• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Indian Ocean Dipole Response to Global Warming: A Multi-Member Study with CCSM4

    2013-07-28 09:02:36ZHOUZhenQiang1XIEShangPing1ZHENGXiaoTong1andLIUQinyu1
    Journal of Ocean University of China 2013年2期

    ZHOU Zhen-Qiang1), XIE Shang-Ping1), 2), ZHENG Xiao-Tong1), *, and LIU Qinyu1)

    ?

    Indian Ocean Dipole Response to Global Warming: A Multi-Member Study with CCSM4

    ZHOU Zhen-Qiang, XIE Shang-Ping, ZHENG Xiao-Tong, and LIU Qinyu

    1),,266100,2),,92093-0230,

    Based on a coupled ocean–atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850–2100. The model can simulate the IOD features realistically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Although the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.

    Indian Ocean Dipole (IOD); multi-member ensemble analysis; global warming; ocean-atmospheric interaction; CCSM4

    1 Introduction

    The Indian Ocean Dipole (IOD), involving ocean and atmosphere interactions, is a zonal mode of interannual variability in the tropical Indian Ocean (Saji, 1999; Webster, 1999; Murtugudde, 2000). During a positive IOD event, sea surface temperature (SST) is colder than normal in the southeast equatorial Indian Ocean, with weak warm anomalies in the western basin. The dipole events are seasonally phase locked: a positive event starts in May–June, matures in boreal autumn, and decays in boreal winter. The IOD has great influence on climate both locally and remotelyatmospheric teleconnections (Guan and Yamagata, 2003; Yang, 2010; Zheng, 2012).

    Although the largest SST anomalies and the most active ocean–atmosphere coupling occur in the eastern part of the Indian Ocean basin, an often-used IOD index measures the east-west SST contrast in the Indian Ocean (Saji, 1999). In response to greenhouse gas (GHG) forcing, climate change could influence IOD properties such as the amplitude and frequency of occurrence. Specifically, the thermocline shoals in the EEIO from limited observations for the past about 50 years (Alory, 2007; Tokinaga, 2012), a thermocline depth change associated with the weakened Walker circulation and reproduced in global warming model simulations (Du and Xie, 2008). By using a coupled model simulation, Zheng(2010, 2013) suggested that this shoaling thermocline leads to an enhanced thermocline feedback, which is counteracted by a reduced zonal wind feedback. Therefore, the IOD variance remains unchanged under global warming.

    Previous studies use single-model or multi-models with one-member run (Zheng, 2013). Because the IOD exhibits variability on decadal and multidecadal time scales in addition to its interannual variances (Ihara, 2008), a single run contains pronounced natural modulations of IOD, making it hard to detect GHG-induced changes. The present study examines the IOD variance change under global warming from a coupled model used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The six-member simulations during the period of 1850–2100 are analyzed to suppress internal variability. The ensemble mean results show an intensification of thermocline feedback, but an even more reduction of atmospheric feedback. As a result, the IOD variance decreases slightly under global warming.

    This paper is organized as follows. Section 2 describes the model and methods. Section 3 analyzes the IOD simulations. Section 4 examines changes in the ocean-atmosphere system in the Indian Ocean under global warming and investigates why the IOD activity does not intensify in a warmer climate. Section 5 is a summary.

    2 Model and Methods

    This study uses the output of the Community Climate System Model version 4.0 (CCSM4), a global climate model that includes the atmosphere, land, ocean, and sea ice modules. Each of these modules has been improved since the previous release (CCSM3), and detailed information of CCSM4 can be found in Gent(2011). The atmospheric component of CCSM4 is the Community Atmosphere Model, version 4 (CAM4). This component uses the Lin-Rood finite-volume dynamical core (Lin, 2004), with a horizontal resolution of 0.9375? latitude×1.25? longitude and 26 levels in the vertical. The oceanic component is based on the Parallel Ocean Program, version 2 (POP2; Smith, 2010; Danabasoglu, 2012). The CCSM4 simulations analyzed here include six-member ensemble of historical (1850–2005, referred to as twentieth century) and future (2006–2100, referred to as twenty-first century) simulations. The six-member ensemble is obtained from CMIP5, which was organized by World Climate Research Programme (WCRP) Climate Variability and Predictability (CLIVAR) Working Group Coupled Models (WGCM) Climate Simulation Panel. CMIP5 collected global coupled atmosphere–ocean general circulation model experiments targeted to the twentieth and twenty-first century climate simulations, as well as climate change experiments investigated in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The twentieth century simulation is described and assessed in Gent(2011) and the representative concentration projection 8.5 (RCP8.5) (Moss, 2010) is used for the twenty-first century simulation. Both simulations are combined to form a six-member ensemble, a 251-year long ‘global warming run’, and the IOD response to global warming is examined. The model simulation is evaluated using the historical run.

    This study focuses on changes due to global warming and the ensemble mean to suppress internal variability is calculated. To focus on interannual variability, a nine-year running average is performed to reduce decadal and longer variations and a three-month running mean is calculated to remove intraseasonal variability. Interannual variance is calculated in 50-year sliding windows (, years 1–50, 2–51, and so on) to examine multidecadal modulations of the interannual IOD variability. The regression analysis method is used to evaluate ocean-atmospheric feedback.

