocean. Compared with the observations, the chlorophyll concentration simulated in the eastern part of the tropical Indian Ocean is higher than that in the western part, especially in the western part of the Bay of Bengal, where the ensemble mean maximum value reaches 0.6mgm. The area with the maximum value expands from the western part of the Bay of Bengal into the southeast Indian Ocean. It is also observed that the chlorophyll concentration in the central Arabian Sea is lower than the observations. Anyhow, the CMIP5 simulations reproduce the peak chlorophyll concentrations around the coastal area of the west Arabian Sea (50?E–60?E, 10?N–20?N), the tip of the Indian subcontinent (75?E–85?E, 5?N–10?N), and the southeast Indian Ocean off Sumatra (90?E–110?E, 1?S–10?S). Regardless of the different simulated annual mean intensity, all the CMIP5 models exhibit a common character, that is, the ensemble mean seasonal distribution of chlorophyll concentration is able to capture the major features of the observations except for the higher values in most of the tropical Indian Ocean (Fig.2). The pattern correlation coefficient between observations and the CMIP5 ensemble mean is 0.11, 0.49, 0.38, and 0.46 for boreal spring, summer, fall, and winter, respectively, which are all significant at the 99% confidence level. In boreal summer and fall, the ensemble mean chlorophyll concentration is much higher than the observations in the equatorial Indian Ocean as well as the western part of the Bay of Bengal. The maximum value of the ensemble mean chlorophyll concentration is around 0.8mgm. During boreal spring and winter, with moderately higher chlorophyll concentration in the equatorial Indian Ocean, the simulated chlorophyll is in a better agreement with the observations generally.

    The seasonal variations of chlorophyll concentration in the three regions,, the coastal area of the west Arabian Sea, the tip of the Indian subcontinent, and the southeast Indian Ocean off Sumatra, show that the phase-locking phenomenon can be well captured by the CMIP5 models, regardless of the lower simulated chlorophyll concentration in the Arabian Sea and around the tip of the Indian subcontinent, and the higher simulated concentration in the southeast Indian Ocean (Fig.3). The peak chlorophyll concentration of 3mgmoccurs during boreal summer in the Arabian Sea. Except for MPI-ESM-LR, which simulates rather higher chlorophyll concentration with the peak value over 6mgm, the other four models all show lower chlorophyll concentration, especially IPSL-CM5A-LR, which simulates the minimum value around 0.4mgm. Similar to that in the Arabian Sea, the simulated peak chlorophyll concentration around the tip of the Indian subcontinent also occurs in summer. However, their performances are not so good considering the evolution of chlorophyll concentration in each model. MPI-ESM-LR shows too strong peak value and variability, while other four models show too weak peak value, with IPSL-CM5A-LR presenting nearly no variability. Moreover, the peak times are not precise enough, with the result that none of them can reproduce the observed high chlorophyll concentration in July and August. The boreal summer is the prevailing season for the Asian summer monsoon, which flows from the southern to northern hemisphere and favors upwelling along the coast of the west Arabian Sea and around the tip of the Indian subcontinent. The upwelling carries nutrients from the deep ocean to the sea surface and results in the increasing of surface chlorophyll concentration.

    Fig.1 The annual mean chlorophyll concentration distribution obtained from (a) observations, (b) CMIP5 ensemble mean, and (c) the difference between them. The unit is mgm-3.

    Fig.2 Seasonal mean (from top to bottom, for spring, summer, autumn and winter) chlorophyll concentration distribution obtained from observations (left column), CMIP5 ensemble mean (middle column), and the differences between them (right column). The unit is mgm-3.

    Fig.3 Temporal evolution of chlorophyll concentration from observations (black), CMIP5 ensemble mean (dash), and each individual model around (a) the western part of the Arabian Sea, (b) the tip of the Indian subcontinent, and (c) the southeast Indian Ocean.

    As is different from other regions in the Indian Ocean, the peak chlorophyll concentration in the southeast Indian Ocean occurs during the boreal fall. Similar features can be found from the CMIP5 models. CanESM2 and IPSL-CM5A-LR simulate lower and the other three models higher chlorophyll concentration than the observed in this region.

    4 Interannual Variability

    Fig.4 shows the standard deviation of chlorophyll concentration anomalies in the tropical Indian Ocean at the interannual time scale. Spatial distributions of the chlorophyll concentration anomalies are quite different. The ensemble mean results show that strong variability occurs in the western part of the Arabian Sea, around the tip of the Indian subcontinent and in the southeast Indian Ocean. The large chlorophyll variability in the south hemisphere extends from the east equatorial region to the north of Madagascar. Except IPSL-CM5A-MR, the other four CMIP5 models all display three regions with the maximum chlorophyll concentration variations mentioned previously, which illustrates that both seasonal and interannual variability of chlorophyll concentration occurs strong in those regions.

