• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Separation of Recombinant Geranylgeranyl Diphosphate Synthase of Deinococcus radiodurans from Expressed Strain Cell Homogenate by Immobilized Metal Affinity Chromatography on a Characterized Monolithic Cryogel Column*

    2013-06-07 11:21:31SHENShaochuan沈紹傳WANGLiangyan王梁燕SUNZongtao孫宗濤LIMingfeng李銘峰LIUChengzhi劉程智TIANBing田兵YUNJunxian贠軍賢andHUAYuejin華躍進

    SHEN Shaochuan (沈紹傳)**, WANG Liangyan (王梁燕)**, SUN Zongtao (孫宗濤), LI Mingfeng (李銘峰) LIU Chengzhi (劉程智) TIAN Bing (田兵) YUN Junxian (贠軍賢)and HUA Yuejin (華躍進)***

    1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China

    2State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, China

    3Department of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

    Separation of Recombinant Geranylgeranyl Diphosphate Synthase of Deinococcus radiodurans from Expressed Strain Cell Homogenate by Immobilized Metal Affinity Chromatography on a Characterized Monolithic Cryogel Column*

    SHEN Shaochuan (沈紹傳)1,2,**, WANG Liangyan (王梁燕)1,**, SUN Zongtao (孫宗濤)3, LI Mingfeng (李銘峰)1, LIU Chengzhi (劉程智)1, TIAN Bing (田兵)1, YUN Junxian (贠軍賢)2and HUA Yuejin (華躍進)1,***

    1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China

    2State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, China

    3Department of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

    Geranylgeranyl diphosphate synthase (GGPPS) plays a key role in the biosynthesis of antioxidative carotenoid from the extremely radioresistant bacterium Deinococcus radiodurans. In this work, the recombinant GGPPS expressed in Escherichia coli by cloning and transforming the gene dr1395 of D. radiodurans was isolated rapidly by an immobilized metal affinity supermacroporous cryogel, i.e., Cu2+-iminodiacetic acid (IDA)-cryogel. The properties of the Cu2+-IDA-cryogel were characterized using capillary-based mathematical model and experimental measurements. The obtained protein samples were analyzed by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The porosity of the present Cu2+-IDA-cryogel is 90.4% and the water permeability is 5.04×10?12m2. From the capillary-based model, this cryogel presents a slightly wide normal pore (capillary) size distribution with the mean diameter of 55.2 μm, the standard deviation of 28.0 μm and the half of skeleton wall thickness of 2.8 μm. The pore size distribute from about 10 to 141 μm and the effective tortuosity of these capillary pores increases from 2.60 to 9.05. The isolation of the GGPPS from cell homogenate can be achieved at the flow velocity of 3.40×10?4m·s?1by the Cu2+-IDA-cryogel bed. High-purity GGPPS (about 91.4%) is obtained according to the SDS-PAGE analysis of the elution samples, indicating that the present method is a promising, simple and effective approach to isolate GGPPS from cell homogenate of engineering strains.

    chromatography, separation, protein, modeling, bacterium

    1 INTRODUCTION

    Deinococcus radiodurans is a red-pigment bacterium well-known for its extraordinary resistance to a range of damages caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens [1, 2]. This interesting organism has excellent capacities of damage tolerance and DNA repair and possesses efficient protein and non-protein protective systems [3]. In recent years, the non-protein protective system in D. radiodurans has attracted much attention due to its potential applications in various areas such as food, cosmetic and pharmaceutical industries [4-6]. Carotenoids, as the non-protein protective compounds, contribute to the cell resistant mechanism of D. radiodurans. Deinoxanthin, the major carotenoid of D. radiodurans, demonstrates stronger antioxidative capacity than lycopene and β-carotene in vitro [7]. The biosynthesis of deinoxanthin in D. radiodurans is complex and the process could be controlled by several synthases including phytoene synthase (CrtB, DR0862), phytoene desaturase (CrtI, DR0861), 1′,2′-hydratase (CruF, DR0091), carotenoid 3′,4′-desaturase (CrtD, DR2250) [7-10], and a geranylgeranyl diphosphate synthase (GGPPS, CrtE) [5]. Among them, GGPPS is the key synthase for the biosynthesis of geranylgeranyl diphosphate (GGPP), which is the crucial precursor in the deinoxanthin biosynthetic pathway. Generally, GGPPS catalyzes the synthesis of GGPP from farnesyl pyrophosphate, a C15 compound, and isopentenyl pyrophosphate (IPP), a C5 compound.

    Actually, the family of GGPPS for terpene biosynthesis is widely found in a variety of organisms from prokaryotes to human [11, 12]. By using homologue analysis, the gene dr1395 has been predicted to encode GGPPS in D. radiodurans [5, 13, 14]. Moreover, our results have confirmed its function by gene mutation and transformation into Escherichia coli (data not shown). GGPPS plays a key role in carotenoid biosynthesis and has potential applications in industry. The separation and purification from the strains of enzyme are the important steps for its applications.However, there is a lack of applicable technology on the rapid separation and identification of recombinant GGPPS from D. radiodurans.

    Monolithic cryogels are a new class of chromatographic supports for separation of biomolecules [15-20]. This interesting adsorbent has interconnected super-macropores with pore size of several microns to several hundreds of microns, which permit the high throughput of crude feedstocks containing microbial cells or cell debris. Cryogels have been used in capturing and isolating a variety of target biomolecules or particles including enzymes, bacterial endotoxins, adenosine triphosphate, microbial cells, and even viruses from complex crude biological suspensions or fermentation feedstocks [21-25].

    GGPPSs, from bovine brain, pumpkin fruit, Thermus thermophilus, Taxus baccata and Phycomyces blakesleanus in original or expressed recombinant forms, have been purified by processes including ammonium sulfate precipitation and combined chromatography [26-30]. In this work, the DNA sequence of the gene dr1395 from D. radiodurans is amplified, cloned and transformed into E. coli to express GGPPS. The recombinant target GGPPS is purified by using a supermacroporous monolith, so called immobilized metal affinity cryogel. Properties of the cryogel column as well as the chromatographic separation of the recombinant GGPPS from E. coli homogenate are investigated.

    2 MA TERIALS AND METHODS

    2.1 Chemicals

    Allyl glycidyl ether (AGE, 99%), N,N′-methylenebis(acrylamide) (MBAAm, 99%) and iminodiacetic acid (IDA, 96%) were purchased from Sigma-Aldrich (Steinheim, Germany), and acrylamide (AAm, 99.9%) was from Biobasic (Toronto, Canada). Bovine serum albumin (BSA, 98%) and N,N,N′,N′-tetramethylethylenediamine (TEMED, 99%) were purchased from Amresco (OH, USA). Other chemicals used were analytical grade. All reagents were used as received.

