• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Response of Mode Water and Subtropical Countercurrent to Greenhouse Gas and Aerosol Forcing in the North Pacific

    2013-07-28 09:02:46WANGLiyi1LIUQinyu1XULixiao1andXIEShangPing2
    Journal of Ocean University of China 2013年2期

    WANG Liyi1), LIU Qinyu1), *, XU Lixiao1), and XIE Shang-Ping2), 1)

    ?

    Response of Mode Water and Subtropical Countercurrent to Greenhouse Gas and Aerosol Forcing in the North Pacific

    WANG Liyi, LIU Qinyu, XU Lixiao, and XIE Shang-Ping

    1),,266100,2),,,92093-0230,

    The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950–2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40?N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.

    North Pacific; Subtropical Countercurrent; mode water; greenhouse gas; aerosol

    1 Introduction

    Increasing concentrations of the greenhouse gas (GHG) in the atmosphere are considered to be the major cause of global warming (Meehl, 2007). On the other hand, the influence of atmospheric aerosol on climate is complex, including both direct radiative and indirect effects on cloud properties (Penner, 2001). Anthropogenic aerosol effect partly offsets the GHG warming effect, and the inclusion of the former in a climate model can improve the model performance (Donner, 2011).

    The Subtropical Countercurrent (STCC) is a narrow eastward jet in the central North Pacific (20?N–30?N), flowing against the broad westward Sverdrup flow (Yoshida and Kidokoro, 1967). It is accompanied by a subsurface temperature and density front called the subtropical front (STF), in the thermal wind relationship with the STCC (Uda and Hasunuma, 1969; White, 1978; Kobashi, 2006). The STCC affects the atmosphere through its surface thermal effects, which can induce anomalous cyclonic wind curl and precipitation (Kobashi, 2008).

    The North Pacific mode waters, in particular, the Sub-tropical Mode Water (STMW; Suga, 1989) and the Central Mode Water (CMW; Nakamura, 1996; Suga, 1997), play a key role in the formation and maintenance of the STCC and STF as illustrated by theoretical (Kubokawa, 1997, 1999), model (Takeuchi, 1984; Kubokawa and Inui, 1999; Yamanaka, 2008), and observational (Aoki, 2002; Kobashi, 2006) studies. Using an ocean general circulation model (GCM), Kubokawa and Inui (1999) first illustrated the mechanisms for the STCC formation: mode waters of low potential vorticity (PV) on different isopycnals are subducted at different locations along the mixed layer depth (MLD) front, advected southward by the subtropical gyre, and eventually stacked up vertically to form a thick low-PV pool, which pushs the upper pycnocline upward. The slope of the upper pycnocline causes aneastward current near the surface. The hydrographic analysis of Kobashi(2006) shows that the STCC is indeed anchored by mode waters beneath to the north. Thus mode waters are not only passive water masses but also exhibit an important dynamical effect on ocean circulation.

    Based on the analysis of the output from the GFDL CM2.1 experiment under a COdoubling, the surface water in the formation region and the core layer of STMW become warmer and fresher (Lee, 2009). Based on a set of the Intergovernmental Panel on Climate Change (IPCC) Forth Assessment Report (AR4) models, Luo(2009) showed that in a warmer climate, mode waters are produced on lighter isopycnal surfaces and significantly reduced in volume. Using a 300-year control simulation from the GFDL coupled model CM2.1, Xie(2011) showed that on decadal time scales, the dominant mode of sea surface height (SSH) variability in the central subtropical gyre (170?E–130?W, 15?N–35?N) is characterized by the strengthening or weakening of the STCC as a result of variations in mode-water ventilation. This STCC mode decays, owing to weakened mode waters in both the mean state and variability (Xu, 2012b), as COconcentration increases in the 21st century.

    Recent multi-model analysis confirmed that the weakened mode waters and STCC are robust among the 17 Coupled Model Intercomparison Project Phase 5 (CMIP5) models (Xu, 2012a). Except for a recent study of Suzuki and Ishii (2011) showing that STMW was warming and freshening during the period 1981–2007, no other studies have reported significant changes in the mode waters. Why are the mode waters and the STCC not reduced in the face of global mean temperature increasing? One plausible hypothesis is that the aerosol effect may offset the warming effect of GHG, but the aerosol effect on the mode waters and STCC has not been investigated in previous studies yet.

    Observational analysis reveals that SST in the mid-latitude North Pacific has decreased over the past five decades (Fig.1). But in climate models, the response of SST to increased COfeatures a warming trend in the North Pacific (See Fig.1; Xie, 2010). Does the aerosol effect exceed the COeffect on the SST in the North Pacific? CMIP5 reported that global mean atmospheric sulfate aerosol (SO) concentration increases slowly since 1850, and the increase accelerates in the latter half of the 20th century (Fig.2). Sharp increases in SOconcentration have been observed over Asia (70?E–150?E, 0?–60?N) since 1950s. Aerosol optical depth (AOD) over East Asia may have important impact on cloud and shortwave radiation overthe western North Pacific, which, in turn, could induce SST response (Bao, 2009). The SST change in the North Pacific may further alter the properties of mode waters and the STCC.

    The present study, using the output from historical all-forcing and single-forcing simulations and pre-industrial control experiment of GFDL CM3, investigates the aerosol cooling and GHG warming effects on the SST, mode waters and the STCC in the North Pacific. The major conclusion drawn from the study is that the aerosol effect significantly exceeds the GHG effect over the past five decades.

    The rest of the paper is organized as follows. Section 2 briefly describes the model and simulations. Section 3 investigates the SST changes due to the aerosol and GHG effects in the North Pacific. Section 4 studies the responses of the STCC, mode waters and related subduction processes to different forcing. Section 5 is a summary.

    Fig.2 Atmospheric sulfate aerosol (SO4) concentration based on the CMIP5 recommended data.