    Fig.4 Standard deviation of chlorophyll concentration in the tropical Indian Ocean for (a) CanESM2, (b) HadGEM2-CC, (c) HadGEM2-ES, (d) IPSL-CM5A-MR, (e) MPI-ESM-LR, and (f) ensemble mean. The unit is mgm-3.

    The IOD events show the most significant interannual variability in the tropical Indian Ocean during boreal summer and fall. Through adjusting the ocean upwelling and the relevant sea surface conditions, the IOD events can influence the chlorophyll distribution in the large area of the Indian Ocean (Susanto, 2006). Therefore, it is necessary to check the relationship between IOD and interannual variations of chlorophyll concentration simulated by the CMIP5 models. In Fig.5 are the lead-lag correlation diagrams between the chlorophyll concentration and simulated IOD index defined as the SSTA gradient between the western and eastern part of the Indian Ocean (Saji, 1999). It is found that the five CMIP5 models present significant relationship between chlorophyll concentration and IOD events in boreal summer and fall seasons. During a positive IOD event, with negative SSTA in the southeast Indian Ocean, the higher (lower) chlorophyll concentration appears in the eastern (western) part of the tropical Indian Ocean. Since IOD events peak in fall and decay in winter, the significant correlation lasts into winter as seen in the HadGEM2CC and HadGEM- 2ES results; the other models did not capture this feature.

    Fig.5 Lead-lag correlation between the IOD index in boreal fall and the chlorophyll concentration in boreal summer, fall, winter and the subsequent spring (from left to right) for each individual model (from top to bottom). Shaded areas indicate the correlation with a confidence level more than 95%.

    5 Summary

    In the tropical ocean where solar radiation is not a limiting factor, chlorophyll-concentration reflects the strength of nutrient flux into the mixed layer by the equatorial upwelling (Longhurst, 1993). During the southeast monsoon season (April to October), the southeast wind from Australia generates upwelling and brings cooler water and nutrients to the surface along the southern coasts of Java and Sumatra. Conditions are reversed during the northwest monsoon season (October to April). Coastally trapped Kelvin waves, generated along the equatorial Indian Ocean during the monsoon transitions (April and October), also affect upwelling and downwelling processes (Arief and Murray, 1996; Clarke and Liu, 1993; Sprintall, 2000).

    In this study, the performances of simulated chlorophyll from five state-of-art CMIP5 models are assessed. The ensemble mean demonstrates that the coupled models are able to reproduce the dominant features of the observed chlorophyll in the tropical Indian Ocean, with maximum chlorophyll concentrations occurring in the western part of the Arabian Sea, around the tip of the Indian subcontinent, and in the southeast Indian Ocean. Except IPSL-CM5A-MR, the other models all present higher than observed chlorophyll concentration all around the year. The phase-locking feature in the maximum chlorophyll regions and the seasonal variations are also well simulated by the CMIP5 models, though the simulated chlorophyll concentration from each individual model is quite different. Besides, the models work fairly well in reproducing the chlorophyll concentration in regions such as the equatorial Indian Ocean (70?E–90?E, 5?N–10?S) and the western Bay of Bengal (80?E–90?E, 10?N–20?N) (Fig.6). However, the simulated chlorophyll concentration shows significant differences in the interannual variability. The model results indicate that there is a significant correlation between IOD events and chlorophyll distribution in boreal summer and fall. This finding implicates the potential role played by the subsurface upwelling process, and shows that the state-of-art coupled models can be a useful tool for the future oceanographic biochemical research in the tropical Indian Ocean. Future studies would focus on further investigating the relationship between chlorophyll concentration variation and upwelling process.

    Acknowledgements

    We thank the Working Group on Coupled Modeling of the World Climate Research Program for sponsoring CMIP and the climate modeling group for producing and making the model output available for us. The U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison in partnership with the Global Organization for Earth System Science Portals provides coordinating support and lead development of software infrastructure. We also wish to thank L. X. Xu for data preparation. This work was supported by the National Basic Re- search Program of China (2012CB955601, 2010CB950304) and SOA Science Fund for Young Scholars (Grant No. 2011244).