    2.2 Bacterial strains and growth conditions

    D. radiodurans R1 (ATCC 13939) was grown at 30 °C in tryptone-glucose-yeast extract (TGY) medium (5 mg·ml?1Bacto tryptone, 1 mg·ml?1glucose, and 3 mg·ml?1Bacto yeast extract) on an orbital shaker or on TGY plates solidified with 15 mg·ml?1agar. E. coli (DH5α) used as host for clone vectors and E. coli (BL21, DE3) used as host for expression vector were cultured in Luria-Bertani (LB) medium (10 mg·ml?1Bacto tryptone, 10 mg·ml?1sodium chloride, and 5 mg·ml?1Bacto yeast extract) at 37 °C.

    2.3 Construction of recombinant expr ession GGPPS of D. Radiodurans

    The DNA sequence of dr1395 was amplified from D. radiodurans using the primers 95P1 (5′-CATATGCGTCCCGAACTGCTCGCCCGCGTGC-3′) and 95P2 (5′-GGATCCGGAGGAC GCCGCTCACTTCTCCCG-3′). The polymerase chain reaction (PCR) products were ligated to thymine-adenine (TA) cloning vector pMD18-T for sequencing. The positive PCR products were cloned into His-tagged expression vector pET28a, forming recombinant vector pET-95. E. coli transformant contained recombinant vector pET-95 was incubated at 37 °C. Isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 0.5 mmol·L?1after the OD600value of the culture had reached about 0.5. The culture was grown for additional 4 h and collected for recombinant GGPPS extraction by centrifugation at 8000 g and 4 °C for 5 min, washed three times with 50 mmol·L?1phosphate buffer (PB) (pH 7.2), and quickly frozen for storage at?80 °C for further use.

    2.4 Preparation of the Cu2+-IDA-cryogel

    A metal-chelated cryogel, i.e. Cu2+-IDA-cryogel, was prepared by coupling of Cu2+on the polyacrylamide-based cryogel matrix produced via the cryo-copolymerization of AAm, MBAAm and AGE initiated by TEMED and ammonium persulfate (APS) according to references, but with the freezing temperature variation manner in a glass column (I.D. 16 mm) as reported previously [19, 20, 24, 25, 31]. The concentration of monomers was 7% and the amounts of TEMED and APS used were 0.5% and 1.2% of monomers, respectively. In the metal coupling, the solution volumes and concentrations of Na2CO3and IDA, as well as other preparation conditions such as the flow rate, the reaction time and temperature, were established following those used previously [32]. In the immobilization procedure, 45 ml of 0.5 mol·L?1CuSO4was passed through the cryogel for 2 h and washed by deionized water for further use. The length of the resulting cryogel was 59 mm.

    2.5 Characterization of the Cu2+-IDA-cryogel

    The water permeability of the cryogel was determined by measuring the flow rates at different pressure drops using different heights of water-columns [24, 25, 32, 33]. The axial dispersion behavior was evaluated from the residence time distribution (RTD) by the tracer pulse method at various flow rates. 150 μl of 1 mg·ml?1BSA in 100 mmol·L?1PB (pH 7.2) was applied as the tracers in each run. The cryogel porosity was determined by measuring the water content and the cryogel volume according to references [21, 34, 35]. The pore size distribution was evaluated by the method with the combination of the capillary- based mathematical models and the experimental breakthrough curves at different flow rates, as described in reference [36]. The breakthrough experiments were conducted by pumping 1 mg·ml?1BSA in 100 mmol·L?1PB (pH 7.2) through the cryogel bed column at different flow rates under the non-binding condition, i.e., the protein was not bound by the cryogel but passed freely through the column. The process was monitored at UV 280 nm.

    According to the model by Yun et al. [36-38], the Cu2+-IDA-cryogel here is assumed to be made up of tortuose capillaries with different lengths, but a constant thickness of skeleton walls and a normal size distribution written as

    The capillaries in a given group have the same diameter, length, tortuosity and wall thickness. The tortuosity of a given capillary τiis defined as

    The porosity of the cryogel bed ? is determined by the total volume of capillaries and the bed volume:

    Since the cryogel bed volume is equal to the total volume of capillaries and their thin skeleton walls, we have

    The water permeability of the cryogel is expressed as

    Under non-adsorption condition, the breakthrough of biomolecules such as BSA through the Cu2+-IDA-cryogel bed can be described by the differential mass balance equation [37-39]

    The axial dispersion of protein within capillary i is given by [37]

    The initial and the boundary conditions are expressed as

    Details of the model and the numerical solution can be found in reference [37].

    2.6 Isolation of GGPPS using cryogel column

    3.2 g of thawed wet E. coli cell pellets containing recombinant GGPPS was re-suspended in 12.8 ml of 0.5 mol·L?1NaCl in 50 mmol·L?1PB (pH 7.2). The cells was disrupted with an ultrasonicator at 200 W output for a total of 5 min (5 s on and then 15 s off) on ice. The cell debris was removed by centrifugation (10000 r·min?1, 5 min), and the supernatants were subjected to the further chromatographic isolation. The chromatographic isolation of GGPPS from the E. coli homogenate was achieved using the Cu2+-IDA-cryogel at a constant flow velocity of 3.33×10?4m·s?1. The column was first equilibrated with 0.5 mol·L?1NaCl in PB (50 mmol·L?1, pH 7.2) and then 7.5 ml feedstock of E. coli homogenate in 0.5 mol·L?1NaCl in PB (50 mmol·L?1, pH 7.2) was loaded. The column was washed with 0.5 mol·L?1NaCl in PB (50 mmol·L?1, pH 7.2) and the elution was carried out using 0.1 mol·L?1imidazole in 0.5 mol·L?1NaCl in PB (50 mmol·L?1, pH 7.2) at the same liquid velocity. The process was monitored using a flow-through UV spectrometer at 280 nm as reported previously and the effluent was collected fractionally for further analysis [24, 25].

    2.7 Analysis of protein purity

    Protein samples from the stages of breakthrough, wash and elution were collected and analyzed by using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The concentrations of the separating and the stacking gels were 14% and 4%, respectively. The electrophoresis was performed on the Mini Protean Tetra Cell device (Bio-Rad, USA) at a constant voltage of 120 V. The resulting gels were stained with 0.12% Coomassie Brilliant Blue R-250, destained and scanned using a digital gel imaging system (Tanon-3500, Tanon Science & Technology, China). The protein purity was estimated by the QuantityOne software (Version 4.2, Bio-Rad, USA) [40].

    3 RESUL TS AND DISCUSSION

    In order to set up effective separation strategy and suitable operation conditions to isolate GGPPS effectively from the E. coli homogenate and obtain highpurity target protein by using the Cu2+-IDA- cryogel, it needs to get an insight into the properties of the Cu2+-IDA-cryogel first. In this work, the properties of Cu2+-IDA-cryogel including cryogel porosity, permeability, pore size distribution, skeleton thickness and pore tortuosity are characterized. Furthermore, chromatographic isolation of GGPPS from the E. coli homogenate by using the Cu2+-IDA-cryogel is performed.

