• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Impact of Meso-Scale Eddies on the Subtropical Mode Water in the Western North Pacific

    2013-07-28 09:02:54LIUCongandLIPeiliang
    Journal of Ocean University of China 2013年2期

    LIU Cong, and LI Peiliang*

    ?

    The Impact of Meso-Scale Eddies on the Subtropical Mode Water in the Western North Pacific

    LIU Cong, and LI Peiliang

    ,,266100,

    Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002–2011, the North Pacific Subtropical Mode Water (NPSTMW) distribution is investigated and cyclonic and anti-cyclonic eddies (CEs and AEs) are constructed to study the influence of their vertical structures on maintaining NPSTMW. Combining eddies identified by the GVA data and Argo profiling float data, it is found that the average NPSTMW thickness of AEs is about 60dbar, which is thicker than that of CEs. The NPSTMW thicker than 150dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1%. About 3377 (3517) profiles, which located within one diameter of the nearest CEs (AEs) are used to construct the CE (AE). The composite AE traps low-PV water in the center and with a convex shape in the vertical section. The ‘trapped depth’ of the composite CE (AE) is 300m (550m) where the rotational velocity exceeds the transitional velocity. The present study suggests that the anticyclonic eddies are not only likely to form larger amounts of NPSTMW, but also trap more NPSTMW than cyclonic eddies.

    thickness of NPSTMW; meso-scale eddies; swirl velocity; trapped depth

    1 Introduction

    NPSTMW is characterized by a pycnostad between the seasonal and main thermoclines in the western part of the North Pacific subtropical gyre (Masuzawa, 1969). It is formed because of the regional wintertime convective cooling (Bingham, 1992; Suga and Hanawa, 1995; Suga, 2004). As a minimum potential vorticity (PV) layer, the STMW can be detected over a wide geographic domain from 130?E to the date line and from the Kuroshio-Kuroshio Extension (KE) system to the subtropical countercurrent.

    Data analysis and modeling research have been done on the role of meso-scale eddies in the formation, transportation and dissipation of the STMW. Based on Argo profiling float data, Uehara(2003) pointed out that anticyclonic meso-scale eddies tend to trap more intense STMW than cyclonic meso-scale eddies. By analyzing historical CTD/XBT data, Qiu and Chen (2006) found that the formation of the STMW is closely associated with the dynamical state of the KE. When the dynamical state is unstable, the KE system will dispatch more cyclonic eddies, carrying the high-PV water to the recirculation gyre and preventing the development of a deep winter mixed layer. By combining satellite-derived sea sur-face height anomaly data and the Argo profiling float data, the composite distribution of the mixed layer depth (MLD) around the centers of AEs and CEs in the North Pacific Ocean in late winter was analyzed (Kouketsu, 2012). The distribution showed that it was more (less) likely to find deeper MLD inside anticyclonic (cyclonic) eddies than outside the eddies.

    All the above-mentioned studies focus on the formation of mode waters and suggest that anti-cyclonic meso-scale eddies favor the formation of mode waters comparing to cyclonic eddies. However, it is also very important to reveal the transportation of mode waters and the role that the meso-scale eddies play in the transport. A series of high resolution eddy-resolving ocean general circulation models (OGCM) has been used to investigate eddies’ effects on the subduction and distribution of NPSTMW (, Qu, 2002; Raninville, 2007; Nishikawa, 2010). Through analyzing the NPSTMW budget, and the volume and PV budgets between 25.0–25.5density layers, Raininville(2007) demonstrated that eddies have a dominant role in the transport and distribution of NPMTMW. As shown by Nishikawa(2010), a single anticyclonic eddy can trap low PV water in fall and destruct the PV gradient by transporting high (low) PV water to the south (north) on the eastern (western) side in late winter.

    In this study, the Argo profiling float data and altimeter data accumulated in the past ten years are used to investigate the vertical structure of the meso-scale eddies. With the T-S profiles obtained from the KESS program and Hot-spot program, the contribution of meso-scale eddies to NPSTMW is also examined. The paper is organized as follows. In Section 2 the study region and the two data sets (altimetry and Argo data) are described. The eddy identification algorithm from satellite data as well as the methodology used to classify the Argo profiles is also presented in this section. Section 3 describes the characteristics of the STMW in the cyclonic and anti-cyclonic mesoscale eddies, discusses the possible reasons for the differential STMW in cyclonic and anti-cyclonic eddies, and summarizes the study results.

    2 Data and Methods

    The study region, where the STMW is formed, extends from the Kuroshio-Kuroshio Extension (KE) system (40?N) to the subtropical countercurrent (20?N) and from 130?E to the date line.

    2.1 Altimeter-Derived Geostrophic Velocity Anomaly and Eddy Identification

    The time delayed daily GVA data, spanning from January 2002 to February 2011, are used to determine the characteristics of meso-scale eddies in the study domain. This gridded altimeter product, produced by Ssalto/Duacs and distributed by Aviso (http://www.aviso.oceanobs.com), provides the best spatiotemporal resolution available for revealing meso-scale features (Le Traon and Dibarboure, 1999; Pascual, 2006; Chelton, 2011). The initial GVA data were mapped onto a 1/3? Mercator grid and then bilinearly interpolated onto a 0.25?×0.25? longitude/latitude grid to well identify eddies (Appendix A.2 of Chelton(2011)).