    2 Model and Simulations

    This study uses the output from the National Oceanic and Atmospheric Administration (NOAA) GFDL CM3, one of the primary models from GFDL contributed to the IPCC Fifth Assessment Report (AR5). The GFDL CM3 is formulated with the same ocean and sea ice components as the earlier CM2.1, and includes extensive development of the atmosphere and land model components (Griffies, 2011). Especially, aerosol-cloud interactions are included in GFDL CM3, as documented by Donner(2011). The atmospheric component AM3 employs a cubed-sphere implementation of a finite-volume dynamical core with horizontal resolution of approximately 200km. The ocean component MOM4 has a horizontal resolution of 1.0?×1.0? and 50 layers, 22 of which are in the upper 220m. In the meridional direction the horizontal resolution increases toward the equator, and the grid scale becomes 1/3? between 30?S and 30?N.

    A number of CM3 integrations were performed following the CMIP5 protocol (Taylor, 2012), which includes the pre-industrial control, a 5-member historical ensemble, and 4 future scenarios (Representative Concentration Pathway 2.6, 4.5, 6.0 and 8.5). Detection and attribution simulations were conducted to examine the model’s response to a subset of historical single forcing (GHG forcing, natural forcing, aerosol forcing, and anthropogenic forcing), each consisting of 3 runs. Historical and single-forcing simulations employ evolution of forcing agents during the period 1860–2005, and each ensemble member is initialized 50 years or 100 years apart from the pre-industrial control experiment, which runs for 800 years with time-invariant radiative forcing agents fixed at the 1860 value.

    The output of GHG forcing, aerosol forcing and historical all-forcing simulations is used in the present study. First, the output is processed to obtain the 1950–2005 mean and ensemble mean of each simulation from 3 members. The combined ensemble and time means allow for a robust signal from natural variability present in an individual ensemble member. As a reference, the 100–155 years averages are used from the pre-industrial control experiment (the first year of the control run is called 001 year).

    3 SST Response to GHG and Aerosol Forcing

    First the the climatology mean SST in the historical and single-forcing simulations and in pre-industrial control experiment (hereafter referred to as ‘the control run’) are compared (Fig.3). The SST response to the GHG forcing is opposite to that to the aerosol forcing. The SST difference between all forcing and the control run is close to zero in much of the North Pacific except in the mid-latitude regions (Fig.3c). The result shows that the SST response in the all forcing experiment is due to the combined effect of GHG and aerosol. But, in the zonal band of the mid-latitude North Pacific (40?N, 140?E–150?W), the SST rises by about 0.5℃–1.0℃ in the GHG forcing run (Fig.3a), and drops by 1.0℃–1.5℃ in the aerosol forcing run (Fig.3b) and by 0.5℃–1.0℃ in the all-forcing run (Fig.3c). Thus, in this zonal band, the SST response to all forcing is similar to the response to the aerosol forcing.Consequently, the aerosol effect is important in the observed SST dropping in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past 56 years.

    4 STCC and Mode Waters Responses

    Previous studies showed that the STCC is anchored by mode waters to the north (Kubokawa, 1999; Kobashi, 2006; Yamanaka, 2008; Xie, 2011, Xu, 2012a, b), and the changes in mode waters can be further traced upstream to those in the MLD and the subduction rate in the Kuroshio-Oyashio Extension (KOE) region (Xie, 2011). In order to determine the physical mechanisms of the STCC change, the responses of the MLD, subduction, mode waters and STCC to different forcing are compared first, and then the relationship between the STCC and mode waters is investigated.

    4.1 The MLD and Subduction

    The MLD in CM3 reaches its seasonal maximum in the North Pacific in March. Generally, the March mixed layer is shallow in the southern subtropical gyre, but deepens northward and reaches its maximum in the mid-latitude regions. The water separating the deep mixed layer regions from the rest of the North Pacific is in a narrow transition zone called the MLD front (Xie, 2000), which is a key to the formation of STMW and CMW (Kubokawa, 1999). The MLD front varies among four runs and is strongest in the aerosol forcing run with the largest subduction rate (Fig.4).

    In the control run, there are two sub-regions where the MLD exceeds 400m. On the south flank of the deepest MLD region are two subduction zones, where the MLD front intersects with the isopycnal surfaces of 25.5σand 26.0σand STMW and CMW are formed, respectively (Fig.4d). The GHG run, the aerosol runs and historical all-forcing run are compared with the control run respectively. In the GHG run (Fig.4a), the isopycnal outcrop lines move northwards, the MLD front becomes weaker, and the lateral induction decreases. In the aerosol run (Fig.4b), the situation is opposite because the mixed layer over the central North Pacific deepens by 80m and the ocean surface cools (Fig.5b). In the historical all-forcing run (Fig.4c), the overall spatial structure of MLD is still similar but the local MLD maximum associated with CMW formation deepens compared to the control run. It indicates that the aerosol effect on MLD is greater than the GHG effect in the historical run.

    The vertical section of potential temperature along the maximum change of MLD (175?W in Fig.5a; 180?E in Figs.5b and 5c) further clarifies the cause of the MLD change. In the GHG run, the warming is greater near the surface and decreases with depth. The resultant intensification of the upper ocean stratification inhibits winter convection, and shoals the mixed layer and isothermal layers (Fig.5d). In contrast, the potential temperature in the aerosol run decreases from the surface to about 400m and the decreasing decays rapidly with depth. The reduced stratification leads to a MLD increase (Fig.5e). In the historical all-forcing run, the potential temperature decrease is similar to, but weaker than that in the aerosol run, and the MLD deepens less accordingly (Fig.5f). Here the aerosol effect is again opposite to and surpasses the GHG effect on the MLD, and other forcing seems not to effect the MLD in Fig.5.