    3.1 Properties of the Cu2+-IDA-cryogel

    The cryogel porosity was determined by measuring the water content within a given sample volume. The obtained porosity of the present Cu2+-IDA-cryogel is 90.4%, which is close to those cryogels prepared under similar freezing conditions [23-25, 31-34]. The relationship of the pressure drop vs. flow rate was measured using different heights of water columns and the results are illustrated in Fig. 1. By fitting these experimental data with Darcy’s equation

    the water permeability of the cryogel was determined as 5.04×10?12m2, which is also close to those values observed in other cryogels prepared under similar conditions [23-25, 31-34]. The values of the porosity and permeability indicate that the present cryogel has enough and high permeable space for homogenate and target enzyme to pass through and permit the achievement of chromatography at both low and high flow rates.

    Figure 1 Fl ow rate vs. pr essure dr op in the Cu2+-IDA-cryogel bed○ experimental; fitted by Darcy’s equation

    Parameters including the pore size distribution, skeleton thickness and pore tortuosity within the Cu2+-IDA-cryogel are crucial and significantly important to the chromatographic behavior of isolating GGPPS from the E. coli homogenate. However, due to the complexity of the cryogel microstructure, it is a challenging task to determine these parameters accurately by direct experimental measurements. Recently, capillary-based model, in which the super-macropores within cryogels are equivalent to bundles of capillaries, was suggested for describing the mass transfer and breakthrough behavior of proteins within cryogel beds [37, 38]. By fitting the model with the experimental data of porosity, permeability, cryogel length and diameter as well as the breakthrough data of given proteins at different flow rates, we can obtain an approximate estimation of these microstructure parameters. This method has been demonstrated to be effective in characterizing the microstructure properties of both polyacrylamide- and poly(hydroxyethyl methacrylate) (pHEMA)-based cryogels [37, 38]. In the present work, the method is employed to estimate the microstructure parameters of the Cu2+-IDA-cryogel, for which the experimental data of BSA breakthrough under nonbinding condition are used.

    By using the experimental values of cryogel diameter, length, porosity, permeability and protein solution properties, the BSA breakthrough performance at different liquid flow velocities was evaluated by the model. The parameters of the present Cu2+-IDA-cryogel were then determined by comparing the model predictions of the BSA breakthrough profiles at different flow velocities with the corresponding experimental data. From the experimental breakthrough of BSA at the liquid flow velocity of 1.71×10?4m·s?1, the time for BSA tracers passing through the largest capillary within the cryogel bed was about 217 s, and this value was used to determine τdmax. Different values of the maximum and minimum pore diameters were tested and the parameter values of dmin=10 μm and dmax=160 μm give a good agreement between the model and experimental data. Fig. 2 shows the pore size distribution and the tortuosity of pores in the Cu2+-IDA-cryogel obtained by matching the model prediction with the experimental breakthrough curves as well as the water permeability, porosity and cryogel

    Figure 2 Diameter distribution () and tortuosity () of capillaries in the Cu2+-IDA-cryogel bed

    bed size (volume) in this work. The cryogel presents a slightly wide normal pore (capillary) size distribution with the mean diameter of dm=55.2 μm, the standard deviation of σ=28.0 μm and the half of skeleton wall thickness ds=2.8 μm. The effective pore size varies from about 10 to 141 μm and the effective tortuosity of these capillary pores increases from 2.60 to 9.05. Fig. 3 shows the comparison between the calculated and experimental data of breakthrough for the determination of the microstructure parameters in the Cu2+-IDA-cryogel bed. The model fits the experimental breakthrough data well. The calculated porosity and permeability by the model are 91.7% and 4.99×10?12m2, respectively, which are very close to the experimental values.

    Figure 3 Comparison of the predicted and experimental breakthrough curves unde r non-adsorption c ondition at different liquid velocitiessolid lines—calculated data by the model; liquid velocity/m·s?1: ● 1.71×10?4; ○ 3.40×10?4; ■ 5.10×10?4;□ 6.88×10?4; ▲ 8.45×10?4

    Generally, the target enzyme and the sizes of cell debris possibly contained in the centrifuged homogenate are several to hundreds of nanometers or several microns, which are much lower than those sizes of the pores within the present Cu2+-IDA-cryogel column. Thus, the cryogel is expected to be valid in the chromatographic isolation of GGPPS from the centrifuged E. coli homogenate.

    The axial dispersion behavior is fundamental to the resolution and the spread of the elution peaks for the chromatography of the GGPPS by using the Cu2+-IDA-cryogel bed. In this work, the axial dispersion coefficients were determined from the residence time distribution (RTD) of BSA obtained at the flow velocities of 1.71×10?4, 3.40×10?4, 5.10×10?4, 6.88×10?4and 8.45×10?4m·s?1, as shown in Fig. 4. The calculated values of the overall dispersion coefficients at the same liquid velocities are in good agreement with those obtained by experimental measurements, demonstrating the availability of the model. The dispersion within the present Cu2+-IDA-cryogel is strong because the dispersion coefficients are in the range from 1.67×10?7to 1.27×10?6m2·s?1at the considered liquid flow velocities. Therefore, in order to get satisfied column efficiency, it is preferred to conduct the chromatography not at relatively high velocity for the present Cu2+-IDA-cryogel.

    Figure 4 Axial dispersion behavior in the Cu2+-IDA-cryogel bed

    3.2 Separation of GGPPS

    The separation of GGPPS from the E. coli homogenate was carried out at the flow velocity of 3.40×10?4m·s?1and the chromatographic performance is displayed in Fig. 5, where the ordinate indicates the signals of UV280 translated and amplified linearly by the A/D converter in the chromatography process. There is a very limited amount of cell debris in the centrifuged E. coli homogenate. A total of 7.5 ml of the E. coli homogenate was loaded directly on the Cu2+-IDA-cryogel column. The elution was achieved successfully by using 0.1 mol·L?1imidazole and 0.5 mol·L?1NaCl in PB (50 mmol·L?1, pH 7.2). No peaks but only the plateau induced by the changing of elution liquid are observed for further increasing the concentration of imidazole (0.5 mol·L?1in this work).

    Figure 6 shows the SDS-PAGE analysis on the samples of the homogenate and those from the breakthrough, wash and elution steps. The loaded feedstock in lane B is a complex containing lots of different proteins. In the breakthrough (lane C) and wash (lane D) stages, the band of GGPPS is observed, indicatingthat the present loaded volume is enough and some portion of the target enzyme are not bound and passes through the cyogel bed. In the elution stage, nearly the single band of GGPPS is observed as seen in lanes E, F and G. The average purity of these eluted samples is estimated by the Quantity One software to be about 91.4%. Therefore, it may be a promising, simple and effective approach to isolate the GGPPS from the E. coli homogenate by using the Cu2+-IDA-cryogel.