    On each daily GVA data map, meso-scale eddies were identified using the algorithm recently developed by Nencioli(2010). This algorithm is based on the minimum velocity around an eddy center as the tangential velocity of an eddy increases approximately linearly with the distance from the eddy center, and reaches the maxi-mum before decaying. The concept requires the specification of two parameters: the first parameter,, is the minimum grid points needed to calculate the maximum tangential velocity; the second parameter,, the domain range to obtain the local minimum velocity. In this paper,=3 and=2 are chosen according to the resolution of the velocity data. Assuming that all the eddies have a circular shape, and each long-lived eddy exists over 30d, the center, shape, and equivalent radius (R) of an eddy can be obtained from this algorithm.

    2.2 Argo Data Set and Classification of the Argo Profiles

    The NPSTMW characteristics were investigated using the autonomous CTD profiling floats from the Argo program (http://www.usgodae.org/cgi-bin/argo_select.pl). This dataset spans the same temporal period as the altimetry product (between January 2002 and February 2011). The original delayed dataset is provided by 492 distinct floats from which 32245 CTD profiles were obtained during the study period. All the data were automatically preprocessed and quality controlled by the Argo data center (Wong, 2003; B?hme and Send, 2005; Owens and Wong, 2009). The pressure, temperature and salinity data in the profiles, if not all flagged with 1, were excluded in the analysis. To investigate the characteristics of the NPSTMW, only those profiles with the shallowest record at less than 10m layer and the deepest one below 1000m were considered. Once selected, each profile was visually checked and those with a questionable T/S diagram were removed. The final dataset contains 20695 profiles, accounting for 64% of the initial dataset. The final T/S profiles were interpolated at a 1-dbar interval using the Akima spline method (Akima, 1970). The potential temperature (), the potential density (σ) and the dynamic height () relative to the 1000 m reference depth were computed. The anomalies of these variables (,,,), treated as the meso-scale perturbations, are computed by removing the climatological profiles, which were obtained by interpolating the Ishii monthly objective analy-sis dataset (version 6.9) (Ishii, 2005, 2009).

    Fig.1 (a) An illustration of the eddy detection algorithm and the classification of Argo profiles. Vectors correspond to GVA (in cms-1) and black dots indicate the locations of Argo profiles on 14 August, 2008. The edges of the automatically identified cyclonic and anticyclonic eddies are represented by blue and red contours, respectively. (b) The float position (M1) relative to the corresponding eddy center (C1); this eddy-centered referential (?X, ?Y), which is normalized by dividing the corresponding eddy radius, is used to construct the composite eddies through the objective interpolation (see Fig.3 and the text for details).

    The 20695 profiles were classified into three distinct categories according to the float location inside or outside an eddy. In order to exclude the influence of the eddy size, the dimensionless distance,D=/R, was calculated, whererepresents the zonal (?) or meridional distance (?) between a profile and the corresponding eddy. Those profiles within twice radius of the nearest CEs (AEs) were used to construct the CE (AE). The results of the classification and the distance for a given day (14 August 2008) are shown in Fig.1.

    3 Results and Conclusion

    3.1 NPSTMW Thickness in CEs and AEs

    By following the definition by Suga(1989), the potential vorticity is calculated as

    whereis the Coriolis parameter, andthe in situ density. The NPSTMW is defined as the water with PV less than 1.5×10ms,between 16℃ and 19.5℃, and the densityσbetween 25.0 and 25.6kgm. Based on the definition, the thickness of NPSTMW () on each Argo profile, with the mixed layer depth (defined as the depth at which the density was 0.03kgmheavier than that at the 10-m depth (Weller and Plueddemann, 1996)) excluded, was calculated. The low-layers with the thickness less than 25dbar and existing only at depths less than 100dbar were regarded as small-scale features and were excluded (Oka, 2011). In order to investigate the differences ofbetween CEs and AEs, the time series ofand its standard deviation in each category are plotted in Fig.2. Only the Argo profiles to the north of 27?N were taken into account, because the NPSTMW thickness to the south of 27?N was too small (the NPSTMW was identified on only 17% of the profiles and less than 0.1% of the profiles had anexceeding 150dbar). Hereafter the eddies will only refer to those to the north of 27?N. The averageof AEs is about 60dbar thicker than that of CEs. The NPSTMW thicker than 150dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1% (Fig.2 and Table 1). Fig.2 and Table 1 show that the anticyclonic eddies provide favorable conditions for the NPSTMW intensification comparing to the cyclonic eddies. Uehara(2003) studied the statistical relationships ofand 12℃ isotherm depth (thermocline) and found that anticyclonic eddies correspond to thicker NPSTMW.

    Fig.2 The NPSTMW thickness () on Argo profiles in CEs, AEs and OEs at a bi-monthly interval. The open-circles and bars denote the averages and bootstrapped 95% confidence intervals, respectively.

    Table 1 NPSTMW thickness distributions of different categories: in cyclonic eddies (CEs), in anti-cyclonic eddies (AEs) and outside eddies (OEs)

    Notes:The thickness of NPSTMW greater than 150dbar. Initial: the Argo profiles of different categories to the north of 27?N.

    3.2 Composite Eddies

    The Argo profiles with a normalized all direction distance of less than 2 were used to construct the cyclonic or anticyclonic eddies. Assuming that all the CEs or AEs in the research area have similar 3-D structures, a coordinate system (?, ?) was used to investigate the spatial distribution of a given property (anomaly) around CEs and AEs. The centers of eddies are fixed on the average latitude of the domain (32?N). Figs.3a–d show the potential temperature and salinity anomaly distributions as a function of the normalized distance (?, ?). About 3377 (3517) profiles near CEs (AEs) were used to composite eddies.

