• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Role of Barrier Layer in Southeastern Arabian Sea During the Development of Positive Indian Ocean Dipole Events

    2013-07-28 09:03:04GUOFeiyan1LIUQinyu1ZHENGXiaoTong1andSUNShan2
    Journal of Ocean University of China 2013年2期

    GUO Feiyan1), LIU Qinyu1), *, ZHENG Xiao-Tong1), and SUN Shan2)

    ?

    The Role of Barrier Layer in Southeastern Arabian Sea During the Development of Positive Indian Ocean Dipole Events

    GUO Feiyan, LIU Qinyu, ZHENG Xiao-Tong, and SUN Shan

    1),,266100,2), 325,

    Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60?E–75?E, 0?–10?N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.

    sea surface temperature (SST); mixed layer; barrier layer; Indian Ocean Dipole (IOD); persistence; precipitation; southeastern Arabian Sea

    1 Introduction

    The variability associated with sea surface temperature (SST), wind and precipitation in the tropical Indian Ocean has been identified and defined as the Indian Ocean Dipole (IDO) mode (Saji, 1999; Webster, 1999; Murtugudde, 2000; Yamagata, 2003; Luo, 2010; Zheng, 2010). The Indian Ocean Dipole mode displays an anomalous east-west SST gradient and is accompanied with wind and precipitation anomalies in the tropical Indian Ocean, so it is also referred to as the Indian Ocean zonal mode (Le Blanc and Boulanger, 2001; Huang and Kinter, 2002). During Indian Ocean Dipole events, the changes in SST are found to be closely associated with changes in surface wind, the equatorial wind reverses direction from westerlies to easterlies, and changes in sea surface wind are associated with a basin-wide anomalous Walker circulation (Yamagata, 2002). According to previous studies, the Bjerknes-type (Bjerknes, 1969) feedback (Saji, 1999; Li, 2003), the wind-evaporation-SST feedback (Wang, 2003; Li, 2003; Halkides, 2006) and the oceanic Rossby waves (Webster, 1999; Xie, 2002; Huang and Kinter, 2002) are dominant mechanisms for the development of IOD events.

    During an IOD event, the SST in the Indian Ocean experiences large changes. Saji(1999) analyzed six extreme events to present the life cycle of a typical dipole mode event. According to their studies, the northern Indian Ocean gets unusually warm in the initial development of a positive IOD event. Previous studies mainly discussed the SST cooling in the tropical southeastern Indian Ocean and the SST warming in the equatorial southwestern Indian Ocean during an IOD formation. So far it is still not very clear why the warm SST appears in the northwest Indian Ocean like the one in the southeastern Arabian Sea (SEAS: 60?E–75?E, 0?–10?N), why there is a corresponding southeasterly wind anomaly during the entire formation process of an IOD event, and whether there are other physical mechanisms contributing to the SST anomaly in the SEAS in addition to the wind-thermocline-SST feedback, wind-evaporation-SST feedback, and ocean Rossby wave feedback mechanisms.

    The intermediate layer between the bottom of mixed layer (ML) and the top of the thermocline is called the barrier layer (BL) (Godfrey and Lindstrom, 1989; Lukas and Lindstrom, 1991; Chu, 2002). The excessive precipitation, river runoff and redistribution of the low-salinity water by advection are in favor of the presence of BL. In the SEAS, the existence of the BL has been reported by several earlier studies. The winter monsoon current brings the low-salinity and low-temperature water from the Bay of Bengal into the SEAS (Shetye, 1991; Rao and Sivakumar, 2003; Sharma, 2010), which is considered to contribute to the formation of a BL with shallow salinity and density stratification and an inversion layer (Thadathil and Gosh, 1992; Shenoi, 1999). The heaviest precipitation on the eastern side of the Bay of Bengal and the Arabian Sea (Xie, 2006) is also favorable for the formation of BL.

    The BL thickness (BLT) is an important factor influencing the SST anomaly, as the thicker BL helps keeping the heat in the shallow mixed layer, leading to an increase in SST (Lewis, 1990; Vialard and Delecluse, 1998a, b). In addition, the existence of a thick BL prevents the mixed layer from reaching the thermocline, suppresses the sub-surface cold water from getting into the surface layer and thus inhibits the surface cooling (Vialard and Delecluse, 1998a; Han, 2001; Annamalai, 2003; Qiu, 2012). The formation and development of a BL in the SEAS also play an important role for SST variation in Arabian Sea (Shenoi, 2004; Durand, 2004). Masson(2005) showed that the existence of BL and the subsurface inversion in the SEAS substantially contribute to the SST increase and the early onset of the south-west monsoon. Using an ocean general circulation model (OGCM), De Boyer Montégut(2007) found that heat accumulated in the barrier layer in the eastern Arabian Sea can warm the surface layer by 0.4℃. In this study, it is proposed that the warm SST is important to maintain the southeasterly wind anomaly in the tropical Indian Ocean during the formation of a positive IOD, and there is an interannual variation of BL in the SEAS, which contributes to the anomalous warm SST in this region.

    Using Argo and SODA datasets the role of BL in the positive IOD is discussed in this paper as organized as follows. Section 2 introduces the data used in the study. Section 3 proposes the role of the BL during the development of the IOD event and discusses the warm SST and precipitation anomaly in the SEAS. The summary is in Section 4.

    2 Data

    In the present study, the monthly mean wind at 10m and surface heat flux from the NCEP/NCAR reanalysis products are adopted. This dataset has a spatial resolution of 1.875?×1.904? and covers the period from 1950 to 2010. The monthly mean global precipitation dataset, Precipitation Reconstruction (Chen, 2003), is used to examine the rainfall changes in the ocean, which is constructed on a 2.5?×2.5? horizontal grid over the globe for the period from 1948 to the present.

    The upper-level ocean temperature and salinity are needed to study the developmental process of the positive IOD events. Among many available products, the monthly mean data from the simple ocean data assimilation (SODA, v2.2.4) are selected for this study. The hori-zontal resolution of the dataset is 0.5?×0.5? and the vertical resolution is 10m in the upper-level (a total of 40 vertical layers, Carton and Giese, 2008). The wind data used to force this version of SODA are from the 20th Century Atmospheric Reanalysis products (Compo, 2011), which compare well with the NCEP/NCAR reanalysis, which is also used here, for both are based on surface observations and the NCEP Global Forecast System. The adequacy of using SODA data to study the Indian Ocean coupled dynamics is discussed in Xie(2002). In addition, the temperature and salinity profiles from Argo floats are used to investigate the IOD event in 2006. The Argo data have a 1?×1? horizontal resolution and were collected from 2005 to 2010.

