• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast and Slow Responses of the North Pacific Mode Water and Subtropical Countercurrent to Global Warming

    2013-07-28 09:02:42XULixiao1XIEShangPing2andLIUQinyu1
    Journal of Ocean University of China 2013年2期

    XU Lixiao1), 2), 3), XIE Shang-Ping2), 1), and LIU Qinyu1), *

    ?

    Fast and Slow Responses of the North Pacific Mode Water and Subtropical Countercurrent to Global Warming

    XU Lixiao, XIE Shang-Ping, and LIU Qinyu

    1),,266100,2),,,92093-0230,3),,,96822,

    Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC)under global warming over 400 years following the Representative Concentration Pathways (RCP) 4.5. The mode water and STCC first show a sharp weakening trend when the radiative forcing increases, but then reverse to a slow strengthening trend of smaller magnitude after the radiative forcing is stablized. As the radiative forcing increases during the 21st century, the ocean warming is surface-intensified and decreases with depth, strengthening the upper ocean’s stratification and becoming unfavorable for the mode water formation. Moving southward in the subtropical gyre, the shrinking mode water decelerates the STCC to the south. After the radiative forcing is stabilized in the 2070s, the subsequent warming is greater at the subsurface than at the sea surface, destabilizing the upper ocean and becoming favorable for the mode water formation. As a result, the mode water and STCC recover gradually after the radiative forcing is stabilized.

    mode water; STCC; fast and slow response; CMIP5; radiative forcing

    1 Introduction

    In the central subtropical gyre of the North Pacific (20?N–30?N), there is an eastward surface current named the Subtropical Countercurrent (STCC). Together with theories (Kubokawa, 1999), the recent enhanced observations (Aoki., 2002; Kobashi, 2006) and model simulations (Kubokawa and Inui, 1999; Yamanaka., 2008; Xie., 2011; Xu., 2012a, b) show the importance of the mode water in the existence and variability of STCC. The mode water of low potential vorticity (PV) shoals the upper thermocline northward in the central subtropical gyre, and anchors the STCC in the thermal- wind relationship (Kobashi., 2006; Xie., 2011).

    The atmospheric concentration of carbon dioxide (CO) has been steadily increasing since the Industrial Revolution and will continue to increase for the foreseeable future. As the radiative forcing of the planet increases, various components of the coupled ocean–atmosphere system respond to this external forcing at different time scales, including the fast response of the mixed layer and the slow response of the permanent thermocline and deepwater massesventilation and mixing (Stouffer, 2004). Fig.1 shows the time evolution of the area-aver- aged sea surface temperature (SST) for the globe, the North Pacific (120?E–120?W, 20?N–45?N), and the Kuroshio-Oyashio Extension (KOE) region (140?E–140?W, 30?N–45?N). In all three regions, SST increases rapidly with COconcentrations from 2001 to the late 21st century. This fast response of SST is nearly in equilibrium with the increasing radiative forcing within the ocean mixed layer (Held., 2010). After the radiative forcing is stabilized in the 2070s, SST continues to rise but the rate of increase slows down dramatically. With the radiative forcing reaching a constant, this slow response of SST is due to the gradual warming of the subsurface ocean, which is in contrast to the fast response directly induced by radiative flux at the sea surface. Formed in the deep winter mixed layer, the mode water may be especially sensitive to the change in upper ocean stratification associated with the transition from the fast to slow response. Previous studies mainly focused on the fast response. It was found that in global warming, the mode water production decreases and takes place on lighter isopycnal surfaces (Luo., 2009), decelerating the STCC and leaving the banded structures on SSH and SST changes (Xie., 2011; Xu., 2012a, b). The full evolution of the mode water and STCC response, especially after the green house gas (GHG) stabilization, has not been investigated.

    The present study examines six coupled general circulation models (CGCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) that offer long-term global-warming simulations through the 23rd century, well after the GHG stabilization. The full evolution of mode water and STCC response to global warming is investigated. It is shown that the response consists of two distinct stages: the fast response characterized by the weakened mode water ventilation and STCC from 2001 to 2070 when the radiative forcing steadily increases, and the slow response characterized by a slow recovery of the mode water formation after the radiative forcing has stabilized. Both types of the mode water response are closely related to changes in stratification and mixed layer depth (MLD) in the formation region.

    The rest of the paper is organized as follows. Section 2 briefly describes the data source and analysis method. Section 3 presents the main results. Section 4 is a summary.

    Fig.1 Time series ofthe area-averaged SST (℃) for a) globe, b) the North Pacific (120?E–120?W, 20?N–45?N) and c) Kuroshio-Oyashio Extension region (140?E–140?W, 30?N–45?N) based on six CMIP5 models. The black dash line represents the ensemble mean of the six models and the thick red line represents the radiative forcing concentrations for historical and RCP4.5 scenarios. The other lines displayed in the legend correspond to the results of six individual models, respectively.