    3 IOD Simulations

    First, an empirical orthogonal function (EOF) analysis is conducted to examine the IOD simulations. Fig.1 shows the leading modes of interannual SST variability over the tropical Indian Ocean (TIO) based on the 156-year-long historical run. In this model, the first and second modes contribute 28% and 24% of variance, respectively. The first EOF mode exhibits a basin-wide warming. The correlation between the basin mode and the Ni?o-3.4 SST index peaks during the simulations, while the basin mode lags the Ni?o-3.4 SST index by 4 months. Klein(1999), Du(2009), and Chowdary(2012) indicated that the first EOF mode is forced by ENSO. Xie(2002) also reported that the enhanced warming in the southwest TIO is due to ocean Rossby wave propagation over the thermocline ridge. The second EOF mode exhibits an east-west dipole pattern with easterly wind anomalies along the equator. During June–October, the maximum negative SST anomalies appear along the Java-Sumatra coast where the wind-forced upwelling occurs. The EOF results are comparable with the observations. SST anomalies in the EEIO are highly correlated with the time series of the second EOF mode at 0.9. Here the standard deviation of SST anomalies in the EEIO during September–November (SON;()) is used to represent the IOD intensity.

    Fig.1(a) 1st and (b) 2nd EOF modes of SST variability in the tropical Indian Ocean (contour internal (CI) 0.1℃), superimposed with the regression of surface wind velocity (ms) and precipitation (green/gray shade and white contours, CI 10mmmon).

    In addition to the spatial pattern, the model captures the IOD phase-locking feature very well. Fig.2 shows monthly standard deviations of SST, precipitation, and sea surface height (SSH) in the EEIO, all displaying pronounced seasonality. SST variance is strong from August to October, occurring one month earlier than that in the observations. Precipitation variance is strong from September to November, consistent with the observations. The peak of SSH variance, appearing in October–November, lags SST variance by 2–3 months, a time delay due to the equatorial wave propagation (Yuan and Han, 2006).

    The positive phase of IOD is associated with easterly wind anomalies in the central basin and SST cooling in the EEIO. Fig.3 shows the scatter diagram of SST and SSH in the EEIO during SON for the six ensemble members. The SST/SSH slope is very close between negative and positive anomalies. The standard deviation of SON-mean SST in EEIO is 0.17 (0.16) for negative (positive) anomalies. The negative extreme is a little higher than ?1.5℃ (only in some extreme years, not significant) and the positive one is lower than 1.5℃ for the 101-year (1900–2000) historical run. Therefore the IOD skewness calculated in this model is not very obvious. Previous studies suggested that the asymmetry of IOD is related to the relatively deep thermocline in the EEIO region (Zheng, 2010, 2013; Ogata, 2012). Here it is suspected that a very shallow thermocline in EEIO may be the reason for the weak asymmetry.

    Fig.3 Scatter diagram of interannual SSH (η, m) and SST (℃) anomalies in the EEIO for SON during 1900–2000. The solid (blue) and dashed (red) lines denote the linear regressions for positive and negative SSH anomalies of six model runs, respectively.

    4 IOD Changes Under Global Warming

    This section examines IOD variability under global warming based on a six-member CCSM4 analysis. The ensemble mean is calculated to remove the natural low-frequency variability and the IOD response to global warming is extracted.

    4.1 Mean State Change

    Fig.4 shows the change in the TIO climatology between the 20th and 21st centuries for SON. The climate warming results in a SST increase of 2.2℃off the Indo-nesian coast, whereas the increase is 3℃ in the northwest TIO. Associated with this SST warming pattern is a dipole of precipitation with negative (positive) in the southeast (northwest) basin. The SST-precipitation relationship is consistent with the hypothesis of Xie(2010) that the SST change relative to the tropical mean warming determines changes in convective instability and tropical rainfall. Surface wind changes are consistent with those in precipitation, SST, the weakened Walker circulation, and strong southeasterly wind anomalies (>2ms) on the equator. The easterly wind shoals the thermocline in the east on the equator, and cools SST there via upwelling. The pattern of ocean-atmospheric changes is indicative of the Bjerknes feedback.

    Fig.4 The ensemble mean differences between the 21st and the 20th century in CCSM4 for SON: (a) SST (CI 0.2℃) and precipitation (green/gray shade and white contours at CI 20mmmon-1 for positive and 10mmmon-1 for negative) and (b) sea surface height (CI 0.02m) and surface wind velocity (ms-1).

    4.2 Change of IOD Strength

    Fig.5 shows the standard deviations of EEIO, DMI and Nino3.4 in 50-year sliding windows for SON. The standard deviation of DMI decreases by about 9% from about 0.8℃ in the 20th century to about 0.73℃ in the 21st century. The standard deviation of Ni?o-3.4 decreases by about 10% from about 1℃ in the 20th century to about 0.9℃ in the 21st century. The inter-member variability (gray shading) of DMI indicates that the IOD variance decrease is significant as the minimum value in the 20th century is larger than the maximum value in the 21st century, while the ENSO change under global warming is not significant. Therefore, the IOD change is not simply a passive response to the ENSO change. Change in the standard deviation of EEIO is consistent with that of DMI. Therefore, the east pole of IOD contributes to a large part of the DMI variation, and a small part of which is also associated with mean state change as shown in Fig.4.