    Because the IOD dominates the SST interannual variability, the decadal/interdecadal components are removed through band-pass filters and only the signals of interannual variability (13–84 months) are retained in order to extract the useful information related to IOD.

    3 The Role of the Barrier Layer

    The SST anomaly presents a positive IOD event as an east (cold) to west (warm) dipole mode. In Saji(1999), the warm SST anomaly exists in the SEAS during the development of the positive IOD events. In this study the 7-year Argo and 49-year SODA data are used to illustrate the impact of the BL anomaly on the anomalous warm SST in the SEAS. The warm SST in the SEAS and cold SST to the southeast of the SEAS induce the southeasterly wind anomaly. This process plays an important role in the development of the IOD events.

    3.1 Persistence of SST Anomaly in the SEAS

    Based on the IOD index defined by Saji(1999), the standard deviation of SST difference between the western and eastern equatorial Indian Ocean should be larger than 1.5 as IOD composite cases are identified. Based on this criteria, seven strong positive IOD events occurred in 1961, 1967, 1972, 1982, 1994, 1997 and 2006, respectively (Fig.1). Compared with the IOD cases in Saji’s study (1999), the 2006 IOD event is the first strong IOD event since Argo floats were fully deployed in the Indian Ocean. Fig.2 shows the evolution of SST and sea surface wind anomalies in 2006, together with the composite results associated with the seven IOD events indicated in Fig.1. Only statistically significant results with a confidence level exceeding 90% are shown in Figs.2d, 2e and 2f. For all seven IOD years, an anomalous warm SST occurs in the SEAS during June–July, and stays there for the next several months, accompanied with southeasterly winds. A noticeable difference is that warm SST in the 2006 IOD year is also observed in the central southern Indian Ocean (Fig.2). Chowdary(2009) found that a thick barrier layer propagating with the pronounced westward Rossby waves potentially contributed to this warming in the SEAS. According to the composite results of SST, the SEAS is defined as the crucial region in this study, most of which is within the western pole of IOD defined by Saji(1999). The SST anomalies and the northwest-to-southeast dipole pattern, formed by the anomalous warming in the SEAS and cooling in the southeastern tropical Indian Ocean, are similar when comparing the results with the Argo data (left column) and the SODA data (right column) in Fig.2. The SST patterns from SODA are also similar to those from the Met Office Hadley Centre’s sea ice and sea surface temperature dataset (HadISST1). To ensure the credibility of the Argo and SODA data used here, the SST patterns in the four strong IOD events (1982, 1994, 1997, and 2006) are further verified by using the daily data of the optimum interpolation sea surface temperature version 2 (OISST.V2) from 1981 to the present (Reynolds, 2002). Such a SST pattern during the early development of IOD results in strong southeasterly wind anomaly and the corresponding upwelling in the southeastern tropical Indian Ocean. As the anomalous warm SST extends westward and southward starting from August the anomalous southeasterly winds are further strengthened. The existence of warm SST anomaly in the SEAS plays a crucial role in enhancing the anomalous southeasterlies in the southeastern tropical Indian Ocean and the equatorial region. Next the mechanisms to maintain the warming in the SEAS will be investigated.

    Fig.1 Time evolution of the normalized Indian Ocean Dipole mode index (DMI in ℃). The star marks the IOD year.

    Fig.2 The 2006 SST anomaly (shaded in ℃) and sea surface wind anomaly (arrows in ms-1) fields from (a) June–July, (b) August–September and (c) October–November based on the Argo data. The same are shown in (d) to (f) for the composites of all seven positive IOD events based on SODA. The statistical significance of the analyzed anomalies is estimated by t-test. Anomalies of SST and surface wind exceeding 90% significance level are shown by the color shading and arrow, respectively. The black box indicates the crucial region in SEAS (0?–10?N, 60?E–75?E).

    3.2 The Role of the Barrier Layer in the SEAS

    In order to understand how the BL maintains the warm SST anomaly in the SEAS, the BLT is calculated as the difference between the isothermal layer depth and the MLD, where the isothermal layer depth is defined as the depth at which temperature is 0.5℃ lower than SST (Monterey and Levitus, 1997), and the MLD is the depth where water density is 0.125kgmhigher than that at the sea surface (Levitus, 1982; Huang and Qiu, 1994). A vertical linear interpolation is adopted due to the insufficient vertical resolution of SODA data, where either the MLD or isothermal layer depth lies between two standard levels. Using Argo floats data from 2005 to 2010 and SODA data from 1960 to 2008, the climatology mean of BLT and the standard deviation in the tropical Indian Ocean duirng June-November are calculated and shown in Fig.3. From both datasets, a thicker BL exists in the southeastern tropical Indian Ocean, the Bay of Bengal, and the Arabian Sea, although the Argo data shows a mean BLT of 10 m and the SODA data shows a BLT of 5m in the SEAS. The variation of BLT in the SEAS is significant and is almost equal to its climatology mean. The temperature and salinity from SODA compares well with those from the Argo data.

    Fig.3 Barrier layer thickness (contours in m) and its standard deviation (color shading in m) in June–November based on (a) Argo data averaged from 2005 to 2010 and (b) SODA averaged from 1960 to 2008. The crucial region in SEAS (0?–10?N, 60?E–75?E) is outlined by dashed line.

    Previous studies (Annamalai, 2003; Masson, 2005) have examined the warming effect of BL on SST in the Indian Ocean. Here it is proposed that the variation of the BLT may influence the SST anomaly in the SEAS. In order to confirm the hypothesis, the mixed layer temperature equation is considered (, Qiu, 2000; Liu, 2005):

    Using the perturbation method, Eq. (1) can be written as:

    . (2)

    Among the four terms on the right hand side of Eq. (2), the first term is the contribution of MLD anomaly to the SST variation anomaly; the second, third, and fourth terms are the contributions of the net air–sea heat flux anomaly, the current anomaly and horizontal gradient of SST anomaly, and the vertical velocity anomaly and vertical temperature gradient anomaly, respectively.andcin the equation are the sea water density and specific heat at constant pressure, respectively;is the mean net air–sea heat flux;is the mean current velocity vertically averaged over the mixed layer, which is composed of surface geostrophic current and Ekman flow;is the mean entrainment velocity;is the mean mixed layer depth;is the mean temperature in the mixed layer;is the mean temperature beneath the mixed layer;,,,,,are the respective anomalies.