    2 Data and Methods

    The model output in this study is from six coupled climate models (Table 1) as part of the CMIP5, which offers a multi-model perspective of simulated climate variability and change (Taylor., 2012). Both the historical (20th century with all forcing) simulation and the representative concentration pathways (RCP) 4.5 scenario (approximately with a radiative forcing of 4.5Wmat year 2100, relative to pre-industrial conditions) are used. For most of the CMIP5 models, the RCP 4.5 scenario extends only to 2100. To focus on the long-term response, a subset of model integrations that extend to 2300 is selected. The spatial resolution varies between models and within the same model for atmospheric and oceanic variables. To facilitate comparisons with each other, all the model results are interpolated onto a 1?×1? latitude-longitude grid. The model output is freely available from the program for climate model diagnosis and intercomparison (PCMDI) at the Lawrence Livermore National Laboratory (http://cmip-pcmdi.llnl.gov/cmip5/). For each model only one member run is analyzed (usually ‘rli1p1’).

    Table 1 List of six CMIP5 models used in this study

    3 Results

    3.1 Mode Water Ventilation and Its Dynamical Effect on STCC

    This subsection gives the physical basis for how the mode water is subducted and related to STCC in the CMIP5 models.The MLD, defined as the depth at which the water density is 0.03kgmdenser than at the sea surface, reaches its seasonal maximum in the North Pacific in March. KOE east of Japan has the deepest simulated MLD (>250m) (Fig.2a). Separating this deep mixed layer region from the rest of the North Pacific is a narrow transition zone called the MLD front, which is the key to the formation of low PV waters (Kubokawa, 1999). The low PV water north of STCC is subducted from the intersections of outcrop lines and MLD front (Xie., 2000). The MLD front slants slightly northeastward from the western subtropical gyre, while outcrop lines are almost zonal. As the outcrop line of increasing density successively intersects the MLD front northeastward, the low PV fluids on denser isopycnals are formed in the northeast (Kobashi and Kubokawa, 2012). As in observations (Kobashi., 2006) and Kubokawa’s theory, trajectories of these minimum PV fluids on isopycnals converge on the horizontal plane as they are advected southward, and the low PV fluids are stacked up vertically to form a thick layer of low PV fluids. This thick low-PV pool shoals the upper thermocline, leading to an eastward countercurrent on the southern flank (Kubokawa and Inui, 1999).

    Fig.2 Present-day climatology of a) MarchMLD (gray shade), outcrop lines (dash contour), and low PV distribution for the core layer of STMW and CMW (solid line). The outcrop lines and low PV contours for STMW are plotted in red color, whereas for CMW in blue line; b) Bulk thickness of the layer between 24.5σθand 26.6σθ(color shade in a 50m interval), and SSH (black contours at a 5cm interval).

    An accumulative variable ‘bulk thickness’ is introduced to highlight the accumulated effect of low PV waters on the STCC formation. The bulk thickness represents the thickness of a layer that contains the mode waters. After investigation of the climatological thermocline structure in the central North Pacific, the bulk thickness is calculated as the difference of isopycnal depths between the seasonal (24.5σ) and permanent (26.6σ; largely unventilated)thermocline because this layer contains both the subtropical mode water (STMW) and the central mode water (CMW) (Xu., 2012a). Marked with solid triangles in Fig.2b, the STCC is located in the central gyre (20?N–30?N) where the sea surface height (SSH) contours veer northwestward. Large bulk thickness values are located in the central subtropical gyre just to the north of the STCC (Fig.2b), suggesting the dynamic effect of the mode water on the STCC.

    3.2 Time Evolutions of MLD, Mode Water and STCC

    By combining the historical and the RCP 4.5 runs, a 400-year dataset from 1900 to 2300 is formed. A 9-year low pass filter is applied to remove high frequency and to identify long-term variability. Using this dataset, the full evolutions of the MLD, the mode water, and the STCC under global warming are investigated.