    Fig.6 shows the regressions and correlations between DMI and Ni?o-3.4 for six members in 50-year sliding windows during SON. IOD is highly correlated with ENSO during this period. The mean correlation coefficient between DMI and Ni?o-3.4 SST varies from 0.6 to 0.7. Both regression and correlation coefficients remain unchanged under global warming compared to their inter-member variability. Nevertheless, the IOD variance significantly decreases from 1980 to 2030 (Fig.5b). The above results indicate that, on the global warming time scale, the IOD change is not determined by ENSO only. The variance in inter-member variability also shows the importance of internal feedback in TIO. In particular, the inter-member variability is low for ENSO but high for IOD in the 21st century. Saji(2006) suggested that the thermocline feedback is strong as the thermocline layer becomes shallow in the EEIO, and the IOD does not entirely depend on the ENSO teleconnective forcing.

    4.3 Oceanic and Atmospheric Feedback

    To understand the cause of IOD changes, the Bjerknes feedback, consisting of both atmospheric and oceanic feedback, is examined and the thermocline and zonal wind feedback are calculated as oceanic and atmospheric feedback, respectively. Correlation between SST and thermocline anomalies is high off the Sumatra-Java coast and in the southwest TIO (Xie, 2002), clearly indi- cating the thermocline feedback. During a positive IOD year, easterly wind anomalies act as a positive feedback with the shoaling of the thermocline and the intensification of the SST cooling in the EEIO. Here the strength of thermocline feedback is measured quantitatively using the SST() regression upon SSH() ((,)) in the EEIO during the period of September–November. The regression of zonal wind anomalies upon SST anomalies in the EEIO in the central equatorial Indian Ocean (, CEIO, 5?S–5?N, 70?E–90?E),(,), is conducted to obtain the zonal wind feedback parameter. Fig.7 shows the regressions of SST(EEIO) upon SSH(EEIO) ((,)) and zonal wind in the CEIO upon SST in the EEIO ((,)) for six members in 50-year sliding windows during the SON period. Thermocline feedback increases by about 8% from about 11.5–12℃min the 20th century to about 12.5–13℃min the 21st century (Fig.7a), likely in response to a shoaling thermocline. Although the thermocline feedback intensifies, the IOD variability decreases under global warming. Atmospheric feedback decreases by about 15% from about 3.7–3.9 (ms)/℃ in the 20th century to about 3.2–3.4 (ms)/℃ in the 21st century (Fig.7b). From their inter-member variabilities (gray shadings) it is found that changes in both feedback parameters are significant under global warming. Therefore, the weakened zonal wind feedback counteracts the effect of increased thermocline feedback. In another model, Zheng(2010, 2013) indicated that IOD remains unchanged under global warming as the variations of increased(,) and weakened(,) are very close. The results of this study show that(,) decreases more than(,) increases, indicating the decrease of the IOD variance under global warming.

    Fig.5 The standard deviations of (a) EEIO, (b) DMI, and (c) Ni?o3.4 of six model runs for SON in 50-year sliding windows. The thick blue line indicates the ensemble mean and the gray shade indicates the inter-member standard deviation.

    Fig.6 (a) Regression and (b) correlation between DMI and Ni?o3.4 of six model runs for SON in 50-year sliding windows. The thick blue line indicates the ensemble mean and the gray shade indicates the inter-member standard deviation.

    Previous studies suggested that the decrease of zonal wind feedback, reflected by the weakened circulation response to SST anomalies, is due to the increased tropospheric stability (Knutson and Manabe, 1995; Zheng, 2010). The regressions of zonal wind in the CEIO upon precipitation in the EEIO (Fig.8a,(,)) and precipitation upon SST in the EEIO (Fig.8b,(,)) are calculated for six members in 50-year sliding windows during SON, respectively.Both regressions decrease, but compared to the inter-member variability,(,) only has a very slight decrease while(,) decreases significantly under global warming. The CCSM4 results show that both(,) and(,) contribute to the reduced zonal wind feedback, which is consistent with the multi-model simulations (Zheng, 2013).

    Fig.7 Regression (a) between SST (EEIO) and SSH (EEIO), and (b) between UAS (CEIO) and SST (EEIO) of six model runs for SON in 50-year sliding windows. The thick blue line indicates the ensemble mean and the gray shade indicates the inter-member standard deviation.

    Fig.8 Regression (a) between UAS (CEIO) and Precipitation (EEIO), and (b) between Precipitation (EEIO) and SST (EEIO) of six model runs for SON in 50-year sliding windows. The thick blue line indicates the ensemble mean and the gray shade indicates the inter-member standard deviation.