    The four terms averaged over the SEAS for each month in 2006 are shown in Fig.4a. Among those terms, the first term is the largest, except in June, and reaches its maximum (0.33℃mon) in October (Figs.4a, and 4b), and the fourth term is the smallest and can be neglected. The large values of the first term indicate that the positive SST anomaly mainly comes from the contribution of negative MLD anomaly, for a thinner mixed layer has a lower heat capacity. In general, the contribution of negative MLD anomaly (the first term) is dominant in the SST warming during the development period of the positive IOD in 2006. Corresponding to the negative MLD anomalies, there are positive BLT anomalies (Fig.4b).

    The composite of each of the four terms during the seven positive IOD events is shown in Fig.4c. The above discussion on the 2006 Argo data applies to these positive IOD events as well: the positive SST anomaly in the SEAS is mainly due to the contribution of negative MLD anomaly in Fig.4d, where it shows the corresponding positive BLT anomaly, and the absolute values of the BLT are almost the same as the absolute MLD anomaly in the composite results. Because the MLD decreases by about 15%–20% from its climatology, the effect of net air–sea heat flux on the SST is amplified, for a thinner ML has a lower heat capacity. The net heat fluxe reanalysis from NCEP compares well with the objectively analyzed air–sea fluxes (OAFlux, Praveen-Kumar, 2012) and OAFlux (Yu, 2008). Corresponding to both for the 2006 IOD event and the composite of seven IOD events, the MLD shows negative anomalies, while the BLT positive anomalies. A shallower ML is the main mechanism for the persistence of positive SST anomalies in the SEAS during the IOD formation period. Morioka(2010, 2011) pointed out the importance of the MLD in SST anomaly and the findings here are consistent with their results.

    Fig.4 (a) The temperature variation anomaly (℃mon-1), including the MLD anomaly (1st term, dark bar), the sea surface net heat flux anomaly (2nd term, dark gray bar), the current anomaly and the horizontal gradient of SST anomaly (3rd term, light gray bar), and the vertical velocity anomaly and vertical temperature gradient anomaly (4th term, white bar); (b) The mixed layer depth anomaly (MLDA in m, dark gray bar) and the barrier layer thickness anomaly (BLTA in m, white bar) averaged in the SEAS (0?–10?N, 60?E–75?E) from June to November. (a) and (b) are based on the 2006 Argo data; (c) and (d) show the same variables as (a) and (b), respectively, for the composite of seven positive IOD events from SODA.

    3.3 The Ocean-Atmosphere Interaction Processes Among Wind, Precipitation, BL, and SST in the SEAS

    In the tropics, the BL usually appears as a low-salinity water layer between isothermal layer and ML after heavy precipitation or low-salinity advection from other areas. The results of the NCEP/NCAR reanalysis precipitation indicate that the positive precipitation anomaly begins to appear in the SEAS in August and becomes larger gradually afterward (Figs.5b to 5c). A composite of precipitation anomaly appearing in the seven IOD years (Figs.5d to 5f) shows that in the positive IOD events the precipitation has a positive anomaly in the SEAS in June–July and this anomaly increases in magnitude with time, which agrees well with changes in SST (Fig.2) and BLT (Fig.4d). Opposite to the heavy precipitation in the SEAS, the precipitation reduces greatly in the eastern Indian Ocean from June to November. The precipitation pattern of the four strong IOD events (1982, 1994, 1997 and 2006) agrees well with the Global Precipitation Climatology Project version 2 (GPCP.V2.2) combined precipitation data set (Adler, 2003). The positive precipitation anomaly is important for a positive anomaly of the BLT in the SEAS. Other studies also show that fresh water coming from the Bay of Bengal is important for salinity budget in the SEAS (Jensen, 1991; Shetye, 1991; Shenoi, 1999; Rao and Sivakumar, 1999, 2003).

    In order to examine the relationships among precipitation, SST, BL and MLD, the normalized time series of September-November precipitation anomaly (PreA), SST anomaly (SSTA), BLT anomaly (BLTA) and MLD anomaly (MLDA) are averaged in the SEAS from 1960 to 2008 and are shown in Fig.6. The PreA is strongly correlated with BLTA during the peak IOD period (September–November), with a positive correlation coefficient of 0.75 and a significance level exceeding 95%. This strong correlation further indicates that more precipitation will increase the thickness of BL. Corresponding to the thicker BL, the shoaling of ML will warm the SST based on the early discussion. It is also found that warm SST could in turn increase the BLT. The relationship between SSTA and BLA (MLDA) is examined and the correlation coefficient between them is 0.47 (?0.48) with a significance level exceeding 95%. Warm SST in the SEAS and cold SST in the southeastern tropical Indian Ocean form an SST gradient, which provides a favorable condition for the occurrence of the anomalous southeasterly winds (Fig.2). The winds can bring abundant moisture from the southeastern Indian Ocean, and enhance the precipitation. The correlation coefficient between SSTA and PreA is 0.46 with a confidence level of 95%. The excessive precipitation results in the BL thickening and the ML shoaling. The correlation coefficients between the four variables and the IOD index of SON are 0.79, 0.72, 0.68 and ?0.47 with a significance level exceeding the 95%, respectively, indicating a close relationship between those variables and the IOD event. Saji(1999) pointed out the great changes of zonal wind over the equatorial central and eastern Indian Ocean during the IOD events. Our results further illustrate that there is an ocean-atmosphere interaction process in the SEAS among SST, wind, precipitation, BL, and ML during a positive IOD event. Along with other mechanisms the BL plays an important role in the development of IOD.

    Fig.5 The precipitation anomaly fields (contours in mmd-1) in (a) June–July, (b) August–September and (c) October–November using the 2006 Argo data. The same fields are shown in (d)–(f) for the composite of seven positive IOD events from SODA and the shaded area has a significance level exceeding 90%. The box indicates the crucial region in SEAS (0?–10?N, 60?E–75?E).