    Arief, D., and Murray, S. P., 1996. Low-frequency fluctuations in the Indonesian throughflow through Lombok Strait., 101: 12455-12464.

    Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T., 2004. Individual and combined influences of ENSO and Indian Ocean Dipole on the Indian summer monsoon., 17: 3141-3155.

    Behera, S. K., Luo, J. J., Masson, S., Delecluse, P., Gualdi, S., and Navarra, A., 2005. Paramount impact of the Indian Ocean Dipole on the east African short rains: A CGCM study., 18: 4514-4530.

    Clarke, A. J., and Liu, X., 1993. Observations and dynamics of semiannual and annual sea levels near the eastern Indian Ocean boundary., 23: 386-399.

    Dey, S., and Singh, R. P., 2003. Comparison of chlorophyll distributions in the northeastern Arabian Sea and southern Bay of Bengal using IRS-P4 Ocean Color Monitor data., 85: 424-428.

    Hu, R. J., and Liu, Q. Y., 2005. A heat budget study on the mechanism of SST variations for the regions of the Indian Ocean Dipole., 4 (4): 167-175.

    Lévy, M., Shankar, D., André, J. M., Shenoi, S. S. C., Durand, F., and de Boyer Montégut, C., 2007. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms., 112, C12014, DOI: 10.1029/2007JC004090.

    Li, C. Y., Zhou, W., Jia, X. L., and Wang, X., 2006. Decadal/interdecadal variations of ocean temperature and its impacts on climate., 23: 964-981.

    Li, G., Lin, Q., and Ni, G., 2012. Vertical patterns of early summer chlorophyll a concentration in the Indian Ocean with special reference to the variation of deep chlorophyll maximum., 2012, DOI: 10.1155/2012/801248.

    Liu, L., Yu, W. D., and Li, T., 2011. Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean Dipole diagnosed from 23 WCRP CMIP3 Models., 24: 4941-4958.

    Liu, X., Wang, J., Cheng, X., and Du, Y., 2012. Abnormal upwelling and chlorophyll-concentration off South Vietnam in summer 2007., 117, C07021, DOI: 10.1029/2012JC008052.

    Longhurst, A., 1993. Seasonal cooling and blooming in the tropical oceans., 40: 2145-2165.

    Matthew, H. E., Caroline, C. U., and Santoso, A., 2006. Interannual rainfall extremes over Southwest Western Australia linked to Indian Ocean climate variability., 19: 1948-1969.

    McClain, C. R., Cleave, M. L., Feldman, G. C., Gregg, W. W., Hooker, S. B., and Kuring, N., 1998. Science quality SeaWiFSdata for global biospheric research., 39: 10-16.

    McClain, C. R., Feldman, G. C., and Hooker, S. B., 2004. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series., 51: 5-42.

    Rahul Chand Reddy, P., and Salvekar, P. S., 2008. Phytoplankton blooms induced/sustained by cyclonic eddies during the Indian Ocean Dipole event of 1997 along the southern coasts of Java and Sumatra., 5: 3905-3918, DOI: 10.5194/bgd-5-3905-2008.

    Saji, N. H., and Yamagata, T., 2003a. Possible impacts of Indian Ocean Dipole mode events on global climate,25: 151-169.

    Saji, N. H., and Yamagata, T., 2003b. Structure of SST and surface wind variability during Indian Ocean Dipole mode years: COADS observations.,16: 2735-2751.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean.,401: 360-363.

    Sarangi, R. K., Nayak, S., and Panigraphy, R. C., 2008. Monthly variability of chlorophyll and associated physical parameters in the southwest Bay of Bengal water using remote sensing data., 37 (3): 256-266.

    Sarma, V. V. S. S., 2006. The influence of Indian Ocean Dipole (IOD) on biogeochemistry of carbon in the Arabian Sea during 1997–1998., 115 (4): 433-450.

    Sprintall, J., Gordon, A., Murtugudde, L. R., and Susanto, R. D., 2000. A semi-annual Indian Ocean forced Kelvin waves observed in the Indonesian Seas., 105: 17217-17230.

    Sun, S. W., Lan, J., and Wang, Y., 2010. Variations of SST and thermocline depth in the Tropical Indian Ocean during Indian Ocean Dipole events., 2: 120-127.

    Susanto, R. D., and Marra, J., 2005. Effect of the 1997/98 El Ni?o on chlorophyll a variability along the southern coasts of Java and Sumatra., 18 (4): 124-127.