    Fig.4 Mixed layer depth (black contour line and contour interval (CI)=50m), outcrop line (blue dotted contour line (CI)=0.5kgm-3) and lateral induction (color in myear-1) in (a) the GHG run, (b) the aerosol run , (c) the historical run and (d) the control run during March.

    The lateral induction as a function of outcrop density is further analyzed by integrating the local positive lateral induction at a ±0.05kgminterval about each isopycnal layer over the area (140?E–160?W, 20?N–40?N), where the STMW and CMW form. Fig.6 compares the integral of the lateral induction. All runs show at least two distinct peaks of the lateral induction, which correspond to the two different outcrop densities for the STMW and CMW: 25.7σand 26.1σ?in the control run; 25.4σand 26.0σin the GHG run; 25.9σand 26.5σin the aerosol run; and 25.8σand 26.3σin the historical run. In the historical and control runs the core densities of the STMW and CMW are slightly higher than the observations, especially for the STMW with an observed typical core density of 25.4σ(Qiu and Huang, 1995; Suga, 1997). As for the response to the GHG (aerosol) effect, less and lighter (more and denser) water appears in the cores of the STMW and the CMW in the GHG (aerosol) run.

    4.2 Mode Waters

    The volume of the low-PV layer (less than 1.5×10ms) is calculated for each density class from 25.0 to 27.0kgmbetween the layers at ±0.05kgmabout an isopycnal layer in May. In order to exclude the formation area of the eastern subtropical mode water, the calculations are conducted in two regions (140?E–170?W, 20?N–40?N and 170?W–140?W, 30?N–40?N).

    As shown in Fig.7, corresponding to the STMW and the CMW, the low-PV water in different runs seems to occur in two distinct potential density layers. Specifically, the major peaks of the STMW and the CMW volumes appear at 25.8σand 26.3σin the control run, 25.5σand 26.0σin the GHG run, 26.0σand 26.5σin the aerosol run, and 25.9σand 26.4σin the historical all-forcing run. The North Pacific mode waters (STMW and CMW) form on lighter isopycnal surfaces and decrease in volume in the GHG run, which is consistent with the results of Luo(2009). The opposite is true for a cooler climate in the aerosol run. As a result that the aerosol effect surpasses the GHG effect, the North Pacific mode waters form on denser isopycnal surfaces and increase in volume in the historical all-forcing run.

    4.3 STCC Response

    Fig.8 shows the May climatological means of SSH and zonal current velocity at the 25-m level for four different runs. These runs all simulate on a basin scale the anti-cyclonic subtropical gyre circulation with an eastward jet (STCC) embedded in the central gyre where the Sverdrup zonal flow is sluggish. This STCC originates in the western Pacific around 20?N, intensifies and reaches its maximum velocity near 175?E, and then weakens gradually northeast of Hawaii. Compared to the control run (Fig.8d), the STCC in the GHG run weakens by 2cms(Fig.8a), but strengthens from 8cmsto 10cmsin the aerosol run (Fig.8b). In the historical run (Fig.8c), the STCC is stronger than in GHG run and similar to that in the aerosol run, because the aerosol effect exceeds the GHG effect.

    4.4 Relationship Between Mode Waters and STCC

    Fig.9 shows the eastward current speed, potential density, and PV for four different runs in a meridional section along 175?E in May. The STCC is confined above 200m depth between 19?N–26?N. Because of the thermal wind balance it can be seen that the northward shoaling of the upper pycnocline is accompanied by a thick layer of low-PV water underneath in the north in all runs. In the control run (Fig.9d), the 26.2σisopycnal layer begins to shoal northward from 20?N to 24?N and the 25.8σisopycnal layer shows an even steeper northward shoaling, pushed by the low-PV water in between the 25.8–26.2σlayers. For the other runs (Figs.9a, 9b and 9c), the vertical structure of STCC and its relationship with mode waters do not change, indicating that the STCC is tied to mode waters. In the control run, the low-PV water core (less than 0.5×10ms) resides in between the 25.8–26.1σlayers with the STCC exceeding 8cms. Compared to the control run, the low-PV water core weakens and moves to lighter isopycnal layers (25.6–25.9σ) with a decelerated STCC in the GHG run. By contrast, the low-PV water core intensifies and moves to denser isopycnal layers (26.0–26.3σ), and the STCC is accelerated with its maximum zonal velocity over 10cmsin the aerosol run. In historical all-forcing run, the magnitudes of the low-PV water core and its residing isopycnal layers, 25.8–26.2σ, fall in between the results of the GHG and aerosol runs, the maximum speed of the STCC still exceeds 10cms, but the area with the speed exceeding 10cmsis smaller than in the aerosol run.

    In order to clarify the relationship between mode waters and the STCC, the May PV distributions are calculated on the isopycnals from 25.0 to 27.0kgmat an interval of 0.1kgm. PV is selected on 25.9σin the GHG run (Fig.10a), 26.3σin the aerosol run (Fig.10b), 26.2σin the historical run (Fig.10c), and 26.1σin the control run (Fig.10d) to represent the mode waters core. Fig.10 shows that a weakened mode water causes the STCC to decelerate in the GHG run, whereas an enhanced mode water cause it to accelerate in the aerosol run as mentioned above.

    Table 1 shows the regional averages of the eastward current speed in the STCC core (140?E–160?W, 20?N–25?N),the positive lateral induction in subduction region (140?E–160?W, 25?N–40?N), and the volume of the low-PV water core withσ<26.5 north of the STCC (140?E–160?W, 20?N–30?N) from different runs. In the aerosol run the lateral induction is the largest, the low-PV water and the STCC are the strongest. However, the results in the GHG run are just the opposite. In the historical run, the lateral induction rate, the volume of the low-PV water and the STCC speed are somewhere between the aerosol and GHG runs, but still larger than those in the control run, because the aerosol cooling effect is larger than the GHG warming effect.