    The separation of this recombinant enzyme could also be achieved directly from the crude cell homogenate by using the Cu2+-IDA-cryogel, as the supermacropores are large enough for the cell debris to pass thorough the cryogel without blockage as demonstrated by other researcher in different feedstocks [18-23], though the one-step separation directly from the crude cell homogenate is not exploited in this work.

    Figure 5 Chromatographic behavior of GGPPS from the clarified E. coli homogenate by the Cu2+-IDA-cryogel bed[washed with 50 mmol·L?1PB (pH 7.2), eluted with 0.1 mol·L?1imidazole and 0.5 mol·L?1NaCl in PB (50 mmol·L?1, pH 7.2) (elution 1) followed by 0.5 mol·L?1imidazole and 0.5 mol·L?1NaCl in PB (50 mmol·L?1, pH 7.2) (elution 2);liquid velocity 3.40×10?4m·s?1in the chromatography process; C-G: fractions analyzed by SDS-PAGE as shown in Fig. 6]

    Figure 6 Image of the SDS-PAGElanes A—standard protein markers; B—fermentation homogenate; C—breakthrough fraction; D—wash fraction; E, F, G—eluted peak fractions in elution; separating and stacking gels, 14% and 4%

    4 CONCLU SIONS

    GGPPS expressed in E. coli by cloning and transforming the gene dr1395 from D. radiodurans can be isolated rapidly by the super-macroporous Cu2+-IDA-cryogel. The fundamental properties of this immobilized metal affinity cryogel can be characterized by combining the capillary-based mathematical model and the experimental measurements. The results have shown that the present cryogel has high porosity and permeability, thin skeleton wall, lagersized tortuous super-macropores and a slightly wide normal pore size distribution, which is suitable for the rapid separation of GGPPS from the E. coli homogenate. The experimental results have also demonstrated that high-purity GGPPS (about 91.4%) can be obtained by the Cu2+-IDA-cryogel bed. This separation technology has potential application in industry for preparation of carotenoid biosynthesis from gene engineering strains.

    NOMENCLATURE

    A cross-area of the cryogel bed (=πdc2/4), m2

    CDi(xD, tDi) dimensionless bulk-phase concentration of biomolecules in capillary i [=Ci( x, t)/C0]

    Ci(x,t)bulk-phase concentration, mol·m?3

    C0inlet concentration, mol·m?3

    DABmolecular diffusion coefficient of biomolecules

    Daxaxial dispersion coefficient of liquid

    dcdiameter of the cryogel bed, μm

    didiameter of capillary i, μm

    dmmean diameter of capillaries in the cryogel column, μm

    dmaxmaximum pore diameter, μm

    dminminimum pore diameter, μm

    dshalf of the skeleton thickness, μm

    E residence time distribution

    f(di) normal size distribution

    k fluid permeability of the cryogel bed, m2

    L length of the cryogel bed, m

    Lilength of capillary i, m

    Ngtotal number of capillary groups with the same diameter

    ninumber of capillaries in group i

    Peiaxial Peclet number (=τiLUi/Daxi)

    Δp pressure drop, Pa

    Q total flow rate in the cryogel bed, m3·s?1

    t time, s

    tDidimensionless time (=tUi/τiL)

    tdmaxtime for the tracer passing through the largest capillary

    within the cryogel bed, s

    Uivelocity in capillary i (=ULdi2/32kτi), m·s?1

    ULliquid flow velocity in the cryogel bed (=Q/ A), m·s?1

    x distance, m

    xDdimensionless distance from the inlet along the capillary length (=x/τiL)

    μ water viscosity, Pa·s

    σ standard deviation, μm

    τdmaxtortuosity of the capillary with diameter dmaxτdmintortuosity of the capillary with diameter dminτitortuosity of capillary i (=Li/L )

    φ porosity of the cryogel bed

    ψ parameter used in the axial dispersion equation

    REFERENCES

    1 Minton, K.W., “DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans”, Mol. Microbiol.,13, 9-15 (1994).

    2 Cox, M.M., Battista, J.R., “Deinococcus radiodurans—the consummate survivor”, Nat. Rev. Microbiol., 3, 882-892 (2005).

    3 Battista, J.R., Earl, A.M., Park, M.J., “Why is Deinococcus radiodurans so resistant to ionizing radiation?”, Trends Microbiol., 7, 362-365 (1999).

    4 Lemee, L., Peuchant, E., Clerc, M., Brunner, M., Pfander, H.,“Deinoxanthin: A new carotenoid isolated from Deinococcus radiodurans”, Tetrahedron, 53, 919-926 (1997).

    5 Tian, B., Hua, Y.J., “Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria”, Trends Microbiol., 18, 512-520 (2010).

    6 Slade, D., Radman, M., “Oxidative stress resistance in Deinococcus radiodurans”, Microbiol. Mol. Biol. R., 75, 133-191 (2011).

    7 Tian, B., Xu, Z.J., Sun, Z.T., Lin, J., Hua, Y.J., “Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses”, BBA—Gen. Subjects, 1770, 902-911 (2007).

    8 Xu, Z.J., Tian, B., Sun, Z.T., Lin, J., Hua, Y.J., “Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans”, Microbiol. —SGM, 153, 1642-1652 (2007).

    9 Tian, B., Sun, Z.T., Xu, Z.J., Shen, S.C., Wang, H., Hua, Y.J., “Carotenoid 3′,4′-desaturase is involved in carotenoid biosynthesis in the radioresistant bacterium Deinococcus radiodurans”, Microbiol. —SGM, 154, 3697-3706 (2008).

    10 Sun, Z.T., Shen, S.C., Wang, C., Wang, H., Hu, Y.P., Jiao, J.D., Ma, T.T., Tian, B., Hua, Y.J., “A novel carotenoid 1,2-hydratase (CruF) from two species of the non-photosynthetic bacterium Deinococcus”, Microbiol. —SGM, 155, 2775-2783 (2009).

    11 Math, S.K., Hearst, J.E., Poulter, C.D., “The crtE gene in Erwinia herbicola encodes geranylgeranyl diphosphate synthase”, P. Natl. Acad. Sci. USA, 89, 6761-6764 (1992).

    12 Miyagi, Y., Matsumura, Y., Sagami, H., “Human geranylgeranyl diphosphate synthase is an octamer in solution”, J. Biochem., 142, 377-381 (2007).

    13 Makarova, K.S., Aravind, L., Wolf, Y.I., Tatusov, R.L., Minton, K.W., Koonin, E.V., Daly, M.J., “Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics”, Microbiol. Mol. Biol. R., 65, 44-79 (2001).