    Fig.6 The normalized time series of the precipitation anomaly (PreA, black solid line), sea surface temperature anomaly (SSTA, gray solid line), barrier layer thickness anomaly (BLTA, dashed line), and mixed layer depth anomaly (MLDA, gray bar) averaged in the SEAS in September–November.

    4 Summary and Discussion

    Using data from the Argo floats and SODA reanalysis, the composite analysis is conducted to investigate the development processes of positive IOD events. It is found that warmer SST appears in June–July in the SEAS (0?–10?N, 60?E–75?E), most of which is in the western pole of the IOD defined by Saji(1999). This anomalous warm SST extends westward and southward, and can persist for several months. The positive temperature anomaly in the SEAS is mainly due to the MLD decrease (the first term in the mixed layer temperature equation), especially from August to November. Because the MLD is about 15%–20% thinner comparing with its climatology, the effect of net air–sea heat flux on the SST is amplified, for a thinner ML has a lower heat capacity. The contribution of net heat flux (the second term) and the total contribution of the current anomaly and horizontal gradient of SST anomaly (the third term) are positive in some months but are smaller than the contribution of the MLD anomaly (the first term). The total contribution of vertical velocity anomaly and vertical temperature gradient anomaly (the fourth term) is so small that their effect is negligible.

    It is shown that ML and BL are important in adjusting ocean-atmosphere interactions and thus affecting weather and climate. Warming in the SEAS caused by the thickening of BLT (shoaling of MLD) enhances the precipitation and increases the southeast-northwest SST gradient with the cold SST in the southeastern Indian Ocean. The large SST gradient intensifies the anomalous southeasterly winds, which brings more moisture to the SEAS. The excessive precipitation reduces the salinity, increases the stratification near the surface, and leads to a decrease in MLD and an increase in BLT, which then contributes to a warmer SST in the SEAS. This ocean-atmosphere interaction process among wind, precipitation, BL and SST plays an important role during the development of positive IOD events in the SEAS.

    Acknowledgements

    Comments by the two anonymous reviewers greatly helped improve the manuscript. Thanks to Profs. S.-P. Xie and W. Han for their comments on the manuscript. Argo data were collected and made available by the International Argo Program of the Global Ocean Observing System (http://www.argo.ucsd.edu, http://argo.jcommops.org). This study is supported by the National Basic Research Program of China (2012CB955602), Ministry of Science and Technology of China (National Key Program for Developing Basic Science 2010CB428904), the NSFC (41176006, 40921004, 41106010), and the 111 Project of China (Program of Introducing Talents of Discipline to Universities No. B07036).

    Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P., 2003. The Version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present)., 4: 1147-1167.

    Annamalai, H., Murtugudde, R., Potemra, J., Xie, S., Liu, P., and Wang, B., 2003. Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode., 50: 2305-2330.

    Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific., 97: 163-172.

    Carton, J. A., and Giese, B. S., 2008. A reanalysis of ocean climate using simple ocean data assimilation (SODA)., 136: 2999-3017.

    Chen, M., Xie, P., Janowiak, J. E., Arkin, P. A., and Smith, T. M., 2003. Reconstruction of the oceanic precipitation from 1948 to the present.. American Meteorological Society, Long Beach, CA.

    Chowdary, J. S., Gnanaseelan, C., and Xie, S.-P., 2009. Westward propagation of barrier layer formation in the 2006–07 Rossby wave event over the tropical southwest Indian Ocean., 36, L04607, DOI: 10.1029/2008GL036642.

    Chu, P. C., Liu, Q., Jia, Y., and Fan, C., 2002. Evidence of a Barrier Layer in the Sulu and Celebes Seas., 32 (11): 3299-3309.

    Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleaso B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Bronnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mork, H. Y., Nordli, ?., Ross, T. F., Trigo, R.M., Wang, X. L., Woodruff, S. D., and Worley, S. J., 2011. The twentieth century reanalysis project., 137: 1-28, DOI: 10.1002/qj.776.

    De Boyer Montégut, C., Vialard, J., Shenoi, S. S. C., Shankar, D., Durand, F., Ethé, C., and Madec, G., 2007. Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean., 20: 3249-3268, DOI: 10.1175/ JCLI4148.1.

    Durand, F., Shetye, S. R., Vialard, J., Shankar, D., Shenoi, S. S. C., Ethé, C., and Madec, G., 2004. Impact of temperature inversions on SST evolution in the south-eastern Arabian Sea during the pre-summer monsoon season., 31, L01305, DOI: 10.1029/2003GL018906.

    Godfrey, J. S., and Lindstrom, E. J., 1989. The heat budget of the equatorial western Pacific surface mixed layer., 94: 8007-8017.

    Halkides, D. J., Han, W., and Webster, P. J., 2006. Effects of the seasonal cycle on the development and termination of the Indian Ocean Zonal Dipole Mode., 111, C12017, DOI: 10.1029/2005JC003247.

    Han,W., McCreary, J. P., and Kohler, K. E., 2001. Influence of precipitation-evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean., 106: 6895-6916.

    Huang, B., and Kinter III, J. L., 2002. Interannual variability in the tropical Indian Ocean., 107, 3199, DOI: 10.1029/2001JC001278.

    Huang, R. X., and Qiu, B., 1994. Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific., 24: 1608-1622.

    Jensen, T. G., 1991. Modeling the seasonal undercurrents in the Somali Current system., 96 (C12): 22151-22167, DOI: 10.1029/91JC02383.

    Le Blanc, J. L., and Boulanger, J. P., 2001. Propagation and re?ection of long equatorial waves in the Indian Ocean from TOPEX/POSEIDON data during the 1993–1998 period., 17: 547-557.

    Levitus, S., 1982.. National Oceanic and Atmospheric Adinistration. NOAA Professional Paper-13, 173pp.

    Lewis, M. R., Carr, M., Feldman, G., Esaias, W., and Mc-Clain, C., 1990. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean., 347: 543-544.

    Li, T., Wang, B., Chang, C. P., and Zhang, Y., 2003. A theory for the Indian Ocean Dipole–zonal mode., 60: 2119-2135.