    5 Summary

    The changes in the IOD mode are investigated based on the analysis of a multi-member simulation ensemble with CCSM4. Measured by the IOD index, the strength of IOD decreases slightly under global warming. A regression method is used to measure atmospheric and oceanic feedback. In the EEIO, thermocline feedback increases, but atmosphere feedback decreases under global warming, and, as a result, the IOD variance decreases.

    In global warming simulations, oceanic feedback increases by about 8%, and the IOD variance decreases by about 9%. This study reveals that the zonal wind response to the SST anomalies of IOD weakens by about 15%. The weakened atmospheric feedback can be seen through reduced zonal wind variance in the central equatorial Indian Ocean and decreased subsurface temperature variance. Thus the reduced zonal wind feedback accompanied with the increased thermocline feedback will lead to a net decrease in the IOD variance under global warming.

    To understand the contributions of the ENSO change to the IOD change, this study examines the changes in internal ocean–atmospheric feedback in the TIO using a multi-member analysis and it is found that the weakened atmospheric feedback counteracts the increased oceanic feedback and causes the IOD variance to decrease under global warming.

    Acknowledgements

    We acknowledge the Working Group on Coupled Modeling of the World Climate Research Programme for producing and making their model output available. We thank the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison for providing the coordinating support and leading the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work is supported by the National Basic Research Program of China (2012CB955603), the Natural Science Foundation of China (41106010, 41176006), the 111 Project (B07036), and the Qianren Program.

    Alory, G., Wijffels, S., and Meyers, G., 2007. Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms., 34, L02606, DOI: 10.1029/2006GL028044.

    Chowdary, J. S., Xie, S. P., Tokinaga, H., Okumura, Y. M., Ku- bota, H., Johnson, N. C., and Zheng, X.-T., 2012. Inter-decadal variations in ENSO teleconnection to the Indo-western Paci?c for 1870–2007., 25: 1722-1744.

    Danabasoglu, G., Bates, S., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock, S., and Yeager, S. G., 2012. The CCSM4 ocean component., 25: 1361-1389.

    Du, Y., and Xie, S. P., 2008. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models., 35, L08712, DOI: 10.1029/2008GL033631.

    Du, Y., Xie, S. P., Huang, G., and Hu, K., 2009. Role of air-sea interaction in the long persistence of El Ni?o-induced north Indian Ocean warming., 22: 2023-2038.

    Ihara, C., Kushnir, Y., and Cane, M. A., 2008. Warming trend of the Indian Ocean SST and Indian Ocean Dipole from 1880 to 2004., 21: 2035-2046.

    Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z. L., and Zhang, M., 2011. The community climate system model, version 4., 24: 4973-4991.

    Guan, Z., and Yamagata, T., 2003. The unusual summer of 1994 in East Asia: IOD teleconnections., 30 (10), 1544, DOI: 10.1029/2002GL016831.

    Klein, S. A., Soden, B. J., and Lau, N. C., 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge., 12: 917-932.

    Knutson, T. R., and Manabe, S., 1995. Time-mean response over the tropical Pacific to increased COin a coupled ocean-atmosphere model., 8: 2181-2199.

    Lin, S. J., 2004. A ‘vertically lagrangian’ finite-volume dynamical core for global models., 132: 2293-2307.

    Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J., 2010. The next generation of scenarios for climate change research and assessment., 463: 747-756.

    Murtugudde, R., McCreary, J. P., and Busalacchi, A. J., 2000. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998., 105: 3295-3306.

    Ogata, T., Xie, S. P., Lan, J., and Zheng, X. T., 2012. Importance of ocean dynamics for the skewness of the Indian Ocean Dipole mode.,26: 2145-2159.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean., 401: 360-363.

    Saji, N. H., Xie, S. P., and Yamagata, T., 2006. Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations., 19: 4397-4417.

    Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S., 2010.., LAUR-10-01853, 141pp.

    Tokinaga, H., Xie, S. P., Deser, C., Kosaka, Y., and Okumura, Y. M., 2012. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming., 491: 439-443, DOI: 10.1038/nature11576.

    Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R., 1999. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98., 401: 356-360.

    Xie, S. P., Annamalai, H., Schott, F. A., and McCreary, J. P., 2002. Structure and mechanisms of south Indian Ocean climate variability., 15: 864-878.

    Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010. Global warming pattern formation: Sea surface temperature and rainfall., 23: 966-986.

    Yang, J., Liu, Q., and Liu, Z., 2010. Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode., 23: 5889-5902.

    Yuan, D., and Han, W., 2006. Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean., 36: 930-944.

    Zheng, J., Liu, Q., Wang, C., and Zheng, X. T., 2012. Impact of heating anomalies associated with rainfall variations over the Indo-Western Pacific on Asian atmospheric circulation in winter., DOI: 10.1007/s00382-012-1478-x.

    Zheng, X. T., Xie, S. P., Du, Y., Liu, L., Huang, G., and Liu, Q., 2013. Indian Ocean Dipole response to global warming in the CMIP5 multi-model ensemble., DOI: 10.1175/JCLI-D-12-00638.1, in press.