    Susanto, R. D., Moore II, T. S., and Marra, J., 2006. Ocean color variability in the Indonesian Seas during the SeaWiFS era.,,, 7, Q05021, DOI: 10.1029/2005GC001009.

    Tang, D. L., Kawamura, H., and Luis, J. A., 2002. Short-term variability of phytoplankton blooms associated with a cold eddy on the North-western Arabian Sea., 81 (1): 82-89.

    Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of CMIP5 and the experiment design., 93: 485-498.

    Vinayachandran, P. N., Chauhan, P., and Nayak, S. R., 2004. Biological response of the sea around Sri Lanka to summer monsoon., 31, L01302, DOI: 10.1029/2003GL018533.

    Wang, C., and Wang, X., 2012. El Ni?o Modoki I and II classifying by different impacts on rainfall in Southern China and typhoon tracks., DOI: 10.1175/JCLI-D-12-00107.1.

    Wang, X., Li, C. Y., and Zhou, W., 2006. Interdecadal variation of the relationship between Indian rainfall and SSTA modes in the Indian Ocean., 26: 595-606.

    Wang, X., Wang, D. X., and Zhou, W., 2009. Decadal variability of twentieth century El Ni?o and La Ni?a occurrence from observations and IPCC AR4 coupled models., 36, L11701, DOI: 10.1029/2009GL037929.

    Wang, X., Wang, D. X., Zhou, W., and Li, C. Y., 2012. Interdecadal modulation of the influence of La Ni?a events on mei-yu rainfall over the Yangtze River Valley., 29 (1): 157-168, DOI: 10.1007/s00376-011-1021-8.

    Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R., 1999. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98., 401:356-360.

    Wiggert, J. D., Vialard, J., and Behrenfeld, M. J., 2009. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era.,, Wiggert, J. D., eds., AGU, Washington, D. C., 385-407, DOI: 10.1029/2008GM000776.

    Xiu, P., and Liu, Y., 2006. Study on the correlation between chlorophyll maximum and remote sensing data., 5 (3): 213-218.

    Yu, W., Xiang, B., Liu, L., and Liu, N., 2005. Understanding the origins of interannual thermocline variations in the tropical Indian Ocean., 32, L24706, DOI: 10.1029/2005GL024327.

    (Edited by Xie Jun)