    Fig.8 May climatological means of zonal current speed (color in cms-1) and SSH (CI=10cm) over the North Pacificin (a) the GHG run, (b) the aerosol run, (c) the historical run, and (d) the control run, respectively.

    Fig.9 May climatological means of eastward current speed (color contours at 2cms-1), potential density (black contours at 0.2kgm-3 intervals), and PV (gray shading in 10-10m-1s-1) for (a) the GHG run, (b) the aerosol run, (c) the historical run, and (d) the control run, respectively, in a meridional section along 175?E.

    Fig.10 May climatological means of eastward current speed (>8cms-1 contours in cms-1) and PV (color in 10-10m-1s-1) on (a) 25.9σθin the GHG run, (b) 26.3σθin the aerosol run, (c) 26.2σθin the historical run, and (d) 26.1σθin the control run in the North Pacific in May.

    Table 1 The area-averaged values from different runs

    5 Summary

    The responses of the SST, mode waters and STCC to the GHG and aerosol effects are examined in the 20th century single-forcing and historical all-forcing simulations using GFDL CM3. The SST in the mid-latitude North Pacific increases in response to the GHG forcing, but decreases in response to the aerosol forcing. The model results show that the aerosol cooling effect is larger than the GHG warming effect, and the SST in the mid-latitude North Pacific experiences a net decreases in response to all-forcing in history. Thus, the aerosol effect appears to be a more important physical mechanism for the observed SST decreases in the North Pacific, especially in the Kuroshio Extending region, during the past 56 years (1950–2005). The GHG run corresponds to a more stratified upper ocean and a shoaled MLD while the aerosol run corresponds to a weakened ocean stratification and a deepened MLD. The maximum change in MLD appears in the KOE region where the mean MLD is the largest, and the MLD front and the subduction rate also experience changes (mainly by lateral induction). As a result of the decreased subduction rate and mixed layer density, less mode waters are formed on lighter isopycnals in the GHG run. By contrast, more mode waters are formed on denser isopycnals in the aerosol run, due to the increased subduction rate and mixed layer density. The southward advection of the weakened (strengthened) mode waters allows the upper pycnocline to rise less (more) and decelerates (accelerate) the STCC in response to the GHG (aerosol) forcing. In general, the effect of the aerosol forcing is larger than the effect of the GHG forcing, and the response of the STCC to all-forcing resembles that to the aerosol forcing in trend and spatial pattern, albeit weaker in magnitude.

    One caveat from this modeling study is that the modeled mode waters and the STCC are too strong comparing with the observations, a bias common to CMIP5 models (Xu, 2012a). The future scenarios of atmospheric composition call for an eventual decrease in aerosols but a continued increase in GHG. As a result, the GHG warming effect will dominate and cause a reduction in mode-water ventilation and weakening of the STCC in the 21st century (Xu, 2012a, 2013). Further model improvements are necessary to better understand the response to anthropogenic forcing, and to obtain a more reliable projection of regional and global climate change.

    Acknowledgements

    This work is supported by the National Basic Research Program of China (2012CB955602), National Key Program for Developing Basic Science (2010CB428904), and Natural Science Foundation of China (41176006 and 40921004).

    Aoki, Y., Suga, T., and Hanawa, K., 2002. Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline., 32: 2299-2311.

    Bao, Z., Wen, Z., and Wu, R. G., 2009. Variability of aerosol optical depth over east Asia and its possible impacts., 114, D05203, DOI: 10.1029/2008JD010603.

    Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J. C., Ginoux, P., Lin, S. J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Del- worth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H. C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F., 2011. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3., 24: 3484-3519.

    Griffies, S. M.,Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., Farneti, R., Gnanadesikan, A., Hurlin, W. J., Lee, H. C., Liang, Z., Palter, J. B., Samuels, B. L., Wittenberg, A. T., Wyman, B. L., Yin, J., and Zadeh, N., 2011. The GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations., 24: 3520-3544, DOI: 10.1175/2011JCLI3964.1.

    Kobashi, F., Mitsudera, H., and Xie, S. P., 2006. Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogensis., 111, C09033, DOI: 10.1029/2006JC003479.

    Kobashi, F., Xie, S. P., Iwasaka, N., and Sakamoto, T. T., 2008. Deep atmospheric response to the North Pacific oceanic subtropical front in spring., 21: 5960-5975.

    Kubokawa, A., 1997. A two-level model of subtropical gyre and subtropical countercurrent., 53: 231-244.

    Kubokawa, A., 1999. Ventilated thermocline strongly affected by a deep mixed layer: A theory for subtropical countercurrent., 29:1314-1333.

    Kubokawa, A., and Inui, T., 1999. Subtropical countercurrent in an idealized ocean GCM., 29: 1303-1313.

    Lee, H. C., 2009. Impact of atmospheric COdoubling on the North Pacific Subtropical Mode Water., 36, L06602, DOI: 10.1029/2008GL037075.

    Luo, Y., Liu, Q., and Rothstein, L. M., 2009. Simulated response of North Pacific Mode Waters to global warming.,36,L23609, DOI: 10.1029/2009GL040906.

    Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z. C., 2007. Global climate projections. In:. Solomon, S., eds., Cambridge University Press, 747-845.

    Nakamura, H., 1996. A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation., 52: 171-188.

    Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch, R., Murphy, D., Nganga, J., and Pitari, G., 2001. Aerosols, their direct and indirect effects., Cambridge University Press, 289-348.

    Qiu, B., and Huang, R. X., 1995. Ventilation of the North Atlantic and North Pacific: Subduction versus obduction.,25: 2374-2390.

    Suga, T., Hanawa, K., and Toba, Y., 1989. Subtropical mode water in the 137?E section., 19: 1605-1618.

