• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of Formation Enthalpies of Organic Pollutants from a New Structural Group Contribution Method*

    2013-06-07 11:21:31MehdiBagheriAfshinBakhtiariandMasoumeJaberi

    Mehdi Bagheri**, Afshin Bakhtiariand Masoume Jaberi

    1Young Researchers Club, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran

    2Tehran Naftoon Arya Eng. Co., Jahanmehr St., Fatemi Sq., Tehran 1581768516, Iran

    3Department of Chemical Engineering, University of Tehran, Tehran 1136514563, Iran

    Estimation of Formation Enthalpies of Organic Pollutants from a New Structural Group Contribution Method*

    Mehdi Bagheri1,**, Afshin Bakhtiari2and Masoume Jaberi3

    1Young Researchers Club, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran

    2Tehran Naftoon Arya Eng. Co., Jahanmehr St., Fatemi Sq., Tehran 1581768516, Iran

    3Department of Chemical Engineering, University of Tehran, Tehran 1136514563, Iran

    1 INTRODUCTION

    Nowadays, controlling environmental pollution is one the most interests of scientists and researchers. One of the key properties affecting the fates of organic pollutants in environment is the standard state enthalpies of formation [1]. This property is foremost and critical in chemical stability analyses [1], determining enthalpies of reaction [2], investigating bond and resonance energies [3, 4], and so forth [5]. To the engineers, the accuracy of energy balance calculations is greatly dependent on the formation enthalpy values [6]. Besides, the studies on chemical and biochemical reaction require accurate formation enthalpies for the calculation of reaction equilibrium constants [7, 8].

    Class 1 includes the quantum chemistry technique which entails a high computational cost and results in lower accuracies for large and medium-sized molecules [16, 17]. This method seems more reliable and applicable for organic and light hydrocarbon chemicals with the least comprehensiveness.

    Class 3 called structural group contribution methods (SGCs) is based on the basic idea that the thermophysical behavior of molecules can be attributed to some decomposing structural group functions [22-25]. Due to simplicity and accuracy of SGCs, many commercial applications that can provide estimation for the properties of pure components are currently being marketed [26, 27]. In this sense, numbers of occurrences of several functional groups are used to estimate various physicochemical properties.

    One of the better known group contribution (GC) based models was developed by Constantinou and Gani [17] for the estimation of thermodynamic and physical properties of pure compounds. The method used information on the molecular structure of a compound to estimate its properties at two levels. The basic level was from first-order functional groups, such as those applied in many previous methods. The second level used a set of second-order groups, which distinguished alternative collections of first-order groups as suggested by the conjugation concept [17, 18]. In this way, the method allowed for both first-order estimation and a more accurate second-order approximation. The method was quite successfully applied to the estimation of eight physical and thermodynamic properties of pure compounds including normal boiling and melting points, critical pressure, temperature and volumes, standard enthalpies of vaporization and formation at 298 K, and standard Gibbs energy [17, 18]. Many well-known process simulators and property packages currently used this method for their calculations [26, 27].

    In this study, a new comprehensive model is presented to estimate standard state heat of formation of frequently used organic pollutants based on a new practical collection of structural functional groups.

    2 MODEL DEVELOPMENT

    2.1 Data set

    2.2 Providing the new collection of chemical groups

    In this step, based on the complete collection of chemical structural groups presented by Todeschini and Consonni [28], 92 functional groups were collected after removing the near zero functional groups for our present dataset. These functional groups were used as input parameters for our model. For a complete list of these functional groups and similar successful SGC studies based on them can refer to elsewhere [29-31].

    To find the most important functional groups on the determination of standard heat of formation of organic pollutants, a forward stepwise regression was performed by the SPSS software package [32]. The details of the stepwise regressions can be found [28, 33]. In this sense, it should be noted that the application of complicated and non-practical computational tools as neural network, which needs tremendous calculations and specialized software, will make the model less convenient in many demanding fields. In majority of cases, developing complicated non-linear models are unreasonable unless more significant accuracies can be obtained compared to the simple practical linear multivariate models. This case may be attributed to the nonlinear nature of the property of interest or the unsuitable (non-effective) selection of relevant structural functional groups [11-15, 21].