    Liu, Q., Xie, S. P., Li, L., and Maximenko, N. A., 2005. Ocean thermal advective effect on the annual range of sea surface temperature., 32, L24604, DOI: 10.1029/2005GL024493.

    Lukas, T., and Lindstrom, E., 1991. The mixed layer of the western equatorial Pacific Ocean., 96: 3343-3357.

    Luo, J. J., Zhang, R. C., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R., and Yamagata, T., 2010. Interaction between El Ni?o and Extreme Indian Ocean Dipole., 23: 726-742, DOI: http://dx.doi.org/ 10.1175/2009JCLI3104.1.

    Masson, S, Luo, J. J., Madec, G., Vialard, J., Durand, F., Gualdi, S., Guilyardi, E., Behera, S., Delecluse, P., Navarra, A., and Yamagata, P., 2005. Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea., 32, L07703, DOI: 10.1029/2004GL021980.

    Monterey, G., and Levitus, S., 1997. Seasonal variability of mixed layer depth for the world ocean. U.S. Gov. Printing Office, Washington D.C., 96pp.

    Morioka, Y., Tozuka, T., and Yamagata, T., 2010. Climate variability in the Southern Indian Ocean as revealed by self-organizing maps., 35: 1059-1072, DOI: 10.1007/s00382-010-0843-x.

    Morioka, Y., Tozuka, T., and Yamagata, T., 2011. On the growth and decay of the subtropical dipole mode in the South Atlantic., 24: 5538-5554, DOI: 10.1175/2011JCL14010.1.

    Murtugudde, R., McCreary, J. P., and Busalacchi, A. J., 2000. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998., 105: 3295-3306.

    Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., and McPhaden, M. J., 2012. TropFlux: air–sea fluxes for the global tropical oceans-description and evaluation., 38: 1521-1543, DOI: 10.1007/s00382-011-1115-0.

    Qiu, B., 2000. Interannual variability of the Kuroshio extension system and its impact on the wintertime SST field., 30: 1486-1502.

    Qiu, Y., Cai, W., Li, L., and Guo, X., 2012. Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole., 39, L08605, DOI: 10.1029/2012GL051441.

    Rao, R. R., and Sivakumar, R., 1999. On the possible mechanisms of the evolution of a mini-warm pool during the pre-summer monsoon season and the onset vortex in the southeastern Arabian Sea., 125: 787-809.

    Rao, R. R., and Sivakumar, R., 2003. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean., 108 (C1), 3009, DOI: 10.1029/2001JC000907.

    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W., 2002. An improvedand satellite SST analysis for climate., 15: 1609-1625.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T., 1999. A dipole mode in the Tropical Indian Ocean., 401: 360-363.

    Sharma, R., Agarwal, N., Momin, I. M., Basu, S., and Agarwal, V. K., 2010. Simulated sea surface salinity variability in the Tropical Indian Ocean., 23: 6542-6554, DOI: http://dx.doi.org/10.1175/ 2010JCLI3721.1.

    Shenoi, S. S. C., Shankar, D., and Shetye, S. R., 1999. On the sea surface temperature high in the Lakshadweep Sea before the onset of the southwest monsoon., 104 (C7): 15703-15712.

    Shenoi, S. S. C., Shankar, D., and Shetye, S. R., 2004. Remote forcing annihilates barrier layer in southeastern Arabian Sea., 31, L05307, DOI: 10.1029/2003GL019270.

    Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C., Michael, G. S., Sundar, D., Almeida, A. M., and Santanam, K., 1991. The coastal current off western India during the northeast monsoon., 38: 1517-1529.

    Thadathil, P., and Gosh, A. K., 1992. Surface layer temperature inversion in the Arabian Sea during winter., 48: 293-304.

    Vialard, J., and Delecluse, P., 1998a. An OGCM study for the TOGA decade. Part I. Role of salinity in the physics of the western Paci?c fresh pool., 28: 1071-1088.

    Vialard, J., and Delecluse, P., 1998b. An OGCM study for the TOGA decade. Part II. Barrier-layer formation and variability., 28: 1089-1106.

    Wang, B., Wu, R., and Li, T., 2003. Atmosphere-warm ocean interaction and its impact on Asian-Australian monsoon variation., 16: 1195-1211.

    Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R., 1999. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98., 401: 356-360.

    Xie, S. P., Annamalai, H., Schott, F. A., and McCreary, J. P., 2002. Structure and mechanisms of South Indian Ocean climate variability., 15: 864-878.

    Xie, S. P., Xu, H., Saji, N. H., Wang, Y., and Liu, W. T., 2006. Role of narrow mountains in large-scale organization of Asian monsoon convection., 19: 3420-3429.

    Yamagata, T., Behera, S. K., Rao, S. A., Guan, Z., Ashok, K., and Saji, H. N., 2002. The Indian Ocean Dipole: a physical entity., 24: 15-18.

    Yamagata, T., Behera, S. K., Rao, S. A., Guan, Z., Ashok, K., and Saji, H. N., 2003. Comments on ‘Dipoles, temperature gradient, and tropical climate anomalies’., 84: 1418-1422.

    Yu, L., Jin, X., and Weller, R. A., 2008. Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables., Woods Hole. Massachusetts. 64pp.

    Zheng, X. T., Xie, S. P., Vecchi, G. A., Liu, Q., and Hafner, J., 2010. Indian Ocean Dipole response to global warming: analysis of ocean–atmospheric feedbacks in a coupled model., 23: 1240-1253.