    14 Ghosal, D., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Venkateswaran, A., Zhai, M., Kostandarithes, H., Brim, H., Makarova, K., “How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress”, FEMS Microbiol. Rev., 29, 361-375 (2005).

    15 Lozinsky, V.I., Plieva, F.M., Galaev, I.Y., Mattiasson, B., “The potential of polymeric cryogels in bioseparation”, Bioseparation, 10, 163-188 (2002).

    16 Lozinsky, V.I., Galaev, I.Y., Plieva, F.M., Savina, I.N., Jungvid, H., Mattiasson, B., “Polymeric cryogels as promising materials of biotechnological interest”, Trends Biotechnol., 21, 445-451 (2003).

    17 Plieva, F.M., Galaev, I.Y., Mattiasson, B., “Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications”, J. Sep. Sci., 30, 1657-1671 (2007).

    18 Lozinsky, V.I., “Polymeric cryogels as a new family of macroporous and super-macroporous materials for biotechnological purposes”, Russ. Chem. Bull., 57, 1015-1032 (2008).

    19 Plieva, F.M., Kirsebom, H., Mattiasson, B., “Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications”, J. Sep. Sci., 34, 2164-2172 (2011).

    20 Kirsebom, H., Galaev, I.Y., Mattiasson, B., “Stimuli-responsive polymers in the 21st century: Elaborated architecture to achieve high sensitivity, fast response, and robust behavior”, J. Polym. Sci. Pol. Phys., 49, 173-178 (2011).

    21 Arvidsson, P., Plieva, F.M., Savina, I.N., Lozinsky, V.I., Fexby, S., Bulow, L., Galaev, I.Y., Mattiasson, B., “Chromatography of microbial cells using continuous super-macroporous affinity and ion-exchange columns”, J. Chromatogr. A, 977, 27-38 (2002).

    22 Plieva, F.M., Galaev, I.Y., Noppe, W., Mattiasson, B., “Cryogel applications in microbiology”, Trends Microbiol., 16, 543-551 (2008).

    23 Yun, J.X., Shen, S.C., Chen, F., Yao, K.J., “One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel”, J. Chromatogr. B, 860, 57-62 (2007).

    24 Wang, L.H., Shen, S.C., Yun, J.X., Yao, K.J., Yao, S.J., “Chromatographic separation of cytidine triphosphate from fermentation broth of yeast using anion-exchange cryogel”, J. Sep. Sci., 31, 689-695 (2008).

    25 Chen, Y., Shen, S.C., Yun, J.X., Yao, K.J., “Isolation of ATP from a yeast fermentation broth using a cryogel column at high flow velocities”, J. Sep. Sci., 31, 3879-3883 (2008).

    26 Sagami, H., Morita, Y., Ogura, K., “Purification and properties of geranylgeranyl-diphosphate synthase from bovine brain”, J. Biol. Chem., 269, 20561-20566 (1994).

    27 Ogura, K., Shinka, T., Seto, S., “The purification and properties of geranylgeranyl pyrophosphate synthetase from pumpkin fruit”, J. Biochem., 72, 1101-1108 (1972).

    28 Nishio, K., Nodake, Y., Hamada, K., Suto, K., Nakagawa, N., Kuramitsu, S., Miura, K., “Expression, purification, crystallization and preliminary X-ray studies of geranylgeranyl diphosphate synthase from Thermus thermophilus HB8”, Acta Crystallogr. D, 60, 178-180 (2004).

    29 Laskaris, G., van der Heijden, R., Verpoorte, R., “Purification and partial characterisation of geranylgeranyl diphosphate synthase, from Taxus baccata cell cultures. An enzyme that regulates taxane biosynthesis”, Plant Sci., 153, 97-105 (2000).

    30 Brinkhaus, F.L., Rilling, H.C., “Purification of geranylgeranyl diphosphate synthase from Phycomyces blakesleanus”, Arch. Biochem. Biophys., 266, 607-612 (1988).

    31 Yao, K.J., Shen, S.C., Yun, J.X., Wang, L.H., He, X.J., Yu, X.M.,“Preparation of polyacrylamide-based super-macroporous monolithic cryogel beds under freezing-temperature variation conditions”, Chem. Eng. Sci., 61, 6701-6708 (2006).

    32 Wang, L.H., Shen, S.C., He, X.J., Yun, J.X., Yao, K.J., Yao, S.J.,“Adsorption and elution behaviors of bovine serum albumin in metal-chelated affinity cryogel beds”, Biochem. Eng. J., 42, 237-242 (2008).

    33 He, X.J., Yao, K.J., Shen, S.C., Yun, J.X., “Freezing characteristics of acrylamide-based aqueous solution used for the preparation of super-macroporous cryogels via cryo-copolymerization”, Chem. Eng. Sci., 62, 1334-1342 (2007).

    34 Yao, K.J., Yun, J.X., Shen, S.C., Wang, L.H., He, X.J., Yu, X.M.,“Characterization of a novel continuous super-macroporous monolithic cryogel embedded with nanoparticles for protein chromatography”, J. Chromatogr. A, 1109, 103-110 (2006).

    35 Plieva, F.M., Savina, I.N., Deraz, S., Andersson, J., Galaev, I.Y., Mattiasson, B., “Characterization of super-macroporous monolithic polyacrylamide based matrices designed for chromatography of bioparticles”, J. Chromatogr. B, 807, 129-137 (2004).

    36 Yun, J.X., Lin, D.Q., Yao, S.J., “Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds”, J. Chromatogr. A, 1095, 16-26 (2005).

    37 Yun, J.X., Jespersen, G.R., Kirsebom, H., Gustavsson, P.E., Mattiasson, B., Galaev, I.Y., “An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds”, J. Chromatogr. A, 1218, 5487-5497 (2011).

    38 Yun, J.X., Kirsebom, H., Galaev, I.Y., Mattiasson, B., “Modeling of protein breakthrough performance in cryogel columns by taking into account the overall axial dispersion”, J. Sep. Sci., 32, 2601-2607 (2009).

    39 Persson, P., Baybak, O., Plieva, F., Galaev, I.Y., Mattiasson, B., Nilsson, B., Axelsson, A., “Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles”, Biotechnol. Bioeng., 88, 224-236 (2004).

    40 Yan, L.D., Shen, S.C., Yun, J.X., Yao, K.J., “Isolation of lysozyme from chicken egg white using polyacrylamide-based cation-exchange cryogel”, Chin. J. Chem. Eng., 19, 876-880 (2011).

    2012-04-05, accepted 2012-12-30.