    To accomplish above procedure, the main data set should be divided into two new data sets. These two data sets include a training set and test set. By means of the training set, the best model is found, and then the prediction power is checked by test set as an external data set. Further step is to randomly select 15% (267 pure compounds) of the main database for test set and 85% (1427 pure compounds) for training set. A test dataset is formed from the available data and excluded from involvement in model training. This dataset is not used for model development and only used to determine the predictive capabilities of built models [11-15, 35-36].

    3 RESUL TS AND DISCUSSION

    3.1 Model presentation and validation

    By presented procedure, the best multivariate linear equation was obtained. To do this, firstly, the best one-parameter model, and then the best two-parametermodel (based on two group structures) were obtained. This procedure was repeated to obtain the best model with three, four, five group structures, and so on. In this work, the best obtained model had twelve parameters, because further increase in number of group structures did not have any considerable effect on the accuracy of model. For more description on this strategy our previous works can be referred [11-15, 21, 35, 36]. The final obtained model by this procedure is presented as follows (Eq. 3):

    Table 1 List and definition of each used chemical functional along with their contributions in the proposed SGC-based model (Eq. 3)

    Figure 1 Predicted values ofof studied organic contaminates by Eq. (3) for train and test sets in comparison with the experimental data○ training set; □ test set; bisect

    Table 2 Statistical parameters of the SGC based molecular model (Eq. 3)

    In Table 2, the statistical parameters of Eq. (3) are given. As can be seen from Table 2, the resulting average absolute error (δAAE) of both training and external prediction sets are within the experimental error of formation enthalpy. More impotently, the δAAEvalues are similar for both the training and test sets, which suggests that the proposed model has both predictive ability (low values) and generalization performance (similar values) [28-31, 37]. From statistical point of view, when the δAAEis at the minimum and R2is high, (R2≥0.8), a model can be judged as very good [38].

    The new criteria for an external validation were checked as recommended by Golbraikh and Tropsha [39] for test set. These authors suggested that in addition to a high value of cross validation, the correlation coefficient, R, between the predicted and observed activities of compounds from an external test set should be close to 1. Furthermore, at least the slope of one regression line (k or k′) through the origin should be close to 1. Models were considered acceptable, if they satisfied these conditions. Recently, Roy [40] introduced a confirmation indicator of the external predictability of QSPR/QSAR models, as Rmwhich was satisfied when the value was larger than 0.5. All the used parameters, their definitions, constraints and corresponding values for the proposed model are presented in Table 3.

    3.2 Model pr ediction ca pabilities f or differ ent chemical classes

    Generally, in the case of large dataset statistical studies, investigation and classification of the model predictions on the basis of relative error distribution analysis is strongly recommended by many researches [11-15, 25, 31, 41, 42]. The most meaningful categorization is typically based on molecular structural similarities. In this work, the 1694 organic pollutants of the DIPPR dataset were categorized into 77 different material classes on the basis of structural similarity. To accomplish a comprehensive error distribution investigation, the absolute relative error (δARE) percentage and average absolute relative error (δAARE) for each individual chemical material classes are calculated based on Eqs. (4) and (5).

    Table 3 Parameters and their values used in the external test method by Golbraikh and Tropsha [39]

    Table 4 List of 1694 DIPPR organic pollutants based on 77 chemical material classes and their distributions in each δARE(%) range for the proposed model in accompany with the average δARE(%) for the entire dataset and test set

    Table 4(Continued)

    Figure 2 Fractional percentage of organic pollutants belong to each error intervals

    As can be observed in Table 4 from the total number of 1694 investigated organic pollutants, δAREof 800 components are lower than 10% (the first error range), 357 are present in the second error range between 10%-25%, 192 in 25%-50%, 96 in 50%-75% and 54 in 75%-100%. Finally, the left which comprise 195 components are shown to have more than 100% δARE. The total percentage fraction of each specified error range of the proposed SGC-based model can be visualized in Fig. 2.