    At each water depth level, the property anomalies that are three times larger than the inter-quartile range from either the first or the third quartile were considered as outliers and removed from the analysis. The remaining properties (anomalies) were then mapped on a regular grid using the Cressman interpolation,

    wherer, is the normalized distance between the profile location and the grid point, andis the radius of influence (Cressman, 1959). Figs.3a–d show the temperature and salinity anomalies, and the corresponding interpolated results at the 200m level for CEs and 400m for AEs, respectively.

    Fig.3 Objective interpolation of potential temperature anomalies (a, b) and salinity anomalies (c, d) on a dimensionless gridded domain (0.1×0.1). The anomalies are at 200 m depth and 400 m depth for cyclonic eddies (a, c) and for anticyclonic eddies (b, d), respectively. Solid dots in (a, d) show the anomalies estimated from Argo profiles in the eddy-centered referential, whereas contours correspond to the results of the objective interpolation. Black contours in (e, f) represent the objectively interpolated dynamic height anomaly at 200m and 400m depths relative to 1000m, and the color shading and vectors show the corresponding horizontal geostrophic velocity (in cms). The composite eddy edges identified from the automatic algorithm are showed as white dots. The anomalies were computed using the Ishii climatology dataset interpolated in time and space of the Argo float data.

    3.3 STMW in Composite Eddies

    By using model output, Nishikawa(2010) composited an anticyclonic eddy and claimed that the eddy can influence the STMW in two ways: eddy mixing and eddy advection. According to Qiu(2006), the STMW intensity can be calculated as the vertically integrated PV anomaly (relative to=1.5×10ms) over the STMW layer:

    whereandare the upper and lower boundaries of the STMW layer with<. In general, the NPSTMW is observed to be more (less) intense toward the center of the composite AE (CE) than along its edges (Figs.4a–b). And Figs.4e–f show that the low-PV core has a convex (concave) shape in the vertical PV section across an AE (CE). It is clear that the AE traps and transports the low-PV water to the south (Figs.4c–d), which confirms the eddy advection mechanism reported by Nishikawa(2010). But the Argo data do not verify the eddy mixing mechanism because of the insufficient data and the briefness of an eddy mixing process.

    Fig.4 The low PV water in the composite CE and AE constructed by the Argo profiles between May and December. The intensity of STMW in the CE and AE is shown in a) and b), respectively. c) and d) show the composite PV in the CE and AE. The arrows denote the composite horizontal vectors on σ=25.25. The vertical sections of PV in the CE and AE are displayed in e) and f), and the black thick line denotes the 2.0×10ms contour.

    3.4 Vertical Extent of the Trapped Fluid

    The above analysis has indicated that the anticyclonic eddies provide more favorable conditions for the formation of a thicker NPSTMW. Suga (1995) presented a direct evidence of the transportation of the thick NPSTMW by the AE. One of the main objectives of this study is to investigate how the anticyclonic eddies maintain the NPSTMW with negative PV anomalies. The water mass anomalies in an eddy can only be maintained if the water mass in the eddy is trapped for a considerable part, preventing surrounding water from entering the eddy when the eddy is translated (Flierl, 1981; van Aken, 2003). Thus to reveal the influence of AEs and CEs on the NPSTMW, the part of the water column that is effectively trapped and transported by eddies should be considered. According to Flierl (1981), the transport of the trapped water column inside a ring depends upon the translation and swirling speed. A dimensionless parameter, representing the ratio of the fluid speed to the drift speed provides a measurement of the nonlinearity of an eddy. When the parameter is greater than 1, the eddy dynamics is nonlinear and can maintain a coherent structure as the eddy translates (Flierl, 1981; Chelton, 2007, 2011; Chaigneau, 2011).

    The swirling speeds of composite eddies at each level are characterized by the maximum average geostrophic speeds along all the closed contours ofinside eddies. Figs.3e and 3f show the compositeat 200m (400m) of CEs (AEs), and the corresponding geostrophic velocity derived from the slopes of. The closedcontours associated with the strongest average rotational velocity correspond to the composite eddy-core edges (white dots in the Figs.3e and 3f). The translation speed was defined as 4.6cms, which corresponds to the mean propagation speed of long-lived eddies in the study region. The ratio, derived from swirling and drifting speed, was auto-computed from surface to 1000dar (Fig.5). It is clear that the ‘trapped depth’, the maximum depth where the rotational speed exceeds the translation speed, is 300m and 500m in the composite CE and AE, respectively. That is to say the AEs are more favorable to the formation of larger NPSTMW, can trap more NPSTMW, and thus play a more important role in the southward transport of NPSTMW comparing to the CEs.

    Fig.5 Vertical profiles of the swirl velocity averaged over the composite cyclonic (blue) and anticyclonic (red) eddy edges. The nonlinear parameter is obtained using the mean drift velocity of 4.6cms-1. The indicated depths correspond to the vertical extent of trapped water within the composite eddies (300m for CEs and 550m for AEs).