    Using the output from the six CMIP5 models, an em- pirical orthogonal function (EOF) analysis is performed for MLD anomaly in the Kuroshio Extension region (140?E–170?W, 25?N–45?N) where the STMW and the CMW are formed. The spatial patterns (Fig.3) and principal components (PC) (Fig.4) of the leading mode in the six CMIP5 models are similar and characterized by the overall shoaling of the MLD under global warming. The MLD PC1 in all the CMIP5 models first show a fast shoaling trend as the GHG forcing in RCP4.5 increases from 2001 to about 2070, but then a slow deepening trend when the GHG forcing is stabilized. The fast and slow responses in the MLD correspond well to two epochs of the GHG increase and leveling off, respectively. Fig.5 shows the area-averaged temperature change in the KOE region (140?E–170?W, 25?N–45?N) as a function of depth and time. To compare the temperature changes between the fast and slow response epochs, the temperature time series from 2001 to 2070 is subtracted from the 2001–2010 average while the time series from 2071 to 2300 is subtracted from the 2071–2080 average. This method separates the MLD’s fast and slow responses well. As the GHG forcing rapidly increases from 2001 to 2070 (Fig.5a), the ocean is heated from the above, and the surface warming is greater than the warming at depth. This intensifies the upper ocean stratification and shoals the MLD. On the other hand, with the GHG forcing stabilized in the 2070s, the subsequent subsurface warming is greater than the warming at the sea surface (Fig.5b), which reduces the upper ocean stratification and deepens the MLD as a result.

    Corresponding to the MLD change, the mode water shows fast and slow evolutions. Fig.6a shows the time series of bulk thickness anomaly between 24.5σand 26.6σover the North Pacific (120?E–140?W, 20?N–40?N). Its evolution is similar to the MLD PC1. The correlation coefficient between the ensemble mean MLD PC1 and bulk thickness anomaly is~0.93. The bulk thickness in the 20th century exhibits a decadal variability at a typical time scale of 50 years (Xie., 2011). As the atmospheric COconcentrations increase from 2001 to 2070, the bulk thickness decreases sharply because the more stratified upper ocean and the shoaling MLD are unfavor-able for the mode water formation. After the radiative forcing is stabilized, favorable conditions for the mode water formation are created. Under those conditions, the MLD deepens slowly and the bulk thickness increases slightly because of more heat release from the warm sea surface to the atmosphere and slowly subsurface warming. Anchored by the mode water to the north as discussed in the last subsection, the STCC shows corresponding changes following the mode water change with a high correlation (~0.92). The zonal velocity of the STCC decreases sharply with the decreasing bulk thickness in the first half of the 21st century, and returns to stronger values as the bulk thickness gradually recovers after the 21st century (Fig.6b).

    Fig.3 The first EOF mode of MLD (color shade in m) and the historical mean MLD (black contours in a 50minterval) in the Kuroshio Extension region (140?E–170?W, 25?N–45?N) for each of the CMIP5 models. The variance fraction explained by the EOF mode is printed at the top-right corner of each panel. The magnitude of the EOF patterns corresponds to a unit deviation of the PC in Fig.4.

    Fig.4 PC of the first EOF mode of MLD in the Kuroshio Extension region. The solid purple line is the area-averaged SST (℃) in the EOF domain (140?E–170?W, 25?N–45?N), and the solid red line represents the radiation forcing concentrations for historical and RCP 4.5 scenarios. The other lines displayed in the legend correspond to the results of six individual models, respectively.

    Fig.6 a) Bulk thickness anomaly (m) between 24.5σθand 26.6σθover the North Pacific (120?E–140?W, 20?N–40?N). The solid green line represents the ensemble mean of MLD PC1 as shown in Fig.4. b) Area-averaged 0–50m mean zonal velocity anomaly (cms-1) over the STCC (145?E–145?W, 22?N–27?N). The solid purple line represents the ensemble mean bulk thickness anomaly in a). The solid red line represents the radiation forcing concentrations for historical and RCP 4.5 scenarios. For each model the bulk thickness (zonal velocity) is subtracted from the 1900–1910 average to facilitate comparison. The other lines displayed in the legend correspond to the results of six individual models, respectively.

    4 Summary

    The evolutions of the mode water and STCC changes are examined based on the historical and RCP4.5 runs of the six CMIP5 models over 400 years from 1900 to 2300. The evolutions consist of two distinct stages: A fast response stage where the ocean mixed layer dynamics are in quasi-equilibrium with the increasing GHG concentrations, and a slow response stage after the GHG has stabilized. As climate warms, the mode water (in particular, the North Pacific STMW and CMW) first shows a fast weakening response to the increasing GHG concentrations, and then a slow intensification adjusting to the stabilized GHG forcing. Corresponding to the mode water to the north, the STCC also shows the distinct fast and slow responses: As the GHG forcing increases rapidly in RCP4.5 from 2001 to 2070, the surface warming is intensified, and so is the upper ocean stratification, which causes the reduction of the mode water and the deceleration of the STCC. After the GHG forcing is stabilized in the 2070s, the subsurface warming is stronger than the surface warming, and the upper ocean stratification is reduced, leading to a small volume increase in the mode water and the strengthening of the STCC.