    Based on the δAREerror distributions and the δAAREinvestigation, the model is strongly recommended when the δAAREis lower than 25% and a high fraction of components can be found in the first two error ranges. In the case of classes with an δAAREpercentage of lower than 50%, the application of the suggested model is reliable with an acceptable accuracy. However, more caution should be attained for the chemical classes with a minority of chemicals in the last error interval. In the case of these chemical classes denoted with a star in Table 4, more accurate experimental data are needed to firmly judge the model ability and validity for the entire chemical class. Generally, when a minority of chemicals from a chemical class display significantly larger model prediction errors as compared to other members of the same class, these errors may be attributed to inaccurate experimental data rather than the group structural based prediction [11-15, 29-31]. In this manner, the seven chemical classes of C3 & higher aliphatic chlorides, cycloalkanes; cycloalkenes, sulfides/thiophenes, other hydrocarbon rings, nitriles and polyfunctional C, H, O, N are categorized with single stared sign in Table 4.

    Ultimately, the presence of a higher fraction of chemicals in the last two error ranges leads to a larger δAAREpercentage and unacceptable model predictions. These classes denoted with double stars in Table 4 exhibit structural dissimilarities with other chemical classes.

    Consequently, the proposed model applicability for other amines, imines, polyfunctional C, H, N, halide, (O), aromatic chlorides, alkynes, aromatic amines, dialkenes, aromatic chlorides, C, H, NO2compounds, isocyanates/diisocyanates, and terpenes classes must be done with high uncertainty and hesitation. This final category may reveal completely different parameters responsible for the heat of formation prediction. In this case, the application of the proposed model is not recommended and individual quantitative structure property relationship (QSPR) study of these classes seems to be of high importance [18-21, 35-37].

    Of particular note, the obtained results may be improved by robust nonlinear modeling tools such as of Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Intelligence Systems (ANFIS), BayesianNetworks and Support Vector Machines (SVM). However, these methods can be burdensome to implement and can be time consuming due to computational complexity [11-14, 29-31].

    3.3 Comparison to previous models

    To best of our knowledge no similar SGC-based study has been reported specifically for the estimation of standard state heat of formation for a wide range of pure components. In this sense, statistics of the most recent published quantitative structural based study by Vatani et al. [18] is compared to the statistics of the present study in Table 5. Although the QSPR approach shows comparable results to the SGC-based model (Eq. 3), calculation of its relevant molecular descriptors requires special knowledge or software. Thus, its implementation is more complicated and time-consuming compared to the SGC approach by this work. Also, as can be seen in Table 5, the number of used components in this study is about one third more than the one used [18], which can expand the generalizability of the proposed model.