    Zheng, X. T., Xie, S. P., Vecchi, G. A., Liu, Q., and Hafner, J., 2010. Indian Ocean Dipole response to global warming: Analysis of ocean-atmospheric feedbacks in a coupled model., 23: 1240-1253.

    (Edited by Xie Jun)

    10.1007/s11802-013-2200-2

    ISSN 1672-5182, 2013 12 (2): 209-215

    . Tel: 0086-532-66781305 E-mail: zhengxt@ouc.edu.cn

    (November 1, 2012; revised January 15, 2013; accepted February 26, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    久久久精品94久久精品| 看免费av毛片| 女人精品久久久久毛片| 99热网站在线观看| 亚洲综合色网址| 国产日韩一区二区三区精品不卡| 高清av免费在线| 午夜成年电影在线免费观看| 久久久久国产一级毛片高清牌| 国产成人av教育| 久久香蕉激情| 18禁裸乳无遮挡动漫免费视频| 免费久久久久久久精品成人欧美视频| 精品第一国产精品| 久久国产亚洲av麻豆专区| 国产成人精品久久二区二区免费| 久久精品亚洲熟妇少妇任你| 黄色成人免费大全| 亚洲国产成人一精品久久久| 免费少妇av软件| 中文字幕人妻丝袜一区二区| 成年人免费黄色播放视频| 亚洲精品美女久久久久99蜜臀| 日本黄色日本黄色录像| 久久久久网色| 精品少妇一区二区三区视频日本电影| 又紧又爽又黄一区二区| 欧美成人午夜精品| 日韩中文字幕欧美一区二区| 精品一区二区三区视频在线观看免费 | av福利片在线| 热99re8久久精品国产| 日韩大片免费观看网站| 美女扒开内裤让男人捅视频| 久久人人爽av亚洲精品天堂| 色视频在线一区二区三区| 久久99热这里只频精品6学生| 成人精品一区二区免费| 在线观看舔阴道视频| 99国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 国产精品免费视频内射| 女同久久另类99精品国产91| 麻豆乱淫一区二区| 18禁观看日本| www.自偷自拍.com| 国产真人三级小视频在线观看| 国产伦理片在线播放av一区| 亚洲中文av在线| 肉色欧美久久久久久久蜜桃| 国产成人精品久久二区二区91| 亚洲精品自拍成人| 一进一出抽搐动态| 菩萨蛮人人尽说江南好唐韦庄| 亚洲伊人久久精品综合| √禁漫天堂资源中文www| 黄色a级毛片大全视频| 丝袜美足系列| 久久精品亚洲熟妇少妇任你| 欧美成人午夜精品| 999久久久国产精品视频| 国产精品麻豆人妻色哟哟久久| 免费少妇av软件| 人妻 亚洲 视频| 日本黄色日本黄色录像| 亚洲国产欧美一区二区综合| 一级,二级,三级黄色视频| 精品免费久久久久久久清纯 | 色94色欧美一区二区| 天天添夜夜摸| 久久免费观看电影| 在线看a的网站| 国产精品久久久久久人妻精品电影 | 成年女人毛片免费观看观看9 | 国产一区二区在线观看av| 国产精品久久电影中文字幕 | 久久亚洲真实| 久久久久久久久久久久大奶| 国产成人一区二区三区免费视频网站| 首页视频小说图片口味搜索| 黄片播放在线免费| 午夜日韩欧美国产| 超碰成人久久| 亚洲精品成人av观看孕妇| 一区二区三区激情视频| 久久久久久久大尺度免费视频| 少妇精品久久久久久久| 久久久欧美国产精品| 成年人免费黄色播放视频| 国产成人精品久久二区二区91| 欧美日韩视频精品一区| 桃花免费在线播放| av一本久久久久| 中文字幕高清在线视频| 亚洲成人免费电影在线观看| 欧美精品高潮呻吟av久久| 亚洲第一青青草原| 久久中文字幕人妻熟女| 久久久久久久久久久久大奶| 菩萨蛮人人尽说江南好唐韦庄| 国产片内射在线| 国产亚洲精品一区二区www | 人人妻,人人澡人人爽秒播| av欧美777| 国产精品.久久久| 99riav亚洲国产免费| 一本—道久久a久久精品蜜桃钙片| 欧美精品av麻豆av| 午夜91福利影院| 亚洲精品一卡2卡三卡4卡5卡| 自线自在国产av| 日本精品一区二区三区蜜桃| 中文字幕人妻丝袜制服| 麻豆国产av国片精品| 久久久精品94久久精品| 激情在线观看视频在线高清 | 少妇精品久久久久久久| 欧美黑人欧美精品刺激| 高清黄色对白视频在线免费看| 后天国语完整版免费观看| 亚洲第一欧美日韩一区二区三区 | 欧美日韩黄片免| 最新在线观看一区二区三区| 国产精品欧美亚洲77777| 窝窝影院91人妻| 欧美日韩精品网址| 亚洲伊人色综图| 亚洲视频免费观看视频| 亚洲欧美一区二区三区黑人| 精品久久久久久电影网| 国产精品一区二区免费欧美| 欧美国产精品va在线观看不卡| 午夜精品国产一区二区电影| 日韩欧美一区视频在线观看| 国产不卡av网站在线观看| 精品国产一区二区三区久久久樱花| 制服诱惑二区| 亚洲欧洲日产国产| 一区二区三区国产精品乱码| 国产亚洲av高清不卡| 精品亚洲成国产av| 亚洲男人天堂网一区| 狠狠狠狠99中文字幕| 无人区码免费观看不卡 | www.