    Although the existence of ocean’s fast and slow responses is well known (Stouffer, 2004), the effect on the MLD response and mode-water ventilation is not. The surface warming directly induced by the GHG increase shoals the MLD, while the gradual subsurface warming weakens the ocean stratification and deepens the MLD. The latter effect becomes more apparent after the GHG forcing is stabilized. The results of the CMIP5 models also show that the distinct MLD changes corresponding to the fast and slow responses can have important consequence to the mode water ventilation and the STCC.

    Acknowledgements

    This work is supported by the National Basic Research Program of China (2012CB955602), National Key Program for Developing Basic Science (2010CB428904), and Natural Science Foundation of China (41176006 and 40921004). The work was carried out when the first author was a visiting student at the University of Hawaii and Scripps Institution of Oceanography on a fellowship from the China Scholarship Council. We acknowledge the Working Group on Coupled Modelling of the World Climate Research Program. We also thank the climate modeling groups (listed in Table 1 of this paper) of CMIP for producing and making the model output available.

    Aoki, Y., Suga, T., and Hanawa, K., 2002. Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline., 32: 2299-2311.

    Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., and Vallis, G. K., 2010. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing., 23: 2418-2427.

    Kobashi, F., and Kubokawa, A., 2012. Review on North Pacific subtropical countercurrents and subtropical fronts: Role of mode waters in ocean circulation and climate.,68: 21-43, DOI: 10.1007/s10872-011-0083-7.

    Kobashi, F., Mitsudera, H., and Xie, S. P., 2006. Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogensis., 111, C09033, DOI: 10.1029/2006JC003479.

    Kubokawa, A., 1999. Ventilated thermocline strongly affected by a deep mixed layer: A theory for subtropical countercurrent.,29: 1314-1333.

    Kubokawa, A., and Inui, T., 1999. Subtropical countercurrent in an idealized ocean GCM.,29: 1303-1313.

    Luo, Y., Liu, Q., and Rothstein, L. M., 2009. Simulated response of North Pacific Mode Waters to global warming.,36,L23609, DOI: 10.1029/2009GL 040906.

    Stouffer, R. J., 2004. Time scales of climate response., 17: 209-217.

    Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of CMIP5 and the experiment design., 93: 485-498, DOI: 10.1175/ BAMS-D-11-00094.1.

    Xie, S. P., Kunitani, T., Kubokawa, A., Nonaka, M., and Hosoda, S., 2000. Interdecadal thermocline variability in the North Pacific for 1958–1997: A GCM simulation., 30: 2798-2813.

    Xie, S. P., Xu, L., Liu, Q., and Kobashi, F., 2011. Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific., 24: 1212-1225.

    Xu, L. X., Xie, S.-P., and Liu, Q., 2012a. Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections., 117, C12009, DOI: 10.1029/2012JC008377.

    Xu, L. X., Xie, S. P., Liu, Q., and Kobashi, F., 2012b. Response of the North Pacific Subtropical Countercurrent and its variability to global warming., 68: 127-137, DOI: 10.1007/s10872-011-0031-6.

    Yamanaka, G., Ishizaki, H., Hirabara, M., and Ishikawa, I., 2008. Decadal variability of the Subtropical Front of the western North Pacific in an eddy-resolving ocean general circulation model., 113, C12027, DOI: 10.1029/2008JC005002.

    (Edited by Xie Jun)