    3.5 Discussion and Conclusion

    By using the velocity-based eddy detecting algorithm and the Argo profiles, thousands of AEs and CEs are identified and classified based on profile locations relative to an eddy. About 816 profiles in the cyclonic and 816 profiles in the anticyclonic eddies are obtained to the north of 27?N and some derived quantities, such as the thickness of NPSTMW, computed. The meanof AEs is about 60dbar thicker than that of CEs. The NPSTMW thicker than 150dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1%. Previous studies attributed the NPSTMW differences in CEs and AEs mostly to the MLD differences due to later winter conditions. But the dissipation and transportation of NPSTMW will also influence the distribution of the NPSTMW. Thus, the Argo profiles near eddies are used to composite the AEs and CEs and the vertical extent of the trapped fluid in each composite eddy is examined. By tracking the water depth where the rotational speed exceeds transitional speed of composite eddies, it is found that AEs can trap and transport water from the surface to the 550m depth, but CEs can only extend to the 300m depth. In other words, more NPSTMW with high PV anomalies is trapped in AEs than in CEs, which prevents surrounding water from entering the eddy and destroying the uniform structure of NPSTMW in eddies.

    Results of previous climate modeling studies showed a stronger mode water and a more southward intrusion than the observations, and thus exaggerated the mode water dynamics in the subtropical countercurrent (Xie, 2011). It is also noted that the thickness of NPSTMW suddenly drops near 27?N in both this investigation and previous studies (see Fig.2 of Oka(2011)), which implies that the NPSTMW could experience great diffusion because its southward transport is carried by eddies. Therefore, clarifying the NPSTMW diffusion as it moves southward will be one of the most important topics in future studies.

    Acknowledgements

    This work was supported by the National Basic Research Program of China (Grant No. 2012CB955602) and the National Natural Science Foundation of China (Grant Nos. 41076005 and 41176009). The authors benefited from discussions with Drs. S.-P. Xie, A. Chaigneau, and Prof. Q. Liu. Constructive comments from anonymous reviewers greatly helped improve the manuscript. We also thank Y. Li for improving the manuscript.

    Akima, H., 1970. A new method of interpolation and smooth curve fitting based on local procedures., 17: 589-603.

    Bingham, F. M., 1992. Formation and spreading of subtropical mode water in the North Pacific., 97: 11177-11189.

    B?hme, L., and Send, U., 2005. Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments., 52: 651-664.

    Chaigneau, A., Le Texier, M., Eldin, G., Grados, C., and Pizarro, C., 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats., 116, C11025, DOI: 10.1029/2011JC007134.

    Chelton, D. B., Schlax, M. G., and Samelson, R. M., 2011. Global observations of nonlinear mesoscale eddies., 91: 167-216.

    Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A., 2007. Global observations of large oceanic eddies., 34, L15606, DOI: 10.1029/2007GL030812.

    Cressman, G. P., 1959. An operational objective analysis system., 87: 367-374.

    Flierl, G. R., 1981. Particle motions in large-amplitude wave fields., 18: 39-74.

    Ishii, M., and Kimoto, M., 2009. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections., 65 (3): 287-299.

    Ishii, M., Shouji, A., Sugimoto, S., and Matsumoto, T., 2005. Objective analyses of SST and marine meteorological variables for the 20th century using COADS and the Kobe Collection., 25 (7): 865-879.

    Kouketsu, S., Tomita, H., Oka, E., Hosoda, S., Kobayashi, T., and Sato, K., 2012. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific., 68: 63-77.

    Le Traon, P. Y., and Dibarboure, G., 1999. Mesoscale mapping capabilities from multiple altimeter missions., 16: 1208-1223.

    Masuzawa, J., 1969. Subtropical mode water., 16: 463-472.

    Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J., 2010. A vector geometry based eddy detection algorithm and its application to high-resolution numerical model products and High-Frequency radar surface velocities in the Southern California Bight., 27 (3): 564-579.

    Nishikawa, S., Tsujino, H., Sakamoto, K., and Nakano, H., 2010. Effects of mesoscale eddies on subduction and distribution of subtropical mode water in an eddy-resolving OGCM of the western North Pacific., 40: 1748-1765.

    Oka, E., Suga, T., Sukigara, C., Toyama, K., Shimada, K., and Yoshida, J., 2011. ‘Eddy-resolving’ observation of the North Pacific subtropical mode water., 41: 666-681.

    Owens, W. B., and Wong, A. P. S., 2009. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ-S climatology., 56: 450-457.

    Pascual, A., Faugère, Y., Larnicol, G., and Le Traon, P. Y., 2006. Improved description of the ocean mesoscale variability by combining four satellite altimeters.,33, L02611, DOI: 10.1029/2005GL024633.

    Qiu, B., and Chen, S., 2006. Decadal variability in the formation of the North Pacific subtropical mode water: Oceanic versus atmospheric control., 36: 1365-1380.

    Qiu, B, Hacker, P., Chen, S., Donohue, K. A., Watts, D. R., Mitsudera, H., Hogg, N. G., and Jayne, S. R., 2006. Observations of the subtropical mode water evolution from the Kuroshio Extension System Study., 36: 457-473.

    Qu, T., Xie, S. P., Mitsudera, H., and Ishida, A., 2002. Subduction of the North Pacific mode waters in a global high-resolution GCM., 32: 746-763.

    Rainville, L., Jayne, S. R., McClean, J. L., and Maltrud, M. E., 2007. Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio Extension region., 17: 338-356.

    Suga, T., and Hanawa, K., 1995. The subtropical mode water circulation in the North Pacific., 25: 958-970.