    * Supported by the National Natural Science Foundation of China (30830006, 20876145, 21036005), the International Science & Technology Cooperation Program from the Ministry of Science and Technology of China (1017), the Special Fund for Agroscientific Research in the Public Interest (201103007), the Fundamental Research Funds for the Central Universities and the Natural Science Foundation of Zhejiang Province (Y4080326, Y407366).

    ** These authors contributed equally to this work.

    *** To whom correspondence should be addressed. E-mail: yjhua@zju.edu.cn

    亚洲一级一片aⅴ在线观看| 欧美日本亚洲视频在线播放| 亚洲精品久久久久久婷婷小说 | 亚洲精品日韩av片在线观看| 亚洲av一区综合| 国产真实乱freesex| 又爽又黄a免费视频| 岛国毛片在线播放| 一区福利在线观看| 日韩av在线大香蕉| 国产精品久久电影中文字幕| 人妻制服诱惑在线中文字幕| eeuss影院久久| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 欧美激情久久久久久爽电影| avwww免费| 亚洲av第一区精品v没综合| 国产中年淑女户外野战色| 国产精品电影一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲av.av天堂| 欧美zozozo另类| 色视频www国产| 久久久欧美国产精品| 国产女主播在线喷水免费视频网站 | 免费看av在线观看网站| 国内精品一区二区在线观看| 91av网一区二区| 免费看美女性在线毛片视频| 婷婷色av中文字幕| 国产精品国产高清国产av| 国产 一区精品| 久久综合国产亚洲精品| 国产v大片淫在线免费观看| 国产伦在线观看视频一区| 久久久午夜欧美精品| 九色成人免费人妻av| 男人和女人高潮做爰伦理| 高清在线视频一区二区三区 | 天堂中文最新版在线下载 | 熟女人妻精品中文字幕| 日韩欧美在线乱码| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 国产精品一二三区在线看| 啦啦啦韩国在线观看视频| av免费在线看不卡| 日本五十路高清| 免费电影在线观看免费观看| 免费看美女性在线毛片视频| 最近的中文字幕免费完整| 91精品国产九色| 精品久久久噜噜| 国产午夜精品论理片| 欧美最新免费一区二区三区| av福利片在线观看| 我的老师免费观看完整版| 美女大奶头视频| 精品午夜福利在线看| 国产精品女同一区二区软件| 禁无遮挡网站| 男人狂女人下面高潮的视频| 十八禁国产超污无遮挡网站| 久久精品国产亚洲av涩爱 | 日日摸夜夜添夜夜爱| 51国产日韩欧美| 亚洲人成网站高清观看| 亚洲一区二区三区色噜噜| 亚洲国产欧洲综合997久久,| 秋霞在线观看毛片| 国产毛片a区久久久久| 精品久久久久久久久亚洲| 女人十人毛片免费观看3o分钟| 欧美成人免费av一区二区三区| 大香蕉久久网| 99久久中文字幕三级久久日本| 国产精华一区二区三区| 欧美高清成人免费视频www| av在线观看视频网站免费| 日本免费a在线| 国产精品蜜桃在线观看 | 我要看日韩黄色一级片| 午夜精品国产一区二区电影 | 国产又黄又爽又无遮挡在线| 天堂中文最新版在线下载 | 国产精品免费一区二区三区在线| 99热只有精品国产| 91久久精品国产一区二区成人| videossex国产| 久久久久网色| 美女cb高潮喷水在线观看| 久久人妻av系列| 亚洲最大成人中文| 成人亚洲欧美一区二区av| 一进一出抽搐gif免费好疼| 热99在线观看视频| av在线播放精品| 99在线视频只有这里精品首页| 啦啦啦啦在线视频资源| 欧美xxxx性猛交bbbb| 亚洲在线观看片| 日本熟妇午夜| 欧美三级亚洲精品| 自拍偷自拍亚洲精品老妇| 亚洲18禁久久av| 岛国在线免费视频观看| 国产中年淑女户外野战色| 亚洲,欧美,日韩| 一区福利在线观看| 国产精品一区www在线观看| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 99riav亚洲国产免费| 成人综合一区亚洲| 国产精品1区2区在线观看.| 国产高潮美女av| 欧美日韩精品成人综合77777| 亚洲综合色惰| 有码 亚洲区| 国产精品久久视频播放| 久久精品久久久久久久性| 又黄又爽又刺激的免费视频.| 欧美不卡视频在线免费观看| 又粗又硬又长又爽又黄的视频 | 老熟妇乱子伦视频在线观看| 99热网站在线观看| 韩国av在线不卡| 日韩,欧美,国产一区二区三区 | 国产成人影院久久av| 啦啦啦韩国在线观看视频| 国产亚洲5aaaaa淫片| 岛国在线免费视频观看| 欧美最黄视频在线播放免费| 亚洲精品久久久久久婷婷小说 | 老司机影院成人| 国产在线男女| 日韩欧美一区二区三区在线观看| 韩国av在线不卡| 欧美激情久久久久久爽电影| 久久精品影院6| 人妻系列 视频| 婷婷亚洲欧美| 久久久精品94久久精品| 欧美另类亚洲清纯唯美| 男女啪啪激烈高潮av片| 97热精品久久久久久| 联通29元200g的流量卡| 村上凉子中文字幕在线| 春色校园在线视频观看| 亚洲在久久综合| 丰满的人妻完整版| 亚洲成a人片在线一区二区| 伦理电影大哥的女人| 日韩三级伦理在线观看| 日韩一区二区三区影片| 欧美三级亚洲精品| 综合色丁香网| 免费人成在线观看视频色| 国产亚洲5aaaaa淫片| 夜夜爽天天搞| 欧美日本视频| 亚洲18禁久久av| 日韩一区二区三区影片| 日本-黄色视频高清免费观看| 久久久久久久午夜电影| 精品人妻一区二区三区麻豆| 中文欧美无线码| 欧美xxxx黑人xx丫x性爽| 99热精品在线国产| 99久久精品热视频| 一级黄片播放器| 看十八女毛片水多多多| 嫩草影院精品99| 直男gayav资源| 国产爱豆传媒在线观看| 中国美女看黄片| 成人午夜精彩视频在线观看| 日韩欧美一区二区三区在线观看| 免费看av在线观看网站| 欧美精品一区二区大全| 日日干狠狠操夜夜爽| 亚洲在线自拍视频| 色噜噜av男人的天堂激情| 久久久色成人| 国产精品1区2区在线观看.