    10.1007/s11802-013-2189-6

    ISSN 1672-5182, 2013 12 (2): 216-221

    . Tel: 0086-532-66782556 E-mail: liuqy@ouc.edu.cn

    (October 25, 2012; revised January 21, 2013; accepted March 4, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    欧美成人精品欧美一级黄| 国产精品一二三区在线看| 在线免费观看不下载黄p国产| 国产欧美日韩一区二区三区在线 | 人人妻人人爽人人添夜夜欢视频 | 亚洲va在线va天堂va国产| 亚洲国产成人一精品久久久| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 99久久精品热视频| 亚洲真实伦在线观看| 三级国产精品片| 精品一区二区三区视频在线| 亚洲欧美一区二区三区国产| 久久婷婷青草| 我的老师免费观看完整版| 国产精品成人在线| 夫妻性生交免费视频一级片| 我要看黄色一级片免费的| 久久 成人 亚洲| 人妻少妇偷人精品九色| 午夜免费男女啪啪视频观看| 免费人妻精品一区二区三区视频| 国产综合精华液| 国产精品国产三级国产专区5o| a级一级毛片免费在线观看| 寂寞人妻少妇视频99o| 99热网站在线观看| 大香蕉97超碰在线| 精品一品国产午夜福利视频| 久久热精品热| 国产精品三级大全| av女优亚洲男人天堂| 毛片一级片免费看久久久久| 欧美精品一区二区大全| 欧美精品一区二区大全| 国产一区二区在线观看日韩| 精品久久久久久电影网| 久久久久久久久大av| 久久韩国三级中文字幕| 97在线人人人人妻| 日本黄大片高清| 久久久久视频综合| 老司机亚洲免费影院| 久久久a久久爽久久v久久| 国产男女超爽视频在线观看| 日韩三级伦理在线观看| 国产精品一区www在线观看| 亚洲第一av免费看| 男女啪啪激烈高潮av片| 在线观看美女被高潮喷水网站| a级毛色黄片| 久久亚洲国产成人精品v| 亚洲真实伦在线观看| 亚洲av电影在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 精品一品国产午夜福利视频| 自拍偷自拍亚洲精品老妇| 亚洲欧洲日产国产| 亚洲成人一二三区av| 亚洲无线观看免费| 国产欧美日韩综合在线一区二区 | 亚洲成人一二三区av| 一个人看视频在线观看www免费| 街头女战士在线观看网站| av又黄又爽大尺度在线免费看| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美成人精品一区二区| 男女无遮挡免费网站观看| 97超碰精品成人国产| 久久久久久久久久人人人人人人| 哪个播放器可以免费观看大片| 自拍欧美九色日韩亚洲蝌蚪91 | 国产美女午夜福利| 国产片特级美女逼逼视频| 国产精品99久久99久久久不卡 | 欧美性感艳星| 免费大片18禁| 精品久久久精品久久久| 夜夜骑夜夜射夜夜干| 亚洲精品日本国产第一区| 日本黄色片子视频| 久久精品国产a三级三级三级| 亚洲三级黄色毛片| 国产精品国产av在线观看| 看十八女毛片水多多多| 日韩人妻高清精品专区| 色婷婷av一区二区三区视频| a 毛片基地| 欧美变态另类bdsm刘玥| av免费观看日本| 国产成人免费无遮挡视频| 亚洲不卡免费看| 99视频精品全部免费 在线| 色吧在线观看| 少妇熟女欧美另类| 免费大片黄手机在线观看| 99热国产这里只有精品6| 嫩草影院入口| 男人添女人高潮全过程视频| 亚洲精品日韩在线中文字幕| 亚洲,一卡二卡三卡| 国产爽快片一区二区三区| av福利片在线观看| 亚洲内射少妇av| 欧美日韩av久久| 亚洲欧美成人精品一区二区| 一区二区av电影网| 老司机亚洲免费影院| 久热这里只有精品99| freevideosex欧美| av国产精品久久久久影院| 老熟女久久久| 日韩av不卡免费在线播放| 在线观看国产h片| 亚洲av综合色区一区| 免费大片黄手机在线观看| 一区二区av电影网| 婷婷色综合www| 精品一品国产午夜福利视频| 精品国产乱码久久久久久小说| 在线观看免费高清a一片| 亚洲图色成人| 亚洲精品乱码久久久久久按摩| 美女xxoo啪啪120秒动态图| 亚洲精品中文字幕在线视频 | av又黄又爽大尺度在线免费看| 亚洲人与动物交配视频| 极品少妇高潮喷水抽搐| 内地一区二区视频在线| 中国三级夫妇交换| 高清av免费在线| 一区二区三区免费毛片| 午夜老司机福利剧场| 精品人妻熟女av久视频| 中文字幕制服av| 80岁老熟妇乱子伦牲交| 