    Suga, T., Takei, Y., and Hanawa, K., 1997. Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water., 27: 140-152.

    Suzuki, T., and Ishii, M., 2011. Long term regional sea level changes due to variations in water mass density during the period 1981–2007., 38, L21604, DOI: 10.1029/2011GL049326.

    Takeuchi, K., 1984. Numerical study of the subtropical front and the subtropical countercurrent., 40: 371-381.

    Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of CMIP5 and the experiment design., 93 (4): 485-498, DOI: 10.1175/BAMS-D-11-00094.1.

    Uda, M., and Hasunuma, K., 1969. The eastward subtropical countercurrent in the western North Pacific Ocean., 25: 201-210.

    White, W. B., Hasunuma, K., and Solomon, H., 1978. Large-scale seasonal and secular variability of the subtropical front in the western North Pacific from 1954 to 1974., 83: 4531-4544.

    Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010. Global warming pattern formation: Sea surface temperature and rainfall., 23: 966-986.

    Xie, S. P., Kunitani, T., Kubokawa, A., Nonaka, M., and Hosoda, S., 2000. Interdecadal thermocline variability in the North Pacific for 1958–1997: A GCM simulation.,30: 2798-2813.

    Xie, S. P., Xu, L., Liu, Q., and Kobashi, F., 2011. Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific., 24: 1212-1225.

    Xu, L. X., Xie, S. P., and Liu, Q., 2012a. Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections.–, 117, C12009, DOI: 10.1029/2012JC008377

    Xu, L. X., Xie, S. P., and Liu, Q. Y., 2013. Fast and slow response of the North Pacific Mode Water and subtropical countercurrent to global warming., 12 (2), DOI: 10.1007/s11802-013-2189-6.

    Xu, L. X., Xie, S. P., Liu, Q., and Kobashi, F., 2012b. Response of the North Pacific subtropical countercurrent and its variability to global warming., 68: 127-137, DOI: 10.1007/s10872-011-0031-6.

    Yamanaka, G., Ishizaki, H., Hirabara, M., and Ishikawa, I., 2008. Decadal variability of the Subtropical Front of the western North Pacific in an eddy-resolving ocean general circulation model., 113, C12027, DOI: 10.1029/2008JC005002.

    Yoshida, K., and Kidokoro, T., 1967. A subtropical countercurrent in the North Pacific–An eastward flow near the Subtropical Convergence., 23: 88-91.

    (Edited by Xie Jun)