    10.1007/s11802-013-2168-y

    ISSN 1672-5182, 2013 12 (2): 253-259

    . Tel: 0086-532-88961173 E-mail: liul@fio.org.cn

    (October 9, 2012; revised November 12, 2012; accepted February 22, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    日本a在线网址| 99精品在免费线老司机午夜| 一级黄色大片毛片| 亚洲精品一区av在线观看| 精品国产美女av久久久久小说| 亚洲性夜色夜夜综合| 午夜精品久久久久久毛片777| 亚洲精品乱码久久久v下载方式 | 3wmmmm亚洲av在线观看| 乱人视频在线观看| 首页视频小说图片口味搜索| 又黄又粗又硬又大视频| 精品人妻1区二区| 19禁男女啪啪无遮挡网站| 黄片大片在线免费观看| 国产成人a区在线观看| 久久国产精品影院| 久久亚洲精品不卡| 精品久久久久久久末码| svipshipincom国产片| 欧美精品啪啪一区二区三区| 国产真实伦视频高清在线观看 | 男女床上黄色一级片免费看| 99在线视频只有这里精品首页| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 黄色日韩在线| 他把我摸到了高潮在线观看| 国产精华一区二区三区| 国产精品一区二区免费欧美| 91久久精品电影网| 国产精品爽爽va在线观看网站| 欧美日韩一级在线毛片| 午夜免费男女啪啪视频观看 | 色综合欧美亚洲国产小说| 18+在线观看网站| 亚洲 国产 在线| 有码 亚洲区| 久久久色成人| 国产激情偷乱视频一区二区| 最好的美女福利视频网| 欧美性感艳星| 久9热在线精品视频| 真实男女啪啪啪动态图| 三级国产精品欧美在线观看| 国产三级黄色录像| 国产日本99.免费观看| 少妇的逼水好多| 日韩免费av在线播放| АⅤ资源中文在线天堂| 美女 人体艺术 gogo| 成人一区二区视频在线观看| 91久久精品电影网| 18禁在线播放成人免费| 婷婷丁香在线五月| av福利片在线观看| 男女床上黄色一级片免费看| bbb黄色大片| 国产欧美日韩精品一区二区| 成人国产一区最新在线观看| 免费观看人在逋| 美女高潮的动态| 欧美日韩国产亚洲二区| 日韩欧美精品v在线| 香蕉丝袜av| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| 亚洲精品一区av在线观看| 欧美性猛交╳xxx乱大交人| 国内精品久久久久久久电影| 久久精品国产亚洲av涩爱 | 欧美在线一区亚洲| 国产精品久久电影中文字幕| 国产一区二区三区视频了| 亚洲18禁久久av| 一本一本综合久久| 9191精品国产免费久久| 国产一区在线观看成人免费| 99riav亚洲国产免费| 制服人妻中文乱码| 免费在线观看影片大全网站| 久久久久久大精品| 亚洲欧美激情综合另类| 老熟妇乱子伦视频在线观看| 免费电影在线观看免费观看| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 午夜影院日韩av| 搡老妇女老女人老熟妇| 亚洲avbb在线观看| 999久久久精品免费观看国产| 日本精品一区二区三区蜜桃| 午夜激情欧美在线| 欧美日韩瑟瑟在线播放| 亚洲av免费在线观看| 18禁裸乳无遮挡免费网站照片| 一本精品99久久精品77| 久久精品人妻少妇| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 国产精品一区二区三区四区久久| 三级毛片av免费| 9191精品国产免费久久| 九九久久精品国产亚洲av麻豆| 一区二区三区免费毛片| 精品久久久久久久人妻蜜臀av| 日韩欧美国产一区二区入口| 我要搜黄色片| 两个人看的免费小视频| 女人高潮潮喷娇喘18禁视频| 中亚洲国语对白在线视频| 黑人欧美特级aaaaaa片| 日本五十路高清| 少妇裸体淫交视频免费看高清| 一卡2卡三卡四卡精品乱码亚洲| 小说图片视频综合网站| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av美国av| 亚洲成a人片在线一区二区| 特级一级黄色大片| 久久精品夜夜夜夜夜久久蜜豆| 18美女黄网站色大片免费观看| 两个人看的免费小视频| 久久久久亚洲av毛片大全| 香蕉丝袜av| 亚洲精品乱码久久久v下载方式 | 欧美极品一区二区三区四区| 麻豆成人av在线观看| 中文字幕人妻丝袜一区二区| 国产精品美女特级片免费视频播放器| 超碰av人人做人人爽久久 | 国产三级在线视频| 搡老妇女老女人老熟妇| 国产色爽女视频免费观看| 亚洲一区二区三区色噜噜| 国产一区二区亚洲精品在线观看| 亚洲av电影不卡..