| 有码 亚洲区| 国产v大片淫在线免费观看| 亚洲电影在线观看av| 18禁在线播放成人免费| 国产探花在线观看一区二区| 久久久成人免费电影| 一进一出抽搐动态| 人体艺术视频欧美日本| 最近中文字幕高清免费大全6| 真实男女啪啪啪动态图| 看非洲黑人一级黄片| 1024手机看黄色片| 黄色配什么色好看| 九九热线精品视视频播放| 免费黄网站久久成人精品| 日韩欧美 国产精品| 岛国在线免费视频观看| 欧美变态另类bdsm刘玥| 黑人高潮一二区| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 亚洲七黄色美女视频| 日韩大尺度精品在线看网址| 婷婷六月久久综合丁香| 日本黄色片子视频| 国产爱豆传媒在线观看| 亚洲精品国产av成人精品| 尾随美女入室| 国产黄a三级三级三级人| 老司机福利观看| 成人毛片a级毛片在线播放| 亚洲av第一区精品v没综合| 欧美一级a爱片免费观看看| 亚洲精品日韩av片在线观看| 午夜激情欧美在线| 99热精品在线国产| 国内揄拍国产精品人妻在线| 欧美3d第一页| 22中文网久久字幕| 能在线免费看毛片的网站| 亚洲国产日韩欧美精品在线观看| 长腿黑丝高跟| 在线播放国产精品三级| 免费观看a级毛片全部| 麻豆国产av国片精品| 大香蕉久久网| 日本免费a在线| 免费观看精品视频网站| 日日撸夜夜添| 精品99又大又爽又粗少妇毛片| 成人毛片a级毛片在线播放| 久久韩国三级中文字幕| 日韩欧美在线乱码| 国产成人福利小说| 国产成人a区在线观看| av国产免费在线观看| 人妻少妇偷人精品九色| 永久网站在线| 男女视频在线观看网站免费| 内射极品少妇av片p| 国产高清视频在线观看网站| 天堂影院成人在线观看| 久久亚洲精品不卡| 极品教师在线视频| 欧美日本亚洲视频在线播放| 久久久久网色| 欧美三级亚洲精品| 午夜老司机福利剧场| 在线播放无遮挡| 国产精品av视频在线免费观看| av视频在线观看入口| 99热网站在线观看| 亚洲av熟女| 又爽又黄无遮挡网站| 精品少妇黑人巨大在线播放 | 2021天堂中文幕一二区在线观| 观看美女的网站| 亚洲国产精品国产精品| 国产成人精品久久久久久| 亚洲国产欧美在线一区| 亚洲人与动物交配视频| 免费看光身美女| 五月玫瑰六月丁香| 人妻系列 视频| 在线播放无遮挡| 2021天堂中文幕一二区在线观| 一区二区三区四区激情视频 | 国产午夜精品久久久久久一区二区三区| 国产高清视频在线观看网站| 欧美在线一区亚洲| 日韩欧美一区二区三区在线观看| 性插视频无遮挡在线免费观看| 亚洲不卡免费看| 插逼视频在线观看| 青春草亚洲视频在线观看| 美女高潮的动态| 国产精品国产高清国产av| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| avwww免费| 亚洲av免费高清在线观看| 日韩在线高清观看一区二区三区| 日韩中字成人| 春色校园在线视频观看| 国产在线男女| 久久精品久久久久久噜噜老黄 | 最后的刺客免费高清国语| 99久久精品一区二区三区| 美女大奶头视频| 美女cb高潮喷水在线观看| 国产成人午夜福利电影在线观看| 哪个播放器可以免费观看大片| 国产成人影院久久av| 国产成人午夜福利电影在线观看| 久久精品久久久久久噜噜老黄 | 老司机福利观看| 欧美一区二区精品小视频在线| 搡老妇女老女人老熟妇| 国产成人精品一,二区 | 久久精品久久久久久久性| 白带黄色成豆腐渣| 日韩欧美一区二区三区在线观看| 卡戴珊不雅视频在线播放| 日本在线视频免费播放| 国产成人精品久久久久久| 有码 亚洲区| 精品无人区乱码1区二区| 人妻制服诱惑在线中文字幕| 色吧在线观看| 午夜激情欧美在线| 黄色一级大片看看| 深夜精品福利| 夜夜夜夜夜久久久久| 免费无遮挡裸体视频| 亚洲精品色激情综合| 99热这里只有是精品在线观看| 看十八女毛片水多多多| 99在线人妻在线中文字幕| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 特大巨黑吊av在线直播| 我的老师免费观看完整版| 搡老妇女老女人老熟妇| 亚洲在线自拍视频| 国产熟女欧美一区二区| 日韩成人伦理影院| 久久99精品国语久久久| 亚洲婷婷狠狠爱综合网| 国产在视频线在精品| 麻豆久久精品国产亚洲av| 精品久久国产蜜桃| 国产单亲对白刺激| 日本成人三级电影网站| 国产精品av视频在线免费观看| 在现免费观看毛片| 国产探花极品一区二区| 久久久成人免费电影| 一级毛片我不卡| 欧美潮喷喷水| 波多野结衣高清无吗| 男女视频在线观看网站免费| 亚洲第一电影网av| 成人毛片60女人毛片免费| 国产黄色小视频在线观看| 国产又黄又爽又无遮挡在线| 在线观看av片永久免费下载| 中文字幕熟女人妻在线| 男人狂女人下面高潮的视频| 高清午夜精品一区二区三区 | 成人av在线播放网站| 亚洲成人中文字幕在线播放| 亚洲精品久久国产高清桃花| 天堂av国产一区二区熟女人妻| 亚洲18禁久久av| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| 欧美不卡视频在线免费观看| 国产三级中文精品| 亚洲七黄色美女视频| 国产精品永久免费网站| 亚洲精品日韩在线中文字幕 | 国产精品一区二区三区四区免费观看| 国产成人精品婷婷| 人妻久久中文字幕网| 国产爱豆传媒在线观看| 欧美成人a在线观看| 麻豆一二三区av精品| av免费观看日本| 久久韩国三级中文字幕| 久久久久久久亚洲中文字幕| 国产精品久久久久久亚洲av鲁大| 嫩草影院新地址| 99久国产av精品| 欧美区成人在线视频| 有码 亚洲区| 一级av片app| 人体艺术视频欧美日本| 床上黄色一级片| 国产精品久久久久久久久免| 波野结衣二区三区在线| 午夜福利在线观看免费完整高清在 | 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| 免费黄网站久久成人精品| 国产熟女欧美一区二区| 国产国拍精品亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 