    3.4 Mode l estimation for missing experimental formation enthalpies

    Table 5 Comparison of QSPR and SGC models

    Table 6 Model prediction for 27 DIPPR missingdata of DIIPR dataset

    Table 6 Model prediction for 27 DIPPR missingdata of DIIPR dataset

    No. Material name Mol. for. CAS registry No. Model prediction 1 dibromomethane CH2Br274-95-3 ?24 2 dehydroabietylamine C20H31N 1446-61-3 ?288 3 p-diisopropylbenzene hydroperoxide C12H18O298-49-7 ?495 4 carbamyl chloride CH2ClNO 463-72-9 ?161 5 3,4-dichlorophenyl isocyanate C7H3Cl2NO 102-36-3 ?295 6 di-n-propyl sulfone C6H14O2S 598-03-8 ?494 7 2-phenylpropionaldehyde C9H10O 93-53-8 ?155 8 quinaldine C10H9N 91-63-4 ?128 9 1,1,2,2-tetrachlorodifluoroethane C2Cl4F276-12-0 ?648 10 1,1,1,2-tetrachlorodifluoroethane C2Cl4F276-11-9 ?648 11 sitosterol C29H50O 83-46-5 ?764 12 1,5-naphthalene diisocyanate C12H6N2O23173-72-6 ?628 13 2,6-toluene diisocyanate C9H6N2O291-08-7 ?707 14 abietic acid C20H30O2514-10-3 ?655 15 dehydroabietic acid C20H28O21740-19-8 ?638 16 neoabietic acid C20H30O2471-77-2 ?716 17 bis-2-chloroethyl-2-chloroethyl phosphonate C6H12Cl3O3P 6294-34-4 ?665 18 1,2-ethane diphosphonic acid C2H8O6P26145-31-9 ?1178 19 malathion C10H19O6PS2121-75-5 ?1230 20 2-mercaptobenzothiazole C7H5NS2149-30-4 ?102 21 tetrachlorothiophene C4Cl4S 6012-97-1 56 22 glycolic acid C2H4O379-14-1 ?623 23 α-hydroxyisobutyric acid C4H8O3594-61-6 ?667 24 2-(difluoromethoxy)-1,1,1-trifluoroethane C3H3F5O 1885-48-9 ?1235 25 bis(difluoromethyl)ether C2H2F4O 1691-17-4 ?901 26 caffeine C8H10N4O258-08-2 ?874 27 cyclohexanone oxime C6H11NO 100-64-1 ?515

    4 CONCLU SIONS

    ACKNOWLEDGEMENTS

    We wish to express our thanks to the anonymous reviewers and the editorial team for their constructive comments. Also, we are grateful to Ms. Mahshid Ghazanfari Nejad for the language editing.

    REFERENCES

    1 Wang, X.B., Tian, D.C., Wang. L.L., “The electronic structure and chemical stability of the AlB2-type transition-metal diborides”, J. Phys.: Condens. Matter., 6, 10185-10192 (1994).

    2 Nahas, A.M.E., Navarro, M.V., Simmie, J.M., Bozzelli, J.W., Curran, H.J., Dooley, S., Metcalfe, W., “Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: Ethyl propanoate and methyl butanoate”, J. Phys. Chem. A, 111, 3727-3739 (2007).

    3 Franklin, J.L., Field, F.H., “The resonance energies of certain organic free radicals and ions”, J. Am. Chem. Soc., 75, 2819-2821(1953).

    4 Holdiness, M.R., “Heats of atomization and resonance energy of some ortho-substituted benzoic acids”, Thermochim. Acta., 71, 257-263 (1983).

    5 Gutowski, K.E., Rogers, R.D., Dixon, D.A., “Accurate thermochemical properties for energetic materials applications. I. Heats of formation of nitrogen-containing heterocycles and energetic precursor molecules from electronic structure theory”, J. Phys. Chem. A, 110, 11890-11897 (2006).

    6 Himmelblau, D.M., Riggs, J. B., Basic Principles and Calculations in Chemical Engineering, Prentice-Hall, New Jersey (2003).

    7 Gans, P., Sabatini, A., Vacca, A., “Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution”, J. Solution Chem., 37, 467-476 (2008).

    8 Andersen, K., “Practical calculation of the equilibrium constant and the enthalpy of reaction at different temperatures”, J. Chem. Educ., 71, 474-479 (1994).

    9 Brigham Young University, Design Institute for Physical Properties (DIPPR?801), AIChE, Provo (2010).

    10 Goodwin, A.R.H., Marsh, K.N., Wakeham, W.A., Measurement of the Thermodynamic Properties of Single Phases, Elsevier, Netherland (2003).

    11 Gharagheizi, F., Bagheri, M., “A simple QSPR model for prediction of flash point temperature of pure organic compounds”, In: Proceedings of Third International Conference on Thermal Engineering, Amman, Jordan (2007).

    12 Bagheri, M., Bagheri, M., Heidaria, F., Fazeli, A., “Nonlinear molecular based modeling of the flash point for application in inherently safer design”, J. Loss Prev. Process Ind., 25, 40-51 (2012).

    13 Bagheri, M., Rajabi, M. Mirbagheria, M., Amin, M., “BPSO-MLR and ANFIS based modeling of lower flammability limit”, J. Loss Prev. Process Ind., 25, 373-382 (2012).