    (Edited by Xie Jun)

    10.1007/s11802-013-2170-4

    ISSN 1672-5182, 2013 12 (2): 245-252

    . Tel: 0086-532-66782556 E-mail: liuqy@ouc.edu.cn

    (October 11, 2012; revised November 26, 2012; accepted February 5, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    亚洲精品影视一区二区三区av| 成人性生交大片免费视频hd| 精品久久久噜噜| 看免费成人av毛片| 国产一区二区三区av在线| 九色成人免费人妻av| 18禁裸乳无遮挡免费网站照片| 久久精品久久久久久久性| 免费一级毛片在线播放高清视频| 你懂的网址亚洲精品在线观看 | 国产成人a区在线观看| 亚洲成色77777| 蜜臀久久99精品久久宅男| 九色成人免费人妻av| 国产亚洲av嫩草精品影院| 亚洲图色成人| 一级黄色大片毛片| 国产成年人精品一区二区| 一夜夜www| 国产黄色视频一区二区在线观看 | 99九九线精品视频在线观看视频| 色视频www国产| 中文字幕av在线有码专区| 国产精品一区二区性色av| 国产精品,欧美在线| 午夜福利在线观看吧| 蜜桃亚洲精品一区二区三区| 伊人久久精品亚洲午夜| 永久网站在线| 国产精品无大码| 亚州av有码| 国产视频首页在线观看| 最近的中文字幕免费完整| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 国产精品一及| 禁无遮挡网站| 啦啦啦韩国在线观看视频| 大话2 男鬼变身卡| 久久久久久久午夜电影| 久久精品久久久久久久性| 中文资源天堂在线| 精华霜和精华液先用哪个| 免费大片18禁| 韩国高清视频一区二区三区| 久久鲁丝午夜福利片| 国产午夜精品久久久久久一区二区三区| 男女国产视频网站| 麻豆乱淫一区二区| 日韩国内少妇激情av| 国产精品无大码| 亚洲av一区综合| 国产69精品久久久久777片| 婷婷色麻豆天堂久久 | 亚洲欧美日韩东京热| 村上凉子中文字幕在线| 两个人视频免费观看高清| 极品教师在线视频| 内射极品少妇av片p| 亚洲精品,欧美精品| 中文字幕熟女人妻在线| 99热这里只有是精品在线观看| 尾随美女入室| 国产精品福利在线免费观看| 午夜亚洲福利在线播放| 国产v大片淫在线免费观看| 亚洲最大成人中文| 日韩制服骚丝袜av| 男人的好看免费观看在线视频| 亚洲精品乱码久久久v下载方式| 亚洲av中文字字幕乱码综合| 成年版毛片免费区| ponron亚洲| 国产一区二区亚洲精品在线观看| 啦啦啦啦在线视频资源| 国语自产精品视频在线第100页| 久久亚洲精品不卡| 一区二区三区乱码不卡18| 久久久久久久国产电影| kizo精华| 在线观看av片永久免费下载| 精品久久久久久电影网 | 国产欧美日韩精品一区二区| 久久久久久久久久成人| 欧美日韩一区二区视频在线观看视频在线 | 国产精品美女特级片免费视频播放器| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| 超碰av人人做人人爽久久| 久久久国产成人精品二区| 特级一级黄色大片| 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频| 亚洲丝袜综合中文字幕| 午夜日本视频在线| 综合色丁香网| 亚洲美女搞黄在线观看| 亚洲av日韩在线播放| 国产成人福利小说| 欧美3d第一页| 黄色配什么色好看| 国产高清视频在线观看网站| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 美女大奶头视频| 99国产精品一区二区蜜桃av| 高清在线视频一区二区三区 | 欧美zozozo另类| 高清在线视频一区二区三区 | 一区二区三区免费毛片| 亚洲丝袜综合中文字幕| 精品久久久久久久久亚洲| 久久韩国三级中文字幕| 久久人妻av系列| 中文天堂在线官网| 青青草视频在线视频观看| 特大巨黑吊av在线直播| 成人亚洲欧美一区二区av| 亚洲av男天堂| 久久久久网色| 欧美高清成人免费视频www| 亚洲自拍偷在线| 69av精品久久久久久| 久久精品国产亚洲av天美| 你懂的网址亚洲精品在线观看 | 日韩,欧美,国产一区二区三区 | 秋霞伦理黄片| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 午夜免费激情av| 99久久精品一区二区三区| 汤姆久久久久久久影院中文字幕 | 2021少妇久久久久久久久久久| 国产精品电影一区二区三区| 哪个播放器可以免费观看大片| 卡戴珊不雅视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美 国产精品| 国产高清国产精品国产三级 | 亚洲av福利一区| 国产精品美女特级片免费视频播放器| 搞女人的毛片| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| 国产午夜福利久久久久久| 丰满乱子伦码专区| 欧美成人午夜免费资源| 国产乱人视频| 精品久久久久久久末码| 亚洲人成网站在线观看播放| 婷婷六月久久综合丁香| 一本一本综合久久| 国产精品一区二区三区四区免费观看| 一边亲一边摸免费视频| 老司机福利观看| 欧美三级亚洲精品| 国产黄片视频在线免费观看| 夜夜爽夜夜爽视频| 日韩中字成人| 国产精品美女特级片免费视频播放器| 白带黄色成豆腐渣| 噜噜噜噜噜久久久久久91| 中文字幕免费在线视频6| 人人妻人人澡人人爽人人夜夜 | 观看美女的网站| 国产久久久一区二区三区| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区三区| 欧美极品一区二区三区四区| 精品人妻偷拍中文字幕| 99国产精品一区二区蜜桃av| 18+在线观看网站| 久久亚洲精品不卡| 久99久视频精品免费| 成人高潮视频无遮挡免费网站| 黑人高潮一二区| 日韩一区二区三区影片| 国产免费福利视频在线观看| av在线播放精品| 99热这里只有是精品50| 哪个播放器可以免费观看大片| 男插女下体视频免费在线播放| 尤物成人国产欧美一区二区三区| 