女性生殖器流出的白浆| 欧美精品人与动牲交sv欧美| 国产一区二区在线观看日韩| 亚洲美女视频黄频| 人人澡人人妻人| av女优亚洲男人天堂| 麻豆精品久久久久久蜜桃| 久久国产精品男人的天堂亚洲 | 成人影院久久| av天堂中文字幕网| 天天操日日干夜夜撸| 欧美日韩视频精品一区| 日本色播在线视频| 亚洲欧洲精品一区二区精品久久久 | 一本大道久久a久久精品| 久久精品夜色国产| 久久久国产欧美日韩av| 亚洲欧美日韩东京热| 夜夜看夜夜爽夜夜摸| 国产成人91sexporn| 美女内射精品一级片tv| 久久毛片免费看一区二区三区| 一区在线观看完整版| 最后的刺客免费高清国语| 日韩电影二区| 国产欧美日韩综合在线一区二区 | 亚洲av二区三区四区| 国产欧美另类精品又又久久亚洲欧美| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜| 在线观看三级黄色| 欧美丝袜亚洲另类| 人妻夜夜爽99麻豆av| 亚洲国产精品一区三区| tube8黄色片| 亚洲精品乱码久久久久久按摩| 国精品久久久久久国模美| 少妇精品久久久久久久| 久久国产乱子免费精品| 下体分泌物呈黄色| 黄色日韩在线| 国产精品女同一区二区软件| 美女中出高潮动态图| 国产 一区精品| 一级毛片我不卡| 成人午夜精彩视频在线观看| 色吧在线观看| 91精品国产九色| 国产av码专区亚洲av| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线 | 精品久久国产蜜桃| 久热久热在线精品观看| 男女边摸边吃奶| 久久97久久精品| 一级爰片在线观看| 少妇丰满av| 简卡轻食公司| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 欧美成人午夜免费资源| 国产午夜精品久久久久久一区二区三区| 99久久综合免费| 久热这里只有精品99| 久久久久精品久久久久真实原创| 秋霞在线观看毛片| 中文字幕人妻丝袜制服| 久久久久久久精品精品| 男人添女人高潮全过程视频| 亚洲av男天堂| 亚洲精品中文字幕在线视频 | av一本久久久久| 久久午夜福利片| 国产精品.久久久| 岛国毛片在线播放| 中文字幕人妻丝袜制服| 一区二区av电影网| 在线观看国产h片| 国产乱来视频区| 国产成人一区二区在线| 欧美日韩在线观看h| 成人漫画全彩无遮挡| 亚洲欧美日韩另类电影网站| 精品人妻熟女毛片av久久网站| 日韩制服骚丝袜av| 国产亚洲精品久久久com| av视频免费观看在线观看| 国产午夜精品久久久久久一区二区三区| 一级毛片久久久久久久久女| av线在线观看网站| 大又大粗又爽又黄少妇毛片口| 夜夜爽夜夜爽视频| 亚洲电影在线观看av| 国产一区二区三区av在线| 亚洲国产欧美在线一区| 日韩欧美精品免费久久| 久久久久久久久久久丰满| 91精品一卡2卡3卡4卡| 亚洲一区二区三区欧美精品| 欧美国产精品一级二级三级 | 日日摸夜夜添夜夜添av毛片| 男女免费视频国产| 亚洲一级一片aⅴ在线观看| 亚洲四区av| 一级毛片黄色毛片免费观看视频| 亚洲色图综合在线观看| 尾随美女入室| 一级毛片电影观看| 国产69精品久久久久777片| 成人免费观看视频高清| 亚洲人成网站在线播| 国产成人a∨麻豆精品| 特大巨黑吊av在线直播| 亚洲中文av在线| 久久99精品国语久久久| 午夜久久久在线观看| 国产精品熟女久久久久浪| 18禁动态无遮挡网站| 一级毛片 在线播放| 国产精品一区二区在线不卡| 能在线免费看毛片的网站| 精品99又大又爽又粗少妇毛片| 丝袜喷水一区| a级毛片在线看网站| 黄色怎么调成土黄色| 高清毛片免费看| 夫妻性生交免费视频一级片| 亚洲怡红院男人天堂| 好男人视频免费观看在线| 丝袜喷水一区| 国产女主播在线喷水免费视频网站| 国内揄拍国产精品人妻在线| 美女福利国产在线| 97精品久久久久久久久久精品| 高清在线视频一区二区三区| 国产欧美亚洲国产| 国产午夜精品久久久久久一区二区三区| 最近中文字幕高清免费大全6| 韩国av在线不卡| 欧美日本中文国产一区发布| 少妇人妻 视频| 亚洲精品国产av成人精品| 久久久久久久亚洲中文字幕| 中国美白少妇内射xxxbb| 久久久久精品久久久久真实原创| 国产在视频线精品| 亚洲精品456在线播放app| 色94色欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产在线视频一区二区| 精品酒店卫生间| 国产精品国产三级国产av玫瑰| 成年人午夜在线观看视频| 久久毛片免费看一区二区三区| 欧美精品一区二区大全| 高清av免费在线| 一本一本综合久久| 尾随美女入室| 欧美日韩精品成人综合77777| 