在线观看| 久久香蕉精品热| 九九久久精品国产亚洲av麻豆| 亚洲av电影在线进入| 成年免费大片在线观看| 国产在线精品亚洲第一网站| 国内精品美女久久久久久| 国产精品一区二区三区四区久久| 成年女人毛片免费观看观看9| 国产乱人伦免费视频| 国产精品,欧美在线| 午夜精品久久久久久毛片777| 韩国av一区二区三区四区| 国产真人三级小视频在线观看| 久久精品91无色码中文字幕| 一区二区三区国产精品乱码| 少妇丰满av| 午夜免费激情av| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 中亚洲国语对白在线视频| 国产探花在线观看一区二区| 精华霜和精华液先用哪个| 欧美xxxx黑人xx丫x性爽| 夜夜躁狠狠躁天天躁| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影| 法律面前人人平等表现在哪些方面| h日本视频在线播放| 男女下面进入的视频免费午夜| 18禁美女被吸乳视频| 国产亚洲av嫩草精品影院| 久久中文看片网| 亚洲精品影视一区二区三区av| 一本精品99久久精品77| 悠悠久久av| 国产三级黄色录像| e午夜精品久久久久久久| 无限看片的www在线观看| 久久国产乱子伦精品免费另类| 欧美一区二区国产精品久久精品| 别揉我奶头~嗯~啊~动态视频| 免费观看精品视频网站| 嫩草影视91久久| 51午夜福利影视在线观看| 久久草成人影院| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 亚洲黑人精品在线| 两个人看的免费小视频| 大型黄色视频在线免费观看| 国产三级黄色录像| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利欧美成人| 久久久久久久精品吃奶| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美中文日本在线观看视频| 中文字幕高清在线视频| 亚洲精品在线观看二区| 51午夜福利影视在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品不卡国产一区二区三区| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 99精品在免费线老司机午夜| 每晚都被弄得嗷嗷叫到高潮| 欧美午夜高清在线| 久久亚洲真实| 99热这里只有精品一区| 白带黄色成豆腐渣| 男人舔女人下体高潮全视频| 成人午夜高清在线视频| 99久国产av精品| 色老头精品视频在线观看| 亚洲国产精品sss在线观看| 免费观看人在逋| 亚洲欧美精品综合久久99| 天天一区二区日本电影三级| 五月伊人婷婷丁香| 亚洲国产精品成人综合色| 亚洲久久久久久中文字幕| 欧美三级亚洲精品| 亚洲五月天丁香| 亚洲国产欧美网| 一a级毛片在线观看| 麻豆成人午夜福利视频| 国产老妇女一区| 欧美一区二区亚洲| 看片在线看免费视频| 婷婷六月久久综合丁香| 亚洲精品456在线播放app | 老熟妇乱子伦视频在线观看| 深爱激情五月婷婷| 国产激情偷乱视频一区二区| 国产高清视频在线观看网站| 午夜久久久久精精品| 亚洲精品一区av在线观看| 男人的好看免费观看在线视频| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 级片在线观看| 国内揄拍国产精品人妻在线| 欧美3d第一页| 久久精品人妻少妇| 青草久久国产| 欧美日韩综合久久久久久 | 村上凉子中文字幕在线| 18禁黄网站禁片午夜丰满| 波野结衣二区三区在线 | 一级毛片女人18水好多| 久久精品夜夜夜夜夜久久蜜豆| x7x7x7水蜜桃| 熟女电影av网| 亚洲五月天丁香| 香蕉久久夜色| 90打野战视频偷拍视频| 国产欧美日韩精品一区二区| 天堂动漫精品| 国产精品久久电影中文字幕| 午夜影院日韩av| 麻豆成人午夜福利视频| 国产一级毛片七仙女欲春2| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看| 国产av不卡久久| 亚洲第一电影网av| 日韩 欧美 亚洲 中文字幕| 18禁黄网站禁片午夜丰满| 国产精品久久久久久久电影 | 精品国产超薄肉色丝袜足j| 亚洲av第一区精品v没综合| 亚洲av中文字字幕乱码综合| 亚洲av美国av| 观看免费一级毛片| 草草在线视频免费看| 最新在线观看一区二区三区| 精品无人区乱码1区二区| 精品不卡国产一区二区三区| 一个人免费在线观看电影| 真人做人爱边吃奶动态| 国产黄a三级三级三级人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 宅男免费午夜| 亚洲久久久久久中文字幕| 亚洲美女黄片视频| 