欧美日本亚洲视频在线播放| 男人和女人高潮做爰伦理| 日韩在线高清观看一区二区三区| 国产精品人妻久久久影院| 国产乱来视频区| 国产黄片美女视频| 少妇的逼好多水| 少妇熟女欧美另类| 免费观看在线日韩| 亚洲aⅴ乱码一区二区在线播放| 夜夜爽夜夜爽视频| 精品一区二区免费观看| 国产成人aa在线观看| 亚洲国产精品合色在线| 亚洲国产欧洲综合997久久,| 亚洲精品456在线播放app| 永久网站在线| 观看美女的网站| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区| 欧美激情在线99| 日韩视频在线欧美| 色综合亚洲欧美另类图片| 非洲黑人性xxxx精品又粗又长| 伦理电影大哥的女人| 变态另类丝袜制服| 国产精品久久电影中文字幕| 精品人妻偷拍中文字幕| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 国产一区亚洲一区在线观看| 国产91av在线免费观看| 人人妻人人澡欧美一区二区| 乱系列少妇在线播放| 九草在线视频观看| 精品久久久久久久久av| av在线老鸭窝| 搡女人真爽免费视频火全软件| 国产人妻一区二区三区在| 99久久九九国产精品国产免费| 国产亚洲午夜精品一区二区久久 | 成人二区视频| 在线观看av片永久免费下载| 久久国内精品自在自线图片| 国产精品一区二区三区四区免费观看| 嫩草影院精品99| videos熟女内射| 国产一区二区三区av在线| 精品欧美国产一区二区三| 国产精品国产高清国产av| 国产一区二区在线av高清观看| 精品久久久久久成人av| 亚洲国产精品sss在线观看| 99在线视频只有这里精品首页| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 日韩视频在线欧美| 我的女老师完整版在线观看| 亚洲国产精品久久男人天堂| 亚洲成人中文字幕在线播放| 国产精品一二三区在线看| 亚洲电影在线观看av| 国产高清有码在线观看视频| 99久久精品一区二区三区| 亚洲国产精品专区欧美| 少妇熟女欧美另类| 精品人妻偷拍中文字幕| 在现免费观看毛片| 精品国产露脸久久av麻豆 | 一级毛片我不卡| 尾随美女入室| 国产视频首页在线观看| 一级毛片aaaaaa免费看小| 草草在线视频免费看| 免费黄色在线免费观看| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添av毛片| 国国产精品蜜臀av免费| 99热精品在线国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av在线播放精品| 赤兔流量卡办理| av免费在线看不卡| 亚洲精品一区蜜桃| 久久这里只有精品中国| 一卡2卡三卡四卡精品乱码亚洲| 久久久午夜欧美精品| 一本一本综合久久| 欧美三级亚洲精品| 亚洲欧美清纯卡通| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 尾随美女入室| 中国国产av一级| 午夜精品一区二区三区免费看| 国产精品av视频在线免费观看| 人妻系列 视频| 日韩欧美 国产精品| 18禁裸乳无遮挡免费网站照片| 看免费成人av毛片| 69人妻影院| 免费av观看视频| 中文精品一卡2卡3卡4更新| 国产精品久久电影中文字幕| 欧美bdsm另类| 亚洲国产成人一精品久久久| 哪个播放器可以免费观看大片| 精品无人区乱码1区二区| 国产免费一级a男人的天堂| 亚洲高清免费不卡视频| 国产精品.久久久| 美女xxoo啪啪120秒动态图| 中文字幕久久专区| 亚洲av福利一区| 中文字幕人妻熟人妻熟丝袜美| 欧美bdsm另类| 一卡2卡三卡四卡精品乱码亚洲| 村上凉子中文字幕在线| 欧美3d第一页| 神马国产精品三级电影在线观看| 免费黄色在线免费观看| 午夜日本视频在线| 久久人人爽人人片av| 成人毛片a级毛片在线播放| 国产在视频线精品| 日本免费在线观看一区| 亚洲精品国产av成人精品| 国语自产精品视频在线第100页| 日韩成人av中文字幕在线观看| 亚洲成av人片在线播放无| 有码 亚洲区| 国产一区有黄有色的免费视频 | 男女边吃奶边做爰视频| 成人欧美大片| 变态另类丝袜制服| 国产精品野战在线观看| 国产精品三级大全| 午夜视频国产福利| 亚洲精品国产成人久久av| 国产淫语在线视频| 日韩欧美三级三区| 亚洲在线自拍视频| 又粗又硬又长又爽又黄的视频| 十八禁国产超污无遮挡网站| 国产私拍福利视频在线观看| 国产 一区 欧美 日韩| 精品国产三级普通话版| 中文字幕亚洲精品专区| 精品国产三级普通话版| 国产在线一区二区三区精 | 三级国产精品片| 中文字幕av成人在线电影| 欧美色视频一区免费| 天堂中文最新版在线下载 | 亚洲精品乱久久久久久| 亚洲在线观看片| 免费不卡的大黄色大毛片视频在线观看 | av在线老鸭窝| 国产精品一区二区三区四区久久| 青春草视频在线免费观看| 最近最新中文字幕免费大全7| 99久久成人亚洲精品观看| 久久这里只有精品中国| av黄色大香蕉| 97超视频在线观看视频| 亚洲三级黄色毛片| 久久久久久久午夜电影| 国产大屁股一区二区在线视频| 精品久久久久久电影网 | 国产一区二区在线av高清观看| 国产色婷婷99| 国产一区二区亚洲精品在线观看| 久久久欧美国产精品| 一级毛片电影观看 | 国产精品一及| 亚洲在线观看片| 日韩制服骚丝袜av| 老女人水多毛片| 久久久久久伊人网av| 精品人妻一区二区三区麻豆| 日韩大片免费观看网站 | 亚洲欧美成人综合另类久久久 | 精品久久国产蜜桃| 少妇的逼水好多| 国产高清国产精品国产三级 | av卡一久久| 人人妻人人澡人人爽人人夜夜 | 国产片特级美女逼逼视频| 国产成人精品久久久久久| 男人和女人高潮做爰伦理| 亚洲av日韩在线播放| 国产淫片久久久久久久久| 一区二区三区高清视频在线| 亚洲欧美一区二区三区国产| 日本五十路高清| 建设人人有责人人尽责人人享有的 | a级毛片免费高清观看在线播放| 精品久久久久久久人妻蜜臀av| 久久久精品94久久精品| 国产伦一二天堂av在线观看| 丝袜美腿在线中文| av福利片在线观看| 大香蕉97超碰在线| 边亲边吃奶的免费视频| 免费在线观看成人毛片| 免费观看a级毛片全部| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄 | 亚洲欧洲日产国产| 日日摸夜夜添夜夜添av毛片| 亚洲av熟女| 亚洲成色77777| 亚洲国产最新在线播放| av在线蜜桃| 国产精品一区www在线观看| ponron亚洲| 午夜激情福利司机影院| 亚洲精品日韩av片在线观看| 色尼玛亚洲综合影院| 色吧在线观看| 国产精品野战在线观看| 一级毛片久久久久久久久女| 看十八女毛片水多多多| 99久久精品国产国产毛片| 1000部很黄的大片| 久久久久性生活片| 看非洲黑人一级黄片| 国产91av在线免费观看| 97超视频在线观看视频| av线在线观看网站| 日本色播在线视频| 韩国高清视频一区二区三区| 身体一侧抽搐| 国产免费视频播放在线视频 | 国产日韩欧美在线精品| 久久精品国产自在天天线| 亚洲五月天丁香| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 精品久久久久久久末码| av专区在线播放| 丰满人妻一区二区三区视频av| 亚洲av电影不卡..在线观看| 午夜日本视频在线| 一本一本综合久久| 国产高清不卡午夜福利| 久久99热这里只频精品6学生 | 26uuu在线亚洲综合色| 直男gayav资源| 亚州av有码| 亚洲av中文字字幕乱码综合| 精品免费久久久久久久清纯| 在线a可以看的网站| 免费观看的影片在线观看| ponron亚洲| 色视频www国产| 日韩精品有码人妻一区| 日韩欧美国产在线观看| 久久久久久久午夜电影| 少妇熟女aⅴ在线视频| av国产久精品久网站免费入址| 日本黄大片高清| 日韩,欧美,国产一区二区三区 | 成年av动漫网址| 国产av在哪里看| 国产精品一区www在线观看| 免费观看在线日韩| 亚洲高清免费不卡视频| 黄色配什么色好看| 国产精品精品国产色婷婷| 波多野结衣巨乳人妻| 亚洲av成人av| 十八禁国产超污无遮挡网站| 国产精品久久久久久精品电影| 久久久久久久国产电影| 91av网一区二区| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 久久久色成人| 欧美日韩一区二区视频在线观看视频在线 | 欧美人与善性xxx| 六月丁香七月| 午夜福利高清视频| 日本黄色片子视频| 日日撸夜夜添| 人人妻人人看人人澡| 99国产精品一区二区蜜桃av| 寂寞人妻少妇视频99o| 人妻系列 视频| 免费播放大片免费观看视频在线观看 | 99视频精品全部免费 在线| 国产人妻一区二区三区在| 国产精品无大码| 尤物成人国产欧美一区二区三区| 久久久久久久午夜电影| 99久久九九国产精品国产免费| 亚洲四区av| 免费看a级黄色片| 精品久久久久久成人av| 九色成人免费人妻av| 久久久久久久久久成人| 亚洲精品国产av成人精品| 国产三级中文精品| 高清毛片免费看| 一边亲一边摸免费视频| 久久鲁丝午夜福利片| 午夜福利视频1000在线观看| 自拍偷自拍亚洲精品老妇| 国产精品永久免费网站| 色综合站精品国产| 国产精品乱码一区二三区的特点| 久久国内精品自在自线图片| av播播在线观看一区| 精品人妻一区二区三区麻豆| 国产精品爽爽va在线观看网站| 白带黄色成豆腐渣| 久99久视频精品免费| www日本黄色视频网| 一级爰片在线观看| 免费观看人在逋| 国产精品久久久久久久电影| 韩国高清视频一区二区三区| av免费在线看不卡| 欧美日本视频| 一个人观看的视频www高清免费观看| 成人毛片60女人毛片免费| 久久草成人影院| 亚洲精品色激情综合| 国产午夜精品论理片| 能在线免费看毛片的网站| 亚洲激情五月婷婷啪啪| 欧美成人午夜免费资源| 国产精品日韩av在线免费观看| www.av在线官网国产| 1024手机看黄色片| 欧美日韩精品成人综合77777| 国产免费又黄又爽又色| 久久精品久久精品一区二区三区| 国产精品一区二区性色av| 嘟嘟电影网在线观看| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 午夜老司机福利剧场| 国产极品天堂在线| 亚洲国产精品国产精品| 嫩草影院精品99| 人体艺术视频欧美日本| 国产又色又爽无遮挡免| 午夜老司机福利剧场| 久久久亚洲精品成人影院| 蜜桃久久精品国产亚洲av| 成年女人永久免费观看视频| 黄色日韩在线| 在线免费观看不下载黄p国产| 日本wwww免费看| 久久久欧美国产精品| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 中文字幕免费在线视频6| 色哟哟·www| 白带黄色成豆腐渣| 少妇人妻精品综合一区二区| 久久久久久伊人网av| 久久久久免费精品人妻一区二区| 国产精华一区二区三区| 免费观看a级毛片全部| 青春草视频在线免费观看| 女人十人毛片免费观看3o分钟| ponron亚洲| 99久久人妻综合| 我要看日韩黄色一级片| 日本黄色视频三级网站网址| 男人狂女人下面高潮的视频| 一边亲一边摸免费视频| 人人妻人人澡人人爽人人夜夜 | av线在线观看网站| 噜噜噜噜噜久久久久久91| 伦理电影大哥的女人| 51国产日韩欧美| 久久久久久久久大av| 高清视频免费观看一区二区 | 可以在线观看毛片的网站| 99久久无色码亚洲精品果冻| 久久久午夜欧美精品| 国产色爽女视频免费观看| 国产黄色小视频在线观看| 一区二区三区高清视频在线| 99久久人妻综合| 深爱激情五月婷婷| 人妻夜夜爽99麻豆av| 内地一区二区视频在线| 中文字幕熟女人妻在线| 欧美三级亚洲精品| 成人亚洲精品av一区二区| 欧美一区二区国产精品久久精品| 在线a可以看的网站| 又爽又黄无遮挡网站| 床上黄色一级片| 在线a可以看的网站| 干丝袜人妻中文字幕| 变态另类丝袜制服| av天堂中文字幕网| 成人鲁丝片一二三区免费| 一边亲一边摸免费视频| 欧美最新免费一区二区三区| 亚洲一区高清亚洲精品| 九色成人免费人妻av| 色网站视频免费| 亚洲一区高清亚洲精品| 日本猛色少妇xxxxx猛交久久| 亚洲成人av在线免费| 国产69精品久久久久777片| 又粗又硬又长又爽又黄的视频| 欧美人与善性xxx| 97热精品久久久久久| 久久热精品热| 久久精品国产99精品国产亚洲性色| 日韩精品有码人妻一区| 国产一区有黄有色的免费视频 | 日韩精品有码人妻一区| 亚洲在线自拍视频| 中国国产av一级| 国产毛片a区久久久久| 国内精品宾馆在线| 自拍偷自拍亚洲精品老妇| 99久久人妻综合|