自偷自拍.com| tube8黄色片| 日韩视频在线欧美| 1024香蕉在线观看| 夜夜爽天天搞| 久久这里只有精品19| 国产一区二区 视频在线| 久久国产精品影院| 国产又色又爽无遮挡免费看| 男女无遮挡免费网站观看| 麻豆成人av在线观看| 精品亚洲成国产av| 久久久水蜜桃国产精品网| 久久久久久久精品吃奶| 国产av又大| 欧美大码av| 久久精品亚洲熟妇少妇任你| 在线亚洲精品国产二区图片欧美| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 午夜福利视频在线观看免费| 国产真人三级小视频在线观看| 国产精品.久久久| 黄片大片在线免费观看| 久久精品国产99精品国产亚洲性色 | 大陆偷拍与自拍| 国产区一区二久久| 亚洲 欧美一区二区三区| 一区二区三区激情视频| 亚洲精品久久成人aⅴ小说| 高清黄色对白视频在线免费看| 亚洲精品乱久久久久久| 高潮久久久久久久久久久不卡| 成年版毛片免费区| 丁香六月天网| 精品久久久久久久毛片微露脸| 国产黄频视频在线观看| 美女扒开内裤让男人捅视频| 人人澡人人妻人| 亚洲欧美激情在线| 亚洲精品久久成人aⅴ小说| 丝袜美腿诱惑在线| 99久久国产精品久久久| 国产一区二区 视频在线| 亚洲欧美激情在线| 在线观看免费视频网站a站| 18禁美女被吸乳视频| 国产区一区二久久| 亚洲av成人一区二区三| 婷婷成人精品国产| 国产不卡av网站在线观看| 亚洲av欧美aⅴ国产| 国产精品秋霞免费鲁丝片| 亚洲av成人一区二区三| 在线亚洲精品国产二区图片欧美| 五月开心婷婷网| 亚洲国产av影院在线观看| 国精品久久久久久国模美| 成人国产一区最新在线观看| 国产一区二区三区综合在线观看| 丝袜人妻中文字幕| svipshipincom国产片| 两性午夜刺激爽爽歪歪视频在线观看 | 免费不卡黄色视频| 看免费av毛片| 999久久久国产精品视频| 90打野战视频偷拍视频| 国产精品美女特级片免费视频播放器 | 汤姆久久久久久久影院中文字幕| av网站在线播放免费| 咕卡用的链子| 国产精品影院久久| 性高湖久久久久久久久免费观看| 欧美乱妇无乱码| 黑人欧美特级aaaaaa片| 侵犯人妻中文字幕一二三四区| 人妻 亚洲 视频| 视频在线观看一区二区三区| 久久久精品94久久精品| 久热爱精品视频在线9| 一区福利在线观看| 国产成人精品无人区| 最新在线观看一区二区三区| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 成人免费观看视频高清| 99精品久久久久人妻精品| 色视频在线一区二区三区| 久久久久久久大尺度免费视频| 亚洲精品美女久久av网站| 99香蕉大伊视频| 国产1区2区3区精品| 一区二区三区国产精品乱码| 亚洲午夜精品一区,二区,三区| 亚洲少妇的诱惑av| 精品国产乱码久久久久久男人| 成年女人毛片免费观看观看9 | 精品第一国产精品| 中文亚洲av片在线观看爽 | 日韩欧美免费精品| 99热网站在线观看| 欧美人与性动交α欧美软件| 免费黄频网站在线观看国产| 亚洲人成77777在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲av成人一区二区三| 国产高清视频在线播放一区| 亚洲熟妇熟女久久| 久久午夜综合久久蜜桃| 欧美国产精品va在线观看不卡| 在线永久观看黄色视频| 免费人妻精品一区二区三区视频| 久久人妻av系列| 黄网站色视频无遮挡免费观看| 久久久欧美国产精品| 中亚洲国语对白在线视频| av天堂久久9| 成人特级黄色片久久久久久久 | 亚洲一区二区三区欧美精品| 亚洲色图综合在线观看| 丝袜在线中文字幕| 久久久水蜜桃国产精品网| 热99re8久久精品国产| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 99国产精品一区二区蜜桃av | 国产激情久久老熟女| a级毛片黄视频| 高清视频免费观看一区二区| 国产欧美日韩一区二区精品| 一区二区三区国产精品乱码| 亚洲少妇的诱惑av| 一级片免费观看大全| av天堂久久9| 亚洲av成人不卡在线观看播放网| 少妇裸体淫交视频免费看高清 | 美国免费a级毛片| 丁香欧美五月| 啪啪无遮挡十八禁网站| 黄片播放在线免费| 悠悠久久av| 叶爱在线成人免费视频播放| √禁漫天堂资源中文www| 午夜两性在线视频| 中文字幕人妻丝袜一区二区| 性少妇av在线| 黄色视频在线播放观看不卡| a级片在线免费高清观看视频| 久久久国产成人免费| 国产亚洲精品一区二区www | 欧美黑人欧美精品刺激| 99久久国产精品久久久| 欧美激情久久久久久爽电影 | 久久午夜亚洲精品久久| 中文字幕高清在线视频| 欧美在线黄色| 国产精品偷伦视频观看了| 