夜夜夜夜夜久久久久| 国产免费一级a男人的天堂| 亚洲精品影视一区二区三区av| 欧美+日韩+精品| 色综合站精品国产| 国产高清三级在线| 久久亚洲精品不卡| 欧美极品一区二区三区四区| 1000部很黄的大片| 69av精品久久久久久| 免费av观看视频| 欧美bdsm另类| 成人性生交大片免费视频hd| 午夜福利在线观看免费完整高清在 | 日韩欧美精品v在线| 一级作爱视频免费观看| 中文亚洲av片在线观看爽| 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 日本免费a在线| 午夜日韩欧美国产| 琪琪午夜伦伦电影理论片6080| 亚洲在线自拍视频| 欧美黄色片欧美黄色片| 国产久久久一区二区三区| 亚洲国产精品sss在线观看| 免费在线观看亚洲国产| 精品人妻1区二区| 国产美女午夜福利| 动漫黄色视频在线观看| 午夜精品在线福利| 精品一区二区三区人妻视频| 国产亚洲精品久久久com| 99久久九九国产精品国产免费| 天堂√8在线中文| 国产亚洲欧美98| 亚洲第一电影网av| 亚洲成av人片在线播放无| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| 人妻夜夜爽99麻豆av| 欧美性猛交黑人性爽| 特大巨黑吊av在线直播| 国产乱人视频| 欧美成狂野欧美在线观看| 国产精品国产高清国产av| 99国产综合亚洲精品| 精品久久久久久久久久免费视频| 悠悠久久av| 欧美在线一区亚洲| 可以在线观看毛片的网站| 黄色女人牲交| 亚洲欧美激情综合另类| 国产一区二区三区视频了| 叶爱在线成人免费视频播放| av黄色大香蕉| 午夜影院日韩av| 欧美成狂野欧美在线观看| 99久久99久久久精品蜜桃| 黄片小视频在线播放| xxxwww97欧美| 在线观看免费视频日本深夜| 免费看美女性在线毛片视频| 脱女人内裤的视频| 一区福利在线观看| 热99re8久久精品国产| 欧美绝顶高潮抽搐喷水| 亚洲,欧美精品.| av片东京热男人的天堂| 日本成人三级电影网站| 色综合站精品国产| 欧美中文综合在线视频| 日本免费一区二区三区高清不卡| 女人十人毛片免费观看3o分钟| 看免费av毛片| 欧美在线黄色| 久久久国产成人免费| 亚洲国产精品合色在线| 九色成人免费人妻av| 内地一区二区视频在线| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费| 丁香六月欧美| 男女做爰动态图高潮gif福利片| 午夜激情欧美在线| 亚洲 欧美 日韩 在线 免费| 亚洲欧美日韩卡通动漫| 真人做人爱边吃奶动态| 国产私拍福利视频在线观看| 亚洲男人的天堂狠狠| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 国产伦精品一区二区三区视频9 | 国产黄片美女视频| 嫁个100分男人电影在线观看| 中文亚洲av片在线观看爽| 日本一二三区视频观看| 麻豆久久精品国产亚洲av| 一级作爱视频免费观看| 亚洲精品在线观看二区| 久久草成人影院| eeuss影院久久| 人妻久久中文字幕网| 亚洲片人在线观看| 国产高清videossex| 他把我摸到了高潮在线观看| 亚洲在线观看片| 99精品欧美一区二区三区四区| 99热这里只有是精品50| 亚洲精品粉嫩美女一区| 欧美乱码精品一区二区三区| 一夜夜www| 在线十欧美十亚洲十日本专区| 成人午夜高清在线视频| 国产老妇女一区| 青草久久国产| 伊人久久大香线蕉亚洲五| 久久久久性生活片| eeuss影院久久| 日本三级黄在线观看| 亚洲美女视频黄频| 久久久久久久亚洲中文字幕 | 操出白浆在线播放| 国产野战对白在线观看| 精品日产1卡2卡| 婷婷六月久久综合丁香| 淫妇啪啪啪对白视频| 有码 亚洲区| 9191精品国产免费久久| 99国产精品一区二区蜜桃av| 夜夜看夜夜爽夜夜摸| 久久久国产成人免费| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 欧美在线黄色| 观看免费一级毛片| 国产精品日韩av在线免费观看| 午夜免费男女啪啪视频观看 | 亚洲精品在线美女| 欧美乱妇无乱码| 日韩欧美 国产精品| 国产中年淑女户外野战色| 午夜福利18| 亚洲av不卡在线观看| 久久99热这里只有精品18| 日本一本二区三区精品| 久久久久久大精品| www日本在线高清视频| 亚洲精品影视一区二区三区av| 日本黄色视频三级网站网址| 无人区码免费观看不卡| 在线视频色国产色| 丰满人妻熟妇乱又伦精品不卡| 岛国视频午夜一区免费看| 丁香六月欧美| 51午夜福利影视在线观看| h日本视频在线播放| 青草久久国产| 99国产极品粉嫩在线观看| 99久国产av精品| 日韩欧美一区二区三区在线观看| 99热精品在线国产| 少妇裸体淫交视频免费看高清| 