    10.1007/s11802-013-2193-x

    ISSN 1672-5182, 2013 12 (2): 222-229

    . Tel: 0086-532-66782556 E-mail: liuqy@ouc.edu.cn

    (October 29, 2012; revised January 15, 2013; accepted February 26, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    宅男免费午夜| 日韩人妻精品一区2区三区| 人妻一区二区av| 亚洲av美国av| 性色av乱码一区二区三区2| a在线观看视频网站| 久9热在线精品视频| bbb黄色大片| 人人妻人人澡人人看| 国产亚洲欧美精品永久| 国产高清videossex| 亚洲 欧美一区二区三区| 热99国产精品久久久久久7| netflix在线观看网站| www日本在线高清视频| 久久精品亚洲熟妇少妇任你| 欧美性长视频在线观看| 三上悠亚av全集在线观看| 12—13女人毛片做爰片一| 美女视频免费永久观看网站| 国产深夜福利视频在线观看| 国产亚洲精品第一综合不卡| tube8黄色片| 91麻豆精品激情在线观看国产 | 国产精品九九99| 亚洲欧美一区二区三区黑人| 两人在一起打扑克的视频| 热re99久久国产66热| 黄色 视频免费看| 亚洲第一青青草原| 天堂动漫精品| 免费女性裸体啪啪无遮挡网站| 最近最新免费中文字幕在线| 欧美日韩成人在线一区二区| 久久这里只有精品19| 欧美日韩视频精品一区| 女警被强在线播放| 一级作爱视频免费观看| 操美女的视频在线观看| 国产成人免费观看mmmm| 熟女少妇亚洲综合色aaa.| 最新美女视频免费是黄的| 日日爽夜夜爽网站| 久久精品亚洲熟妇少妇任你| 亚洲欧美激情在线| 国产欧美日韩一区二区三区在线| 欧美+亚洲+日韩+国产| 国产真人三级小视频在线观看| 18禁国产床啪视频网站| 亚洲男人天堂网一区| 90打野战视频偷拍视频| 男女下面插进去视频免费观看| 亚洲色图 男人天堂 中文字幕| 免费久久久久久久精品成人欧美视频| 精品国内亚洲2022精品成人 | 每晚都被弄得嗷嗷叫到高潮| 亚洲av欧美aⅴ国产| 三级毛片av免费| 国产精品久久电影中文字幕 | 久久精品亚洲熟妇少妇任你| 每晚都被弄得嗷嗷叫到高潮| 国产xxxxx性猛交| 欧美午夜高清在线| 国产精品二区激情视频| 老司机影院毛片| 夜夜爽天天搞| 成人手机av| 无人区码免费观看不卡| 亚洲综合色网址| 国产精品一区二区在线不卡| 男男h啪啪无遮挡| 美女国产高潮福利片在线看| 精品电影一区二区在线| 日本欧美视频一区| 欧美老熟妇乱子伦牲交| 91成年电影在线观看| 亚洲av熟女| 在线观看日韩欧美| 成熟少妇高潮喷水视频| 久久精品国产综合久久久| 欧美亚洲日本最大视频资源| 亚洲国产看品久久| 男人的好看免费观看在线视频 | 日本黄色视频三级网站网址 | 一本综合久久免费| 在线观看免费视频网站a站| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面| 国产精品免费视频内射| 亚洲精品国产精品久久久不卡| 国产精品美女特级片免费视频播放器 | 天堂中文最新版在线下载| 久久精品国产99精品国产亚洲性色 | 午夜福利在线观看吧| 亚洲精品国产色婷婷电影| 黄网站色视频无遮挡免费观看| 91精品三级在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 91在线观看av| 亚洲国产看品久久| 日韩大码丰满熟妇| 在线观看免费高清a一片| 好男人电影高清在线观看| 日韩视频一区二区在线观看| 国产激情久久老熟女| 黑人巨大精品欧美一区二区mp4| 午夜免费观看网址| 日韩有码中文字幕| 欧美 亚洲 国产 日韩一| 99re在线观看精品视频| 亚洲熟女精品中文字幕| 成人精品一区二区免费| 亚洲片人在线观看| 国产精华一区二区三区| 美国免费a级毛片| 一a级毛片在线观看| 在线观看午夜福利视频| 黄色毛片三级朝国网站| 久久久国产欧美日韩av| 国产精品久久久久久人妻精品电影| 国产精品欧美亚洲77777| 一区二区三区激情视频| 人人妻人人澡人人爽人人夜夜| 亚洲一区高清亚洲精品| 亚洲五月色婷婷综合| 日本精品一区二区三区蜜桃| 狂野欧美激情性xxxx| 97人妻天天添夜夜摸| 黄片小视频在线播放| tocl精华| 精品高清国产在线一区| 人妻 亚洲 视频| 桃红色精品国产亚洲av| 亚洲欧美一区二区三区久久| 国产精品国产av在线观看| 欧美日韩视频精品一区| 欧美性长视频在线观看| 捣出白浆h1v1| 久久久久国产一级毛片高清牌| 欧美日韩精品网址| 亚洲av美国av| 99久久综合精品五月天人人| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 夫妻午夜视频| 久久人人97超碰香蕉20202| 狠狠婷婷综合久久久久久88av| www.精华液| 不卡一级毛片| 露出奶头的视频| 老司机午夜福利在线观看视频| a级毛片黄视频| 在线免费观看的www视频| 久久香蕉激情| 美女国产高潮福利片在线看| 女人久久www免费人成看片| 国产精品亚洲av一区麻豆| 精品福利观看| 99re6热这里在线精品视频| 日本wwww免费看| 热99国产精品久久久久久7| 日韩欧美一区二区三区在线观看 | 国产精品1区2区在线观看. | 亚洲在线自拍视频| 啦啦啦免费观看视频1| 十八禁人妻一区二区| 一级毛片高清免费大全| 久久精品国产亚洲av香蕉五月 | 岛国在线观看网站| 亚洲久久久国产精品| 最新的欧美精品一区二区| 欧美一级毛片孕妇| 大型黄色视频在线免费观看| 久久精品国产亚洲av高清一级| 高清在线国产一区| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 亚洲午夜理论影院| 欧美av亚洲av综合av国产av| 视频区欧美日本亚洲| 男人的好看免费观看在线视频 | 美女高潮喷水抽搐中文字幕| 大型av网站在线播放| 成熟少妇高潮喷水视频| 97人妻天天添夜夜摸| 久久精品aⅴ一区二区三区四区| 一个人免费在线观看的高清视频| 啪啪无遮挡十八禁网站| 亚洲五月婷婷丁香| 欧美中文综合在线视频| 丁香六月欧美| 曰老女人黄片| 18禁观看日本| 日本黄色日本黄色录像| 久久九九热精品免费| 