    Suga, T., Hanawa, K., and Toba, Y., 1989. Subtropical mode water in the 137?E section., 19: 1605-1618.

    Suga, T., Motoki, K., Aoki, Y., and Macdonald, A. M., 2004. The North Pacific climatology of winter mixed layer and mode waters., 34: 3-22.

    Uehara, H., Suga, T., Hanawa, K., and Shikama, N., 2003. A role of eddies in formation and transport of North Pacific Subtropical Mode Water., 30 (13), 1705, DOI: 10.1029/2003GL017542.

    van Aken, H., van Veldhoven, A. K., Veth, C., de Ruijter, W. P. M., van Leeuwen, P. J., Drijfhout, S. S., Whittle, C. P., and Rouault, M., 2003. Observations of a young Agulhas ring, Astrid, during MARE in March 2000., 50: 167-195.

    Weller, R. A., and Plueddemann, A. J., 1996. Observations of the vertical structure of the oceanic boundary layer., 101 (C4): 8789-8806.

    Wong, A. P. S., Johnson, G. C., and Owens, W. B., 2003. Delayed-mode calibration of autonomous CTD profiling float salinity data by climatology., 20: 308-318.

    Xie, S. P., Xu, L. X., Liu, Q., and Kobashi, F., 2011. Dynamical role of modewater ventilation in decadal variability in the central subtropical gyre of the North Pacific., 24: 1212-1225.

    (Edited by Xie Jun)