脱女人内裤的视频| 久久久国产欧美日韩av| 国产精品久久久久久人妻精品电影 | av免费在线观看网站| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| 9热在线视频观看99| a级片在线免费高清观看视频| 午夜老司机福利片| 一区二区三区国产精品乱码| 搡老岳熟女国产| 中文欧美无线码| 99国产综合亚洲精品| 亚洲avbb在线观看| 国产精品一区二区精品视频观看| 亚洲第一青青草原| 99久久国产精品久久久| 免费在线观看视频国产中文字幕亚洲| 亚洲国产看品久久| 99香蕉大伊视频| 一边摸一边抽搐一进一出视频| 一二三四社区在线视频社区8| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人午夜精品| 黑丝袜美女国产一区| 国产亚洲午夜精品一区二区久久| 欧美日韩亚洲高清精品| 俄罗斯特黄特色一大片| 一级毛片电影观看| 日韩免费av在线播放| 老司机影院毛片| 欧美一级毛片孕妇| 亚洲熟女毛片儿| 大香蕉久久网| 一级片'在线观看视频| 日韩中文字幕欧美一区二区| 老司机影院毛片| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 女性生殖器流出的白浆| 首页视频小说图片口味搜索| 曰老女人黄片| 日本黄色日本黄色录像| 99热网站在线观看| 黄色成人免费大全| 国产精品九九99| 亚洲欧洲日产国产| 999精品在线视频| 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 美女视频免费永久观看网站| 亚洲精品中文字幕一二三四区 | 亚洲成人国产一区在线观看| 久久天躁狠狠躁夜夜2o2o| 国产成人一区二区三区免费视频网站| 一本—道久久a久久精品蜜桃钙片| 视频区图区小说| 精品久久久久久电影网| 在线观看免费午夜福利视频| 这个男人来自地球电影免费观看| 男女下面插进去视频免费观看| 亚洲av国产av综合av卡| 午夜免费鲁丝| 午夜福利影视在线免费观看| 一区二区日韩欧美中文字幕| 在线观看免费午夜福利视频| a级毛片黄视频| 亚洲熟妇熟女久久| 老司机午夜福利在线观看视频 | videosex国产| 国产精品久久电影中文字幕 | 脱女人内裤的视频| 在线观看人妻少妇| 视频在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 狠狠精品人妻久久久久久综合| 夜夜爽天天搞| 久久 成人 亚洲| av视频免费观看在线观看| 女人精品久久久久毛片| 亚洲中文字幕日韩| 日本a在线网址| 啦啦啦视频在线资源免费观看| 国产真人三级小视频在线观看| 最黄视频免费看| 亚洲欧美精品综合一区二区三区| 国产一区二区激情短视频| 午夜成年电影在线免费观看| 日韩欧美国产一区二区入口| 视频在线观看一区二区三区| 一本久久精品| 久久中文看片网| 18禁裸乳无遮挡动漫免费视频| 久久久久网色| 性高湖久久久久久久久免费观看| 欧美精品av麻豆av| 色在线成人网| 欧美日韩视频精品一区| 国产精品99久久99久久久不卡| 中文字幕人妻丝袜制服| 日本av手机在线免费观看| 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 又紧又爽又黄一区二区| 露出奶头的视频| 人人妻人人添人人爽欧美一区卜| 国产又爽黄色视频| 国产欧美日韩一区二区精品| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 怎么达到女性高潮| 人妻 亚洲 视频| 日本撒尿小便嘘嘘汇集6| 成人特级黄色片久久久久久久 | 国产男女内射视频| 亚洲av成人不卡在线观看播放网| 亚洲五月婷婷丁香| 欧美 亚洲 国产 日韩一| 久久久国产精品麻豆| 在线播放国产精品三级| 亚洲少妇的诱惑av| 精品国产乱码久久久久久小说| 亚洲欧美日韩另类电影网站| 久久人妻福利社区极品人妻图片| 青青草视频在线视频观看| 欧美午夜高清在线| 国产区一区二久久| 老司机靠b影院| 男女下面插进去视频免费观看| 精品国产国语对白av| 亚洲av美国av| 天天躁日日躁夜夜躁夜夜| 91老司机精品| 十八禁高潮呻吟视频| tocl精华| 免费黄频网站在线观看国产| 亚洲五月婷婷丁香| 亚洲一区中文字幕在线| 国产在线免费精品| 国产高清国产精品国产三级| av天堂在线播放| 肉色欧美久久久久久久蜜桃| 国产精品电影一区二区三区 | 国产av一区二区精品久久| 亚洲成a人片在线一区二区| 每晚都被弄得嗷嗷叫到高潮| av超薄肉色丝袜交足视频| 精品国内亚洲2022精品成人 | 亚洲中文字幕日韩| 国产福利在线免费观看视频| 美女福利国产在线| a级片在线免费高清观看视频| 欧美日韩亚洲国产一区二区在线观看 | 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 国产av精品麻豆| 亚洲 欧美一区二区三区| 欧美老熟妇乱子伦牲交| 夫妻午夜视频| 少妇精品久久久久久久| 