中文字幕最新亚洲高清| 岛国在线观看网站| 91成人精品电影| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一欧美日韩一区二区三区| 咕卡用的链子| 国产精品影院久久| 国产精品九九99| 国产av又大| 国产高清videossex| 建设人人有责人人尽责人人享有的| 1024香蕉在线观看| 国产精品偷伦视频观看了| 91九色精品人成在线观看| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 手机成人av网站| 19禁男女啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看| xxxhd国产人妻xxx| 久久精品aⅴ一区二区三区四区| 日韩有码中文字幕| 亚洲精品在线美女| 国产男女超爽视频在线观看| 可以免费在线观看a视频的电影网站| 精品一区二区三区av网在线观看| 男人的好看免费观看在线视频 | 亚洲av日韩精品久久久久久密| 国产成人一区二区三区免费视频网站| 看片在线看免费视频| 亚洲少妇的诱惑av| 狠狠狠狠99中文字幕| 欧美中文综合在线视频| 亚洲成人免费电影在线观看| 久久国产精品男人的天堂亚洲| 黄色视频,在线免费观看| 人人妻人人澡人人看| 成人精品一区二区免费| 婷婷精品国产亚洲av在线 | 看黄色毛片网站| 精品人妻1区二区| 国产精品一区二区在线观看99| 午夜老司机福利片| 热re99久久国产66热| 新久久久久国产一级毛片| 成在线人永久免费视频| 两人在一起打扑克的视频| 成人永久免费在线观看视频| 99久久人妻综合| 免费高清在线观看日韩| 欧美黄色淫秽网站| 老汉色∧v一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 精品一区二区三区四区五区乱码| aaaaa片日本免费| 欧美乱码精品一区二区三区| 国产亚洲精品第一综合不卡| 真人做人爱边吃奶动态| 国产精品综合久久久久久久免费 | 大陆偷拍与自拍| 日韩一卡2卡3卡4卡2021年| 一级毛片高清免费大全| 午夜精品国产一区二区电影| 国产一区二区激情短视频| 国产精品秋霞免费鲁丝片| 亚洲一区二区三区不卡视频| 天天影视国产精品| 99国产精品一区二区蜜桃av | 一区福利在线观看| 亚洲精华国产精华精| 亚洲精品国产色婷婷电影| 精品国产超薄肉色丝袜足j| 国产欧美亚洲国产| 女警被强在线播放| 国产成人精品久久二区二区免费| 国产野战对白在线观看| 亚洲av日韩在线播放| 国产成人av激情在线播放| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 国产高清视频在线播放一区| 男人操女人黄网站| 久久久精品区二区三区| 亚洲精华国产精华精| 亚洲自偷自拍图片 自拍| 啦啦啦 在线观看视频| 正在播放国产对白刺激| 国产蜜桃级精品一区二区三区 | 国产精品免费一区二区三区在线 | 免费看a级黄色片| 一级作爱视频免费观看| 麻豆乱淫一区二区| 中亚洲国语对白在线视频| 国产亚洲精品一区二区www | 黄色毛片三级朝国网站| 久久久久久久国产电影| 午夜福利影视在线免费观看| 男人舔女人的私密视频| 国产不卡av网站在线观看| 午夜老司机福利片| 国产乱人伦免费视频| 人妻一区二区av| 一进一出抽搐动态| 高潮久久久久久久久久久不卡| 99久久人妻综合| 成人免费观看视频高清| 久久久久国产一级毛片高清牌| 欧美日韩黄片免| 日韩欧美一区二区三区在线观看 | 最新在线观看一区二区三区| 99国产精品99久久久久| 精品久久久久久,| 人成视频在线观看免费观看| 午夜免费鲁丝| 18禁观看日本| 美女高潮到喷水免费观看| 人人妻人人澡人人看| 成人特级黄色片久久久久久久| 久久中文字幕一级| 国产精品一区二区在线不卡| 婷婷精品国产亚洲av在线 | 激情在线观看视频在线高清 | 色综合婷婷激情| 新久久久久国产一级毛片| 欧美在线一区亚洲| 最新美女视频免费是黄的| 欧美亚洲日本最大视频资源| 亚洲av熟女| 咕卡用的链子| 久久久久精品人妻al黑| 国产人伦9x9x在线观看| 12—13女人毛片做爰片一| 久久天躁狠狠躁夜夜2o2o| 中文字幕av电影在线播放| 国产欧美日韩一区二区三| 亚洲第一欧美日韩一区二区三区| 老熟妇仑乱视频hdxx| 久久精品成人免费网站| 亚洲av成人一区二区三| 一进一出好大好爽视频| 国产精品美女特级片免费视频播放器 | 天天躁狠狠躁夜夜躁狠狠躁| 欧美成狂野欧美在线观看| 成年人午夜在线观看视频| 捣出白浆h1v1| 美女扒开内裤让男人捅视频| 丝瓜视频免费看黄片| 成年人黄色毛片网站| a级毛片黄视频| 91成年电影在线观看| 一级片'在线观看视频| 日韩免费av在线播放| 久久亚洲真实| 搡老熟女国产l中国老女人| 亚洲,欧美精品.| 久久久久久亚洲精品国产蜜桃av| 九色亚洲精品在线播放| 黄色视频不卡| 99热网站在线观看| 亚洲专区国产一区二区| 91精品三级在线观看| 国产区一区二久久| 国产乱人伦免费视频| 国产精品二区激情视频| 国产成人免费观看mmmm| 亚洲精品成人av观看孕妇| 91av网站免费观看| 午夜免费鲁丝| 丰满的人妻完整版| 大片电影免费在线观看免费| 国产99白浆流出| а√天堂www在线а√下载 | 久久精品人人爽人人爽视色| 久久ye,这里只有精品| 12—13女人毛片做爰片一| 男人的好看免费观看在线视频 | 午夜免费鲁丝| 久久精品熟女亚洲av麻豆精品| bbb黄色大片| 国产视频一区二区在线看| 男女之事视频高清在线观看| 少妇猛男粗大的猛烈进出视频| 少妇被粗大的猛进出69影院| 国产区一区二久久| 12—13女人毛片做爰片一| av超薄肉色丝袜交足视频| 在线国产一区二区在线| 国产91精品成人一区二区三区| 美女 人体艺术 gogo| 欧美日韩瑟瑟在线播放| 大香蕉久久网| 欧美久久黑人一区二区| 99re在线观看精品视频| 美女 人体艺术 gogo| 每晚都被弄得嗷嗷叫到高潮| 丝袜人妻中文字幕| 一夜夜www| 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 女警被强在线播放| 亚洲熟女毛片儿| 国内毛片毛片毛片毛片毛片| 国产精品一区二区免费欧美| 精品亚洲成国产av| 亚洲色图 男人天堂 中文字幕| 美国免费a级毛片| 国产一区二区三区综合在线观看| 国产精品免费大片| 免费少妇av软件| 久久久久视频综合| 