我要看日韩黄色一级片| 亚洲国产精品专区欧美| 美女cb高潮喷水在线观看| 中文字幕久久专区| 伊人亚洲综合成人网| 一级毛片久久久久久久久女| 伊人久久国产一区二区| www.av在线官网国产| 亚洲av成人精品一二三区| 久久久久人妻精品一区果冻| 国产精品久久久久成人av| 久久久a久久爽久久v久久| 男女边摸边吃奶| 亚洲精品国产色婷婷电影| 色视频www国产| 色94色欧美一区二区| 免费不卡的大黄色大毛片视频在线观看| 国产美女午夜福利| 涩涩av久久男人的天堂| 精品人妻熟女毛片av久久网站| 国产欧美日韩综合在线一区二区 | 国产有黄有色有爽视频| 观看av在线不卡| 精品久久久精品久久久| 国产亚洲av片在线观看秒播厂| 日韩熟女老妇一区二区性免费视频| 精品国产乱码久久久久久小说| 婷婷色综合www| 国产在线男女| 国产黄片美女视频| 天堂中文最新版在线下载| 熟女电影av网| 日本午夜av视频| 亚洲av男天堂| 丝袜脚勾引网站| 97超碰精品成人国产| 亚洲精品日韩av片在线观看| 午夜91福利影院| 久久久欧美国产精品| 99久久中文字幕三级久久日本| 建设人人有责人人尽责人人享有的| 你懂的网址亚洲精品在线观看| 成人漫画全彩无遮挡| 亚洲av成人精品一区久久| 69精品国产乱码久久久| 乱系列少妇在线播放| 一级毛片aaaaaa免费看小| 男女免费视频国产| 国产男女内射视频| 99热全是精品| 成人亚洲精品一区在线观看| 丁香六月天网| 国产午夜精品一二区理论片| 国产精品无大码| 亚洲国产色片| 精品国产一区二区三区久久久樱花| 亚洲精品国产色婷婷电影| 亚洲国产成人一精品久久久| 国产在线免费精品| 亚洲自偷自拍三级| 一级av片app| 国产有黄有色有爽视频| 欧美另类一区| 久久久久久久久久久丰满| 亚洲精品自拍成人| 啦啦啦视频在线资源免费观看| 亚洲丝袜综合中文字幕| 精品国产乱码久久久久久小说| 亚洲国产色片| 亚洲经典国产精华液单| 一级a做视频免费观看| 99热这里只有精品一区| 永久免费av网站大全| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 26uuu在线亚洲综合色| 久久人人爽人人片av| 亚洲精品日韩av片在线观看| 黄色毛片三级朝国网站 | 国产男女内射视频| 18+在线观看网站| 国产亚洲最大av| 国产午夜精品一二区理论片| 伦理电影免费视频| 国产伦在线观看视频一区| 欧美少妇被猛烈插入视频| 国产色爽女视频免费观看| 少妇丰满av| 一级黄片播放器| 成人毛片60女人毛片免费| 久久99蜜桃精品久久| 久久精品国产鲁丝片午夜精品| 国产精品无大码| 亚洲精品第二区| videossex国产| 久久鲁丝午夜福利片| 国产高清不卡午夜福利| 国产国拍精品亚洲av在线观看| 欧美 日韩 精品 国产| 最新的欧美精品一区二区| 精品一区二区三区视频在线| av有码第一页| 欧美少妇被猛烈插入视频| 国产日韩欧美亚洲二区| 纵有疾风起免费观看全集完整版| 在线观看免费高清a一片| 国产精品99久久久久久久久| 亚洲内射少妇av| 国产色爽女视频免费观看| 男人舔奶头视频| 国产成人aa在线观看| 国产熟女欧美一区二区| 在线观看美女被高潮喷水网站| 精品一区二区三卡| 亚洲综合色惰| 国产精品久久久久久久久免| 精品酒店卫生间| 18禁在线播放成人免费| 精品视频人人做人人爽| 七月丁香在线播放| 亚洲av不卡在线观看| 亚洲精品久久久久久婷婷小说| 婷婷色综合www| 三级经典国产精品| √禁漫天堂资源中文www| 免费黄频网站在线观看国产| 久久国产乱子免费精品| 韩国av在线不卡| 亚洲国产精品一区二区三区在线| 在线观看免费高清a一片| 人妻一区二区av| 国产精品欧美亚洲77777| 少妇精品久久久久久久| 一区二区av电影网| 嘟嘟电影网在线观看| 亚洲一区二区三区欧美精品| 亚洲四区av| 全区人妻精品视频| 乱系列少妇在线播放| 只有这里有精品99| 国产欧美日韩一区二区三区在线 | 有码 亚洲区| 欧美一级a爱片免费观看看| 国产精品国产三级国产av玫瑰| 丰满少妇做爰视频| 美女视频免费永久观看网站| 熟女电影av网| 久久久久久久精品精品| 欧美高清成人免费视频www| 美女国产视频在线观看| 亚洲美女搞黄在线观看| 日本av免费视频播放| 国产老妇伦熟女老妇高清| 欧美xxⅹ黑人| 一级毛片我不卡| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 新久久久久国产一级毛片| 免费看av在线观看网站| 水蜜桃什么品种好| 午夜福利网站1000一区二区三区| 欧美性感艳星| 日韩一区二区视频免费看| 久久久久久伊人网av| 