日本一区二区免费在线视频| 黄网站色视频无遮挡免费观看| 交换朋友夫妻互换小说| 一本大道久久a久久精品| 90打野战视频偷拍视频| 正在播放国产对白刺激| 精品一区二区三卡| 日本vs欧美在线观看视频| 国产成人欧美| 亚洲熟女精品中文字幕| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 热re99久久国产66热| 99精品欧美一区二区三区四区| 欧美另类亚洲清纯唯美| 97在线人人人人妻| 国产成人一区二区三区免费视频网站| 国产高清视频在线播放一区| 大香蕉久久成人网| 国产精品99久久99久久久不卡| 69av精品久久久久久 | 性色av乱码一区二区三区2| 天天躁日日躁夜夜躁夜夜| 一个人免费在线观看的高清视频| 日日夜夜操网爽| 99精品欧美一区二区三区四区| 亚洲情色 制服丝袜| a级片在线免费高清观看视频| 夫妻午夜视频| 久久狼人影院| 婷婷丁香在线五月| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 老汉色∧v一级毛片| 男人操女人黄网站| 建设人人有责人人尽责人人享有的| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 人人妻人人澡人人爽人人夜夜| xxxhd国产人妻xxx| 亚洲精品国产精品久久久不卡| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人免费av在线播放| 国产一区二区在线观看av| av天堂在线播放| 精品熟女少妇八av免费久了| 一二三四在线观看免费中文在| 大型av网站在线播放| 又黄又粗又硬又大视频| 精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 老司机影院毛片| 夜夜骑夜夜射夜夜干| 51午夜福利影视在线观看| 99国产精品一区二区三区| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 国产亚洲欧美在线一区二区| 在线观看免费高清a一片| 90打野战视频偷拍视频| 亚洲av成人一区二区三| 91av网站免费观看| 国产老妇伦熟女老妇高清| 精品福利永久在线观看| 曰老女人黄片| 桃红色精品国产亚洲av| 交换朋友夫妻互换小说| 欧美激情久久久久久爽电影 | 天天影视国产精品| 一级毛片电影观看| 亚洲第一青青草原| 黄色a级毛片大全视频| 国产在线免费精品| 9191精品国产免费久久| 91成年电影在线观看| 精品国产国语对白av| 亚洲精品中文字幕一二三四区 | 99国产精品一区二区蜜桃av | 国产亚洲一区二区精品| 亚洲熟女精品中文字幕| 日韩中文字幕欧美一区二区| 免费在线观看影片大全网站| 91国产中文字幕| 丝袜在线中文字幕| 两性夫妻黄色片| 老司机靠b影院| 免费在线观看黄色视频的| 男人舔女人的私密视频| aaaaa片日本免费| 中文字幕制服av| a在线观看视频网站| 一区二区三区激情视频| 一区在线观看完整版| 国产日韩欧美视频二区| 一级,二级,三级黄色视频| 激情视频va一区二区三区| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 18禁黄网站禁片午夜丰满| 亚洲精品在线观看二区| 极品人妻少妇av视频| 久久久国产欧美日韩av| 一本色道久久久久久精品综合| tube8黄色片| 自拍欧美九色日韩亚洲蝌蚪91| av在线播放免费不卡| 久久久精品94久久精品| 日韩欧美三级三区| 国产99久久九九免费精品| 90打野战视频偷拍视频| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 一二三四在线观看免费中文在| 久久九九热精品免费| 老熟女久久久| 一级片'在线观看视频| 热99久久久久精品小说推荐| 我的亚洲天堂| videosex国产| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 变态另类成人亚洲欧美熟女 | 99香蕉大伊视频| 黄色成人免费大全| 欧美乱妇无乱码| 日韩免费av在线播放| 日韩大片免费观看网站| 国产不卡一卡二| 国产日韩一区二区三区精品不卡| 精品少妇黑人巨大在线播放| 精品少妇内射三级| 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 十八禁人妻一区二区| 亚洲国产成人一精品久久久| 性少妇av在线| 无遮挡黄片免费观看| 午夜成年电影在线免费观看| 国产伦理片在线播放av一区| 午夜福利视频精品| 国产成人精品久久二区二区91| 国产视频一区二区在线看| 波多野结衣一区麻豆| av线在线观看网站| av又黄又爽大尺度在线免费看| 久久天堂一区二区三区四区| 国产精品98久久久久久宅男小说| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 久久亚洲精品不卡| 国产成人av激情在线播放| 黄色视频,在线免费观看|