99国产极品粉嫩在线观看| 成人黄色视频免费在线看| 久久香蕉精品热| cao死你这个sao货| 一区二区三区国产精品乱码| 国产真人三级小视频在线观看| 欧美成狂野欧美在线观看| 天天躁日日躁夜夜躁夜夜| 精品人妻在线不人妻| 欧美丝袜亚洲另类 | 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷精品国产亚洲av在线 | 免费在线观看影片大全网站| 免费看十八禁软件| 亚洲专区国产一区二区| 亚洲一码二码三码区别大吗| 欧美日韩国产mv在线观看视频| 99在线人妻在线中文字幕 | 国产成人精品在线电影| 国产成人av激情在线播放| 他把我摸到了高潮在线观看| 欧美中文综合在线视频| 亚洲国产毛片av蜜桃av| 18禁黄网站禁片午夜丰满| 天天躁日日躁夜夜躁夜夜| 亚洲片人在线观看| 成人黄色视频免费在线看| 亚洲精品国产一区二区精华液| 成人av一区二区三区在线看| 最近最新免费中文字幕在线| 9色porny在线观看| 一区二区日韩欧美中文字幕| 亚洲av成人av| 老鸭窝网址在线观看| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 国产精品免费大片| 十八禁高潮呻吟视频| 久99久视频精品免费| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 国产精品乱码一区二三区的特点 | 欧美激情久久久久久爽电影 | 黄色 视频免费看| 亚洲精品自拍成人| 亚洲国产精品合色在线| 免费观看人在逋| 午夜91福利影院| 亚洲中文av在线| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区| 久久ye,这里只有精品| 免费在线观看完整版高清| 亚洲色图综合在线观看| 性色av乱码一区二区三区2| 变态另类成人亚洲欧美熟女 | 男人的好看免费观看在线视频 | 国产精品自产拍在线观看55亚洲 | 久久午夜亚洲精品久久| 国产男靠女视频免费网站| 国产精品久久电影中文字幕 | 在线播放国产精品三级| 国产一区二区激情短视频| 又黄又粗又硬又大视频| 免费看十八禁软件| 伊人久久大香线蕉亚洲五| 欧美一级毛片孕妇| 深夜精品福利| 午夜91福利影院| 老鸭窝网址在线观看| 亚洲精品中文字幕在线视频| 在线av久久热| 欧美激情 高清一区二区三区| 美女福利国产在线| 国产成人精品无人区| 精品一区二区三区视频在线观看免费 | 欧美在线一区亚洲| 美女视频免费永久观看网站| 女人精品久久久久毛片| 在线永久观看黄色视频| 精品高清国产在线一区| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲高清精品| 欧美成人免费av一区二区三区 | 欧美中文综合在线视频| 日韩三级视频一区二区三区| 色婷婷久久久亚洲欧美| 后天国语完整版免费观看| 99国产极品粉嫩在线观看| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频不卡| 亚洲一区中文字幕在线| 波多野结衣一区麻豆| 村上凉子中文字幕在线| 久久久久精品国产欧美久久久| 久久香蕉国产精品| 9热在线视频观看99| 如日韩欧美国产精品一区二区三区| 国产在线一区二区三区精| 多毛熟女@视频| 国产一区二区激情短视频| 色婷婷久久久亚洲欧美| 麻豆国产av国片精品| 亚洲欧美色中文字幕在线| 国产精品一区二区免费欧美| 欧美激情高清一区二区三区| 黄网站色视频无遮挡免费观看| 日韩一卡2卡3卡4卡2021年| 两个人免费观看高清视频| 欧美最黄视频在线播放免费 | 久久午夜亚洲精品久久| 天天躁狠狠躁夜夜躁狠狠躁| av网站在线播放免费| 久久精品国产亚洲av香蕉五月 | 日韩精品免费视频一区二区三区| 久久香蕉国产精品| 淫妇啪啪啪对白视频| 亚洲精品粉嫩美女一区| 香蕉久久夜色| 宅男免费午夜| 中文字幕色久视频| 日韩欧美一区二区三区在线观看 | 国产成+人综合+亚洲专区| 99国产综合亚洲精品| 91在线观看av| 叶爱在线成人免费视频播放| 久久久久国产精品人妻aⅴ院 | 九色亚洲精品在线播放| 这个男人来自地球电影免费观看| 久久国产精品影院| 18禁裸乳无遮挡免费网站照片 | 日本撒尿小便嘘嘘汇集6| 久久久国产欧美日韩av| 成熟少妇高潮喷水视频| 久久精品国产亚洲av香蕉五月 | 国产又爽黄色视频| 国产精品欧美亚洲77777| 国产精品二区激情视频| 黑丝袜美女国产一区| 亚洲午夜理论影院| 91av网站免费观看| 超碰成人久久| 欧美日韩乱码在线| 一二三四在线观看免费中文在| 久久午夜亚洲精品久久| 一级黄色大片毛片| 麻豆国产av国片精品| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频| 亚洲国产毛片av蜜桃av| 成人18禁在线播放| a级片在线免费高清观看视频| 精品久久久久久久久久免费视频 | 一边摸一边做爽爽视频免费| 在线观看免费日韩欧美大片| 欧美日韩亚洲高清精品| 三级毛片av免费| av中文乱码字幕在线| 欧美成人免费av一区二区三区 | 欧美乱妇无乱码| 久久久久久久国产电影| 亚洲免费av在线视频| 啦啦啦免费观看视频1| 国产人伦9x9x在线观看| 亚洲熟妇熟女久久| 久久 成人 亚洲| 欧美日韩乱码在线| 一级a爱视频在线免费观看| 男人的好看免费观看在线视频 | 欧美人与性动交α欧美软件| 亚洲一码二码三码区别大吗| 欧美成人午夜精品| 精品熟女少妇八av免费久了| 涩涩av久久男人的天堂| 欧美另类亚洲清纯唯美| 美女高潮喷水抽搐中文字幕| 成人影院久久| av视频免费观看在线观看| 国产精品 欧美亚洲| 一本一本久久a久久精品综合妖精| 最近最新中文字幕大全电影3 | 一边摸一边抽搐一进一小说 | 欧美大码av| 国产av精品麻豆| 欧美亚洲日本最大视频资源| 午夜成年电影在线免费观看| 丝袜美腿诱惑在线| 欧美 日韩 精品 国产| 黄色丝袜av网址大全| 香蕉丝袜av| 纯流量卡能插随身wifi吗| 久久ye,这里只有精品| 日本a在线网址| 日韩制服丝袜自拍偷拍| 人人澡人人妻人| 天天操日日干夜夜撸| av线在线观看网站| 亚洲情色 制服丝袜| 亚洲av熟女| av中文乱码字幕在线| 免费观看精品视频网站| 久久久久久久久久久久大奶| 国产精品影院久久| 亚洲精品久久午夜乱码| 色精品久久人妻99蜜桃| 亚洲欧美色中文字幕在线|