日日啪夜夜撸| 亚洲av熟女| 久久久a久久爽久久v久久| 国产爱豆传媒在线观看| 深爱激情五月婷婷| 亚洲人成网站在线播| 精品熟女少妇av免费看| 综合色丁香网| 特大巨黑吊av在线直播| 99视频精品全部免费 在线| 免费不卡的大黄色大毛片视频在线观看 | 国产精品美女特级片免费视频播放器| 亚洲欧美成人精品一区二区| 久久精品久久久久久噜噜老黄 | 午夜老司机福利剧场| 国产欧美日韩精品一区二区| 国内揄拍国产精品人妻在线| 韩国av在线不卡| 99视频精品全部免费 在线| 床上黄色一级片| 婷婷色av中文字幕| 小说图片视频综合网站| 淫秽高清视频在线观看| 又爽又黄a免费视频| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 欧美另类亚洲清纯唯美| 亚洲精品自拍成人| 日本欧美国产在线视频| av专区在线播放| 国产高潮美女av| 国产成人影院久久av| 97超碰精品成人国产| 村上凉子中文字幕在线| 亚洲国产精品成人久久小说 | 少妇裸体淫交视频免费看高清| 亚洲成av人片在线播放无| 搡老妇女老女人老熟妇| 亚洲成人av在线免费| 在现免费观看毛片| 国产极品天堂在线| 中文字幕免费在线视频6| 亚洲av.av天堂| 联通29元200g的流量卡| 国产精品女同一区二区软件| 人人妻人人澡人人爽人人夜夜 | 欧美精品国产亚洲| 亚洲人成网站在线观看播放| 两个人视频免费观看高清| 三级男女做爰猛烈吃奶摸视频| 国内精品宾馆在线| av天堂在线播放| 精品日产1卡2卡| 91麻豆精品激情在线观看国产| 精品国内亚洲2022精品成人| 久久综合国产亚洲精品| av天堂中文字幕网| 能在线免费观看的黄片| 美女大奶头视频| 尤物成人国产欧美一区二区三区| 国产成人福利小说| 国产探花极品一区二区| 一本久久中文字幕| 波多野结衣高清无吗| 欧美成人精品欧美一级黄| 国产伦精品一区二区三区视频9| 亚洲人成网站高清观看| 综合色av麻豆| 白带黄色成豆腐渣| 91精品一卡2卡3卡4卡| 欧美一区二区亚洲| 看十八女毛片水多多多| 精品一区二区三区视频在线| 亚洲成人精品中文字幕电影| 国产91av在线免费观看| 国产男人的电影天堂91| 亚洲成av人片在线播放无| 丝袜美腿在线中文| 成年女人看的毛片在线观看| 久久久久性生活片| 久久婷婷人人爽人人干人人爱| 日韩大尺度精品在线看网址| 免费看美女性在线毛片视频| 欧美区成人在线视频| 熟女人妻精品中文字幕| 黄片wwwwww| 日本一本二区三区精品| 99九九线精品视频在线观看视频| 变态另类成人亚洲欧美熟女| 亚洲人与动物交配视频| avwww免费| 中文字幕久久专区| 搡老妇女老女人老熟妇| 欧美三级亚洲精品| 久久99热6这里只有精品| 日韩制服骚丝袜av| 麻豆一二三区av精品| 岛国在线免费视频观看| 国产精品一区二区性色av| 国产69精品久久久久777片| 国产伦精品一区二区三区视频9| 精品国内亚洲2022精品成人| 69人妻影院| 久久精品91蜜桃| 青春草国产在线视频 | 成年免费大片在线观看| 亚洲av男天堂| 久久这里有精品视频免费| а√天堂www在线а√下载| 亚洲电影在线观看av| a级毛色黄片| 国产精品久久久久久精品电影| 看片在线看免费视频| 69人妻影院| 亚洲欧美精品自产自拍| 国产精品伦人一区二区| 99热只有精品国产| 伦精品一区二区三区| 午夜免费激情av| 国产极品天堂在线| 中文字幕人妻熟人妻熟丝袜美| 久久久久久大精品| 在线观看66精品国产| 美女 人体艺术 gogo| 黄片wwwwww| 国产老妇伦熟女老妇高清| 亚洲真实伦在线观看| av黄色大香蕉| 听说在线观看完整版免费高清| 变态另类成人亚洲欧美熟女| 一级黄片播放器| 日韩欧美一区二区三区在线观看| 国产成人午夜福利电影在线观看| 好男人视频免费观看在线| 一进一出抽搐gif免费好疼| 女的被弄到高潮叫床怎么办| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩东京热| 1024手机看黄色片| 婷婷色综合大香蕉| 可以在线观看毛片的网站| 日日摸夜夜添夜夜爱| 一区二区三区高清视频在线| 亚洲人成网站在线播| 国产一区二区激情短视频| 国产精品.久久久| 亚洲成人久久爱视频| 国产高清激情床上av| 小蜜桃在线观看免费完整版高清| 18禁在线无遮挡免费观看视频| 此物有八面人人有两片| 尤物成人国产欧美一区二区三区| 最近视频中文字幕2019在线8| 美女脱内裤让男人舔精品视频 | 日韩欧美 国产精品| 欧美极品一区二区三区四区| 久久精品综合一区二区三区| 国产高清不卡午夜福利| 精品无人区乱码1区二区| 亚洲av男天堂| 国产伦在线观看视频一区| 国内精品宾馆在线| 婷婷色综合大香蕉| 国产伦精品一区二区三区四那| av卡一久久| 国产精品久久久久久亚洲av鲁大| 老师上课跳d突然被开到最大视频| or卡值多少钱| 欧美日韩一区二区视频在线观看视频在线 | 免费一级毛片在线播放高清视频| 天天躁日日操中文字幕| 日本五十路高清| 又黄又爽又刺激的免费视频.| 精品免费久久久久久久清纯| 男的添女的下面高潮视频| 亚洲图色成人| 一级二级三级毛片免费看| 永久网站在线| 国产91av在线免费观看| 国产一区二区三区在线臀色熟女| 夜夜看夜夜爽夜夜摸| 91精品国产九色| 亚洲欧洲日产国产| 欧美日韩综合久久久久久| 干丝袜人妻中文字幕| 又粗又硬又长又爽又黄的视频 | 欧美日韩乱码在线| 亚洲成人久久性| 别揉我奶头 嗯啊视频| 成人漫画全彩无遮挡| 日本黄大片高清| 免费黄网站久久成人精品| 中文字幕熟女人妻在线| 国产极品精品免费视频能看的| 成熟少妇高潮喷水视频| a级毛片a级免费在线| 国产精品久久久久久久电影| 女的被弄到高潮叫床怎么办| 欧美性猛交黑人性爽| 亚洲国产高清在线一区二区三| 欧美成人免费av一区二区三区| 成人特级av手机在线观看| 你懂的网址亚洲精品在线观看 | 黄色配什么色好看| 热99re8久久精品国产| 爱豆传媒免费全集在线观看| 国产毛片a区久久久久| 少妇熟女欧美另类| 国产精品一区二区三区四区久久| 网址你懂的国产日韩在线| 麻豆av噜噜一区二区三区| 国产高清视频在线观看网站| 亚洲成av人片在线播放无| 六月丁香七月| 国产三级中文精品| 精品久久久久久久久久免费视频| 少妇裸体淫交视频免费看高清| 国产午夜福利久久久久久| 桃色一区二区三区在线观看| 99在线人妻在线中文字幕|