    10.1007/s11802-013-2223-8

    ISSN 1672-5182, 2013 12 (2): 230-236

    . Tel: 0086-532-66781528 E-mail: lpliang@ouc.edu.cn

    (November 16, 2012; revised February 20, 2013; accepted April 7, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    国产毛片a区久久久久| 国产精品久久久久久久电影| 国产一区二区在线观看日韩| 亚洲精品国产成人久久av| 精品久久久久久久末码| 久久久久久久久久久丰满| 99re6热这里在线精品视频| 国产高潮美女av| 久久久成人免费电影| 亚洲精品久久午夜乱码| 国产v大片淫在线免费观看| 亚洲欧美成人精品一区二区| 蜜臀久久99精品久久宅男| 2018国产大陆天天弄谢| 最近2019中文字幕mv第一页| 秋霞伦理黄片| 日韩av不卡免费在线播放| 五月玫瑰六月丁香| 亚洲精品国产av成人精品| 亚洲精品乱码久久久v下载方式| 99re6热这里在线精品视频| 免费高清在线观看视频在线观看| 97在线视频观看| 五月天丁香电影| 中文字幕人妻熟人妻熟丝袜美| 久久久久国产网址| 亚洲欧洲国产日韩| 一区二区三区乱码不卡18| 狠狠精品人妻久久久久久综合| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 一二三四中文在线观看免费高清| 久久久久久久久久久丰满| 三级经典国产精品| 一级毛片 在线播放| 性插视频无遮挡在线免费观看| 特大巨黑吊av在线直播| 国产精品.久久久| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜爱| 国产单亲对白刺激| 亚洲性久久影院| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 秋霞在线观看毛片| 秋霞伦理黄片| 91aial.com中文字幕在线观看| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 国产伦一二天堂av在线观看| 国产一区二区在线观看日韩| 一区二区三区乱码不卡18| 国产在视频线在精品| 国产精品一区二区在线观看99 | 日韩强制内射视频| 免费在线观看成人毛片| 国产亚洲精品av在线| 国内少妇人妻偷人精品xxx网站| 国产 亚洲一区二区三区 | 最近中文字幕高清免费大全6| 亚洲精品成人av观看孕妇| 日韩欧美一区视频在线观看 | 久久99热6这里只有精品| 亚洲av中文字字幕乱码综合| 亚洲精品乱码久久久久久按摩| 99久久中文字幕三级久久日本| 国产男人的电影天堂91| 少妇人妻精品综合一区二区| 精品亚洲乱码少妇综合久久| 免费av不卡在线播放| 草草在线视频免费看| 六月丁香七月| 久久久久久久亚洲中文字幕| 国产高潮美女av| 97在线视频观看| 国产中年淑女户外野战色| 青春草视频在线免费观看| 人妻夜夜爽99麻豆av| 欧美精品国产亚洲| 国产乱来视频区| 中文资源天堂在线| 久久精品国产自在天天线| 卡戴珊不雅视频在线播放| 国产69精品久久久久777片| 国产精品不卡视频一区二区| 只有这里有精品99| 69av精品久久久久久| 狠狠精品人妻久久久久久综合| 看十八女毛片水多多多| 国产欧美另类精品又又久久亚洲欧美| 熟女人妻精品中文字幕| 国产伦在线观看视频一区| 亚洲精品久久久久久婷婷小说| 淫秽高清视频在线观看| 青春草国产在线视频| 日日摸夜夜添夜夜添av毛片| av国产免费在线观看| 日日干狠狠操夜夜爽| 欧美成人精品欧美一级黄| 黄色一级大片看看| 日韩欧美三级三区| 亚洲欧美一区二区三区国产| 搞女人的毛片| 婷婷六月久久综合丁香| 精品一区二区三区视频在线| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人a在线观看| 国产在视频线在精品| 成年女人看的毛片在线观看| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 亚洲av二区三区四区| 国产精品久久久久久精品电影| 春色校园在线视频观看| 联通29元200g的流量卡| 亚洲精品久久久久久婷婷小说| 欧美日韩视频高清一区二区三区二| 又爽又黄无遮挡网站| 黄色一级大片看看| 亚洲av成人av| 久久草成人影院| 久久久久久久久久久免费av| 久久久国产一区二区| 国产麻豆成人av免费视频| av在线亚洲专区| 亚洲国产精品sss在线观看| 毛片一级片免费看久久久久| 一级毛片aaaaaa免费看小| 日韩av不卡免费在线播放| 成人漫画全彩无遮挡| 亚洲av不卡在线观看| 亚洲成人av在线免费| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 大香蕉久久网| 777米奇影视久久| 免费黄色在线免费观看| 看十八女毛片水多多多| 久久久久久国产a免费观看| 人妻系列 视频| 日韩成人伦理影院| 男女下面进入的视频免费午夜| videossex国产| 免费观看精品视频网站| 自拍偷自拍亚洲精品老妇| 欧美zozozo另类| 精品人妻一区二区三区麻豆| 午夜福利在线在线| 国语对白做爰xxxⅹ性视频网站| 中文字幕久久专区| 免费观看a级毛片全部| 午夜福利视频精品| 日韩欧美一区视频在线观看 | 亚洲精品一区蜜桃| 成人毛片60女人毛片免费| 搡老乐熟女国产| 亚洲av不卡在线观看| 一级毛片黄色毛片免费观看视频| 综合色av麻豆| 中文字幕免费在线视频6| 肉色欧美久久久久久久蜜桃 | 亚洲人与动物交配视频| av天堂中文字幕网| 嫩草影院精品99| 久久久久久久国产电影| 午夜福利在线观看免费完整高清在| 国国产精品蜜臀av免费| 如何舔出高潮| av网站免费在线观看视频 | 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 97精品久久久久久久久久精品| 不卡视频在线观看欧美| 亚洲18禁久久av| 韩国高清视频一区二区三区| 国产有黄有色有爽视频| 青青草视频在线视频观看| av黄色大香蕉| 亚洲欧美日韩无卡精品| 久久久久网色| 亚洲在久久综合| 一级毛片 在线播放| 午夜激情欧美在线| 波野结衣二区三区在线| 狂野欧美激情性xxxx在线观看| 99热这里只有精品一区| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 熟妇人妻不卡中文字幕| 男人舔奶头视频| 欧美zozozo另类| 精品久久久噜噜| 国产三级在线视频| 在现免费观看毛片| 国产精品1区2区在线观看.