性色avwww在线观看| 日韩精品中文字幕看吧| 嫁个100分男人电影在线观看| 亚洲成人久久性| 久久久久性生活片| 国产主播在线观看一区二区| 日韩大尺度精品在线看网址| 国内毛片毛片毛片毛片毛片| 三级男女做爰猛烈吃奶摸视频| 欧美乱妇无乱码| 91字幕亚洲| 欧美黄色淫秽网站| 精品国产美女av久久久久小说| 精品人妻一区二区三区麻豆 | 制服丝袜大香蕉在线| 天堂av国产一区二区熟女人妻| 欧美日韩乱码在线| 久久香蕉精品热| 女警被强在线播放| 搡老岳熟女国产| 丰满人妻熟妇乱又伦精品不卡| 免费高清视频大片| 亚洲一区二区三区不卡视频| 国模一区二区三区四区视频| 老熟妇仑乱视频hdxx| 两人在一起打扑克的视频| 久久亚洲精品不卡| 国产激情欧美一区二区| 制服丝袜大香蕉在线| 三级男女做爰猛烈吃奶摸视频| 国产真实乱freesex| 无遮挡黄片免费观看| svipshipincom国产片| 亚洲熟妇熟女久久| 一个人看视频在线观看www免费 | 久久久久亚洲av毛片大全| 欧美极品一区二区三区四区| www.999成人在线观看| 久久精品国产综合久久久| 欧美zozozo另类| 国产午夜福利久久久久久| aaaaa片日本免费| 一区福利在线观看| 国产精品电影一区二区三区| 日日干狠狠操夜夜爽| 精品国产亚洲在线| 欧美色欧美亚洲另类二区| 搡女人真爽免费视频火全软件 | 国产精品免费一区二区三区在线| 午夜日韩欧美国产| 久久天躁狠狠躁夜夜2o2o| ponron亚洲| www国产在线视频色| 久久中文看片网| 亚洲午夜理论影院| 天天躁日日操中文字幕| 国内少妇人妻偷人精品xxx网站| 99久国产av精品| 国产成年人精品一区二区| 久久久久免费精品人妻一区二区| 国产精品久久视频播放| 亚洲av成人不卡在线观看播放网| 欧美另类亚洲清纯唯美| 19禁男女啪啪无遮挡网站| 欧美精品啪啪一区二区三区| 欧美色视频一区免费| 成人三级黄色视频| 久久久精品大字幕| 51午夜福利影视在线观看| 国产午夜福利久久久久久| 欧美丝袜亚洲另类 | 3wmmmm亚洲av在线观看| 国产探花在线观看一区二区| 欧美成人性av电影在线观看| 亚洲中文字幕一区二区三区有码在线看| 色视频www国产| 高清日韩中文字幕在线| 搡老熟女国产l中国老女人| 色精品久久人妻99蜜桃| 久久欧美精品欧美久久欧美| 99久久成人亚洲精品观看| a级毛片a级免费在线| 黄色成人免费大全| 非洲黑人性xxxx精品又粗又长| 久久精品国产亚洲av香蕉五月| 午夜视频国产福利| 一个人观看的视频www高清免费观看| 老熟妇仑乱视频hdxx| 精品99又大又爽又粗少妇毛片 | 亚洲av免费在线观看| 国产午夜精品论理片| 禁无遮挡网站| 97人妻精品一区二区三区麻豆| xxx96com| 亚洲欧美一区二区三区黑人| 不卡一级毛片| 国产v大片淫在线免费观看| 十八禁网站免费在线| 欧美日韩瑟瑟在线播放| 成人性生交大片免费视频hd| 搡女人真爽免费视频火全软件 | 国产黄a三级三级三级人| 色老头精品视频在线观看| 成人性生交大片免费视频hd| 热99在线观看视频| 免费av观看视频| 俺也久久电影网| 久久国产乱子伦精品免费另类| 精品久久久久久久久久免费视频| 69人妻影院| 久久久久久人人人人人| 亚洲国产精品久久男人天堂| 嫩草影院精品99| 亚洲国产高清在线一区二区三| 又爽又黄无遮挡网站| 国产av不卡久久| 老司机在亚洲福利影院| 一进一出抽搐动态| 久久婷婷人人爽人人干人人爱| 成人精品一区二区免费| 亚洲精华国产精华精| 亚洲真实伦在线观看| 99热这里只有是精品50| 女人十人毛片免费观看3o分钟| 国产乱人视频| 中文字幕人妻熟人妻熟丝袜美 | 欧美日韩综合久久久久久 | 岛国在线免费视频观看| 一进一出抽搐gif免费好疼| 99热这里只有精品一区| or卡值多少钱| 在线天堂最新版资源| 亚洲第一欧美日韩一区二区三区| 麻豆国产97在线/欧美| 免费无遮挡裸体视频| 很黄的视频免费| 欧美黑人欧美精品刺激| 在线十欧美十亚洲十日本专区| 亚洲成人久久爱视频| 99久久精品热视频| 亚洲一区二区三区不卡视频| 麻豆国产av国片精品| 国产精品香港三级国产av潘金莲| 午夜日韩欧美国产| 给我免费播放毛片高清在线观看| 午夜福利欧美成人| 免费av观看视频| 男人和女人高潮做爰伦理| 在线观看一区二区三区| 看黄色毛片网站| 午夜福利视频1000在线观看| 午夜福利欧美成人| 免费av观看视频| 国产精品嫩草影院av在线观看 | h日本视频在线播放| 两人在一起打扑克的视频| 久久精品影院6| 在线观看66精品国产| 国产亚洲欧美98| 亚洲内射少妇av| 精品不卡国产一区二区三区| 国产精品久久久久久久久免 | 日韩av在线大香蕉| 午夜福利在线在线| 亚洲欧美日韩高清在线视频| 免费人成视频x8x8入口观看| 2021天堂中文幕一二区在线观| 啦啦啦韩国在线观看视频|