久热久热在线精品观看| 久久99蜜桃精品久久| 亚洲精品日本国产第一区| 亚洲经典国产精华液单| 18禁在线无遮挡免费观看视频| 黄色配什么色好看| 国产日韩一区二区三区精品不卡 | 亚洲国产最新在线播放| 黄色配什么色好看| 中国国产av一级| 91精品一卡2卡3卡4卡| 我要看日韩黄色一级片| 日韩成人伦理影院| 视频中文字幕在线观看| 在线播放无遮挡| 久久久国产一区二区| 亚洲丝袜综合中文字幕| 国产亚洲欧美精品永久| 中文在线观看免费www的网站| 成人国产av品久久久| 只有这里有精品99| 天堂俺去俺来也www色官网| 日韩一本色道免费dvd| 曰老女人黄片| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花| 美女福利国产在线| 久久久久久久久久久免费av| 天美传媒精品一区二区| 久久精品熟女亚洲av麻豆精品| av福利片在线观看| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品在线观看| 日韩一本色道免费dvd| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 亚洲国产最新在线播放| 久久久久国产网址| 久久精品久久精品一区二区三区| 色5月婷婷丁香| 青春草亚洲视频在线观看| 久热这里只有精品99| 日本猛色少妇xxxxx猛交久久| 日本欧美视频一区| 久久久久视频综合| 免费少妇av软件| 九色成人免费人妻av| 国产日韩欧美亚洲二区| 日日啪夜夜撸| 日韩一区二区三区影片| 国产亚洲5aaaaa淫片| 99热这里只有是精品在线观看| 只有这里有精品99| 免费看av在线观看网站| 国产一区二区三区av在线| 国产精品伦人一区二区| 婷婷色综合大香蕉| 亚洲国产成人一精品久久久| 精品国产乱码久久久久久小说| 香蕉精品网在线| 一区在线观看完整版| 国产精品一二三区在线看| 国产熟女欧美一区二区| 性色avwww在线观看| 国产精品.久久久| 免费观看性生交大片5| 国产又色又爽无遮挡免| 免费av中文字幕在线| 一级毛片aaaaaa免费看小| 一本色道久久久久久精品综合| 亚洲图色成人| 日日撸夜夜添| 久久精品国产鲁丝片午夜精品| 亚洲av男天堂| videos熟女内射| 亚洲精品乱久久久久久| 中文在线观看免费www的网站| 极品人妻少妇av视频| 精品亚洲成国产av| 又大又黄又爽视频免费| 热re99久久精品国产66热6| 制服丝袜香蕉在线| 欧美 亚洲 国产 日韩一| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 欧美三级亚洲精品| 国模一区二区三区四区视频| 免费av不卡在线播放| 一区二区三区免费毛片| 少妇的逼水好多| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久久久| 国产精品一区二区在线不卡| 国产伦理片在线播放av一区| 亚洲色图综合在线观看| av福利片在线观看| 欧美 亚洲 国产 日韩一| 伊人亚洲综合成人网| 国产视频内射| av免费观看日本| 亚洲av在线观看美女高潮| 国产精品人妻久久久影院| 中文字幕久久专区| 成人影院久久| 免费大片黄手机在线观看| 热re99久久国产66热| 国产av精品麻豆| 亚洲国产色片| 免费高清在线观看视频在线观看| 晚上一个人看的免费电影| 搡女人真爽免费视频火全软件| 又黄又爽又刺激的免费视频.| 日韩av免费高清视频| 在线播放无遮挡| 日日爽夜夜爽网站| 99视频精品全部免费 在线| 国产淫片久久久久久久久| 这个男人来自地球电影免费观看 | 国产美女午夜福利| 七月丁香在线播放| 伊人久久精品亚洲午夜| 国产淫片久久久久久久久| 国产精品秋霞免费鲁丝片| 日日摸夜夜添夜夜添av毛片| 亚洲四区av| 免费播放大片免费观看视频在线观看| 蜜桃在线观看..| 国产精品久久久久成人av| 久久精品国产自在天天线| 国产成人午夜福利电影在线观看| 一本大道久久a久久精品| 日韩中字成人| 久久毛片免费看一区二区三区| 中文字幕精品免费在线观看视频 | 汤姆久久久久久久影院中文字幕| 少妇精品久久久久久久| 一二三四中文在线观看免费高清| 亚洲av国产av综合av卡| 99热这里只有是精品50| 卡戴珊不雅视频在线播放| 国产黄色免费在线视频| 亚洲av成人精品一区久久| 91精品伊人久久大香线蕉| 久久久午夜欧美精品| 黄色欧美视频在线观看| 亚洲高清免费不卡视频| 国产一区二区三区av在线| 久久久精品免费免费高清| 夜夜骑夜夜射夜夜干| 精品久久久久久久久亚洲| 另类亚洲欧美激情| 热99国产精品久久久久久7| 国产极品粉嫩免费观看在线 | 欧美区成人在线视频|