| 精品久久久久久久久av| 国产v大片淫在线免费观看| 成年女人看的毛片在线观看| 亚洲国产精品成人综合色| 国产色婷婷99| 亚洲欧洲国产日韩| 欧美丝袜亚洲另类| 国产成人精品久久久久久| 国产精品一及| 久久综合国产亚洲精品| 国产男女超爽视频在线观看| 亚洲av.av天堂| 男人和女人高潮做爰伦理| 久久精品熟女亚洲av麻豆精品 | 99久久中文字幕三级久久日本| 毛片女人毛片| 亚洲在线观看片| 亚洲欧美精品自产自拍| 高清av免费在线| 成年人午夜在线观看视频 | 亚洲成人中文字幕在线播放| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩精品一区二区| 自拍偷自拍亚洲精品老妇| 色哟哟·www| 人妻少妇偷人精品九色| 欧美日本视频| 久久99精品国语久久久| 一二三四中文在线观看免费高清| 欧美高清性xxxxhd video| 免费无遮挡裸体视频| 久久精品国产自在天天线| 最近中文字幕高清免费大全6| 欧美日韩亚洲高清精品| 人妻制服诱惑在线中文字幕| 看非洲黑人一级黄片| 天天躁日日操中文字幕| 亚洲国产成人一精品久久久| av福利片在线观看| 我的女老师完整版在线观看| 亚洲欧美清纯卡通| 成人美女网站在线观看视频| 亚洲av日韩在线播放| 高清av免费在线| 亚洲精品第二区| 人妻一区二区av| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 高清午夜精品一区二区三区| 久久99热这里只频精品6学生| 免费人成在线观看视频色| 看非洲黑人一级黄片| 国产麻豆成人av免费视频| 久久久久久久久久人人人人人人| 亚洲欧美日韩卡通动漫| 欧美+日韩+精品| 久久人人爽人人爽人人片va| 观看免费一级毛片| 久久精品久久久久久噜噜老黄| 国产精品一区www在线观看| 免费av不卡在线播放| 欧美一区二区亚洲| 午夜免费男女啪啪视频观看| 亚洲综合色惰| 女人被狂操c到高潮| 日本黄大片高清| 一二三四中文在线观看免费高清| 久久精品国产亚洲av涩爱| 国产国拍精品亚洲av在线观看| 精品久久久久久成人av| 深夜a级毛片| 日韩 亚洲 欧美在线| 三级男女做爰猛烈吃奶摸视频| 在线观看美女被高潮喷水网站| 成人综合一区亚洲| 免费电影在线观看免费观看| 伊人久久国产一区二区| 3wmmmm亚洲av在线观看| 国产一级毛片在线| 亚洲精品,欧美精品| 五月天丁香电影| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 日韩在线高清观看一区二区三区| 欧美另类一区| 又黄又爽又刺激的免费视频.| 少妇丰满av| 三级国产精品片| 成人毛片60女人毛片免费| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 深爱激情五月婷婷| kizo精华| 日本猛色少妇xxxxx猛交久久| 直男gayav资源| 日本色播在线视频| 成人鲁丝片一二三区免费| 久久精品人妻少妇| 成人av在线播放网站| 夜夜看夜夜爽夜夜摸| 少妇猛男粗大的猛烈进出视频 | 国产午夜精品久久久久久一区二区三区| 久久久久网色| 国产免费一级a男人的天堂| 欧美日韩国产mv在线观看视频 | 亚洲人成网站在线观看播放| 国产av不卡久久| 天堂影院成人在线观看| 久久久成人免费电影| 国产精品蜜桃在线观看| 美女大奶头视频| 三级毛片av免费| 人妻夜夜爽99麻豆av| 国语对白做爰xxxⅹ性视频网站| 精品酒店卫生间| 99九九线精品视频在线观看视频| 18+在线观看网站| 亚洲熟妇中文字幕五十中出| 夜夜爽夜夜爽视频| 亚洲怡红院男人天堂| 国产v大片淫在线免费观看| 久久99精品国语久久久| 国产亚洲一区二区精品| 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 国产免费一级a男人的天堂| 国产在视频线精品| 九九在线视频观看精品| 午夜福利视频1000在线观看| 欧美区成人在线视频| 色播亚洲综合网| 十八禁网站网址无遮挡 | 看十八女毛片水多多多| 天天躁日日操中文字幕| 精品酒店卫生间| 嫩草影院新地址| 人妻一区二区av| 舔av片在线| 国产在线男女| 综合色av麻豆| 97超碰精品成人国产| 精品久久久久久久久av| 午夜视频国产福利| 亚洲精品国产成人久久av| 秋霞伦理黄片| 综合色av麻豆| 色5月婷婷丁香| 噜噜噜噜噜久久久久久91| 国产午夜精品一二区理论片| 国产亚洲最大av| av专区在线播放| 国产av不卡久久| 国产色婷婷99| 国产一区二区亚洲精品在线观看| 国产激情偷乱视频一区二区| 淫秽高清视频在线观看| 国产伦理片在线播放av一区| 免费大片18禁| 日韩,欧美,国产一区二区三区| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影| 91久久精品国产一区二区成人| 看免费成人av毛片| 久久6这里有精品| 成人高潮视频无遮挡免费网站| 亚洲精品久久午夜乱码| 欧美不卡视频在线免费观看| 毛片一级片免费看久久久久| 欧美区成人在线视频| 在线观看免费高清a一片| av又黄又爽大尺度在线免费看| 久久人人爽人人片av| 成人亚洲精品一区在线观看 | 国产高清三级在线| 国产 一区精品| 非洲黑人性xxxx精品又粗又长| 成人亚洲欧美一区二区av| 日韩强制内射视频| 乱码一卡2卡4卡精品| 国产亚洲5aaaaa淫片| 一本久久精品| 欧美+日韩+精品| 高清av免费在线| 内地一区二区视频在线| 久久久亚洲精品成人影院| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 日韩欧美三级三区| 欧美97在线视频| av又黄又爽大尺度在线免费看| 成人美女网站在线观看视频| 国产亚洲午夜精品一区二区久久 | 国产精品综合久久久久久久免费| 亚洲精品第二区| 汤姆久久久久久久影院中文字幕 | 午夜福利网站1000一区二区三区| 水蜜桃什么品种好| 国产精品福利在线免费观看| 18禁动态无遮挡网站| 男女下面进入的视频免费午夜| 欧美高清性xxxxhd video| 久久99热这里只有精品18| 国产在线一区二区三区精| 亚洲伊人久久精品综合| 国产日韩欧美在线精品| 一级毛片电影观看| 熟妇人妻久久中文字幕3abv| 免费观看无遮挡的男女| 国产男女超爽视频在线观看| 久久久色成人| 婷婷色麻豆天堂久久| 韩国av在线不卡| 亚洲乱码一区二区免费版| 国产一级毛片在线| 精品久久久久久电影网| 国产成人a区在线观看| 国产国拍精品亚洲av在线观看| 国产激情偷乱视频一区二区| 超碰av人人做人人爽久久| 国产一区二区三区综合在线观看 | av在线天堂中文字幕| 欧美+日韩+精品| 免费观看无遮挡的男女| 全区人妻精品视频| 亚洲成人久久爱视频| 91午夜精品亚洲一区二区三区| 国产视频内射| 免费播放大片免费观看视频在线观看| 丝袜喷水一区| 国产精品三级大全| 中国美白少妇内射xxxbb| 国产综合精华液| 精品酒店卫生间| 日韩欧美精品免费久久| 国产精品综合久久久久久久免费| 韩国高清视频一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕人妻熟人妻熟丝袜美| xxx大片免费视频| 成人欧美大片| 视频中文字幕在线观看| 国产黄片美女视频| 2021少妇久久久久久久久久久| 国内少妇人妻偷人精品xxx网站| 人妻系列 视频| 91av网一区二区| 精品久久久久久成人av| av又黄又爽大尺度在线免费看| 亚洲av中文字字幕乱码综合| 日本爱情动作片www.在线观看| 亚洲经典国产精华液单| 亚洲四区av| 亚洲精品亚洲一区二区| 女的被弄到高潮叫床怎么办| 一级毛片 在线播放| 青春草视频在线免费观看| 少妇人妻精品综合一区二区| 国产av在哪里看| 蜜桃亚洲精品一区二区三区| 久久久成人免费电影| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 久久亚洲国产成人精品v| 亚洲精品久久午夜乱码| 国产有黄有色有爽视频| 少妇人妻精品综合一区二区| 日韩伦理黄色片| 观看免费一级毛片| 淫秽高清视频在线观看| 国产精品.久久久| 美女cb高潮喷水在线观看| av网站免费在线观看视频 | 国产永久视频网站| 男人狂女人下面高潮的视频| 日韩制服骚丝袜av| 午夜免费观看性视频| 青春草亚洲视频在线观看| 九草在线视频观看| 国产精品熟女久久久久浪| 2022亚洲国产成人精品| 内地一区二区视频在线| 一边亲一边摸免费视频| 不卡视频在线观看欧美| 亚洲精品国产av成人精品| 国产乱人视频| 久热久热在线精品观看| 国产精品国产三级国产av玫瑰| 精品久久久久久久人妻蜜臀av| 亚洲精品久久午夜乱码| 亚洲第一区二区三区不卡| 韩国av在线不卡| 成人国产麻豆网| 精品一区二区三卡| 一夜夜www| 夜夜看夜夜爽夜夜摸| 亚洲精品第二区| 日韩精品有码人妻一区| 青春草视频在线免费观看| 国产精品女同一区二区软件| 精品国产一区二区三区久久久樱花 | 联通29元200g的流量卡| 亚洲精品久久午夜乱码| 午夜福利在线观看免费完整高清在| 韩国av在线不卡| 搡女人真爽免费视频火全软件| 国产探花在线观看一区二区| 午夜亚洲福利在线播放| 国产午夜福利久久久久久| 久99久视频精品免费| 亚洲成人中文字幕在线播放| 欧美一级a爱片免费观看看| 18禁在线播放成人免费| 欧美区成人在线视频| 午夜激情福利司机影院| 婷婷六月久久综合丁香| 赤兔流量卡办理| 免费观看无遮挡的男女| 国产高潮美女av| 国产精品蜜桃在线观看| 亚洲av成人av| 国产一区二区三区综合在线观看 | 毛片一级片免费看久久久久| 成人毛片a级毛片在线播放| 如何舔出高潮| 一边亲一边摸免费视频| www.av在线官网国产| 2021少妇久久久久久久久久久| 街头女战士在线观看网站| 老女人水多毛片| 我要看日韩黄色一级片| 人体艺术视频欧美日本| 久久精品国产亚洲网站| 国产成人免费观看mmmm| 尾随美女入室| 高清欧美精品videossex| 自拍偷自拍亚洲精品老妇| 中文字幕人妻熟人妻熟丝袜美| 激情 狠狠 欧美| 国产精品一区二区在线观看99 | 亚洲欧美精品自产自拍| 亚洲精品456在线播放app| 亚洲自偷自拍三级| 亚洲最大成人中文| 久久久久精品性色| 国产一区二区在线观看日韩| 美女被艹到高潮喷水动态| 日韩av在线大香蕉| 久久精品人妻少妇| 高清在线视频一区二区三区| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 精品国内亚洲2022精品成人| 欧美zozozo另类| ponron亚洲| 成年av动漫网址| 丰满乱子伦码专区| 网址你懂的国产日韩在线| 最近的中文字幕免费完整| 搡女人真爽免费视频火全软件| 赤兔流量卡办理| 欧美日韩国产mv在线观看视频 | 色网站视频免费| 国产精品国产三级国产专区5o| av免费在线看不卡| 色5月婷婷丁香| 2021少妇久久久久久久久久久| 亚洲精品日韩av片在线观看| 免费观看精品视频网站| 卡戴珊不雅视频在线播放| 亚洲精品自拍成人| 午夜久久久久精精品| 美女xxoo啪啪120秒动态图| 亚洲第一区二区三区不卡| 晚上一个人看的免费电影| 日本猛色少妇xxxxx猛交久久| 国产黄片美女视频| 国产乱来视频区| 爱豆传媒免费全集在线观看| 内射极品少妇av片p| 国产老妇伦熟女老妇高清| 91aial.com中文字幕在线观看| 精品一区二区三卡| 国产成人a∨麻豆精品| 日日啪夜夜撸| 十八禁国产超污无遮挡网站| 最近中文字幕高清免费大全6| 久久久久久九九精品二区国产| 高清毛片免费看| 亚洲av电影在线观看一区二区三区 | av在线蜜桃| 精品99又大又爽又粗少妇毛片| 国产黄a三级三级三级人| 女人久久www免费人成看片| 国产中年淑女户外野战色| 国产精品国产三级国产av玫瑰| 成人高潮视频无遮挡免费网站| 最近2019中文字幕mv第一页| av免费在线看不卡| 日韩,欧美,国产一区二区三区| 欧美xxxx性猛交bbbb| 亚洲一级一片aⅴ在线观看| 欧美+日韩+精品| 国产精品久久久久久精品电影小说 | 久久鲁丝午夜福利片| 水蜜桃什么品种好| 99久久中文字幕三级久久日本| 国产成人freesex在线| 乱系列少妇在线播放| 国产精品一及| 国内精品一区二区在线观看| 亚洲精品第二区| av又黄又爽大尺度在线免费看| 免费无遮挡裸体视频| 国产精品一二三区在线看| 高清av免费在线| 精品不卡国产一区二区三区| 91精品国产九色| 综合色av麻豆|