    14 Bagheri, M., Golbraikh, A.“Rank based ant system method for nonlinear QSAR studies: QSAR study of the Solubility Parameters”SAR QSAR Environ. Res., 23, 59-86 (2012).

    15 Fazeli, A., Bagheri, M., Ghaniyari-Benis, S., Aslebagh, R., Kamaloo, E., “Prediction of absolute entropy of ideal gas at 298 K of pure chemicals through GAMLR and FFNN”, Energ. Convers. Manage., 52, 630-634 (2011).

    16 Brothers, E.N., Izmaylov, A.F., Rusakov, A.A., Scuseria, G.E., “On calculating a polymer’s enthalpy of formation with quantum chemical methods”, J. Phys. Chem. B, 111, 13869-13872 (2007).

    17 Dixon, D.A., Peterson, K.A., “Heats of formation of CCl and CCl2from ab initio quantum chemistry”, J. Chem. Phys., 115, 6327-6329 (2001).

    18 Vatani, A., Mehrpooya, M., Gharagheizi, F., “Prediction of standard enthalpy of formation by a QSPR model”, Int. J. Mol. Sci., 8, 407-432 (2007).

    19 Castro, E.A., Fernandez, F.M., Duchowicz, P.R., “QSPR modeling of the enthalpy of formation based on partial order ranking”, J. Math. Chem., 37, 433-441 (2005).

    20 Jover, J., Bosque, R., Sim?es, J.A.M., Sales, J., “Estimation of enthalpies of formation of organometallic compounds from their molecular structures”, J. Org. Chem., 693, 1261-1268 (2008).

    21 Bagheri, M., Yerramsetty, K.M., Neely, B.J., Gasem, K.A.M., “Theory-based quantitative structure-property relationship models for standard heat of formation predictions”, In: Proceedings of AIChE Annual Meeting, UT (2010).

    22 Constantinou, L., Gani, R., “New group contribution method for estimating properties of pure compound”, AIChE J., 40, 1697-1710 (1994).

    23 Marrero, J., Gani, R., “Group-contribution based estimation of pure component properties”, Fluid Phase Equilib., 183/184, 183-208 (2001).

    24 Qiang, W., Peisheng, M., Shifeng, N., “Position group contribution method for estimation of melting point of organic compounds”, Chin. J. Chem. Eng., 17, 468-472 (2009).

    25 Lazzús, J.A., “Prediction of flash point temperature of organic compounds using a hybrid method of group contribution + neural network + particle swarm optimization”, Chin. J. Chem. Eng., 18, 817-823 (2010).

    26 ASPEN PLUS Reference Manual, 2001. Part Number: Aspen Physical Property System 11.1, Aspen Technology, Cambridge, MA.

    27 Satyro, M.A., “Thermodynamics and the simulation engineer”, Chem. Prod. Process Model., 3, 1-41 (2008).

    28 Todeschini, R., Consonni, V., Molecular Descriptors for Chemoinformatics, Wiley, Germany 2009.

    29 Gharagheizi, F., Alamdari, R. F., Angaji, M. T., “A new neural network-group contribution method for estimation of flash point”, Energy Fuels., 22, 1628-1635 (2008).

    30 Gharagheizi, F., “A new group contribution-based method for estimation of lower flammability limit of pure compounds”, J. Hazard Mater., 170, 595-604 (2009).

    31 Gharagheizi, F., Abbasi, R., Tirandazi, B., “Prediction of Henry’s law constant of organic compounds in water from a new group-contributionbased model”, Ind. Eng. Chem. Res., 49, 10149-10152 (2010).

    32 SPSS Inc., PASW Statistics for Windows, 18th edition, SPPSS Inc., Chicago (2009).

    33 Anderson, T., An Introduction to Multivariate Statistical Analysis, 3rd Ed., Wiley, New York, 2003.

    34 Bagheri, M., Nejad Ghaffar Borhani, T., Zahedi, G.,“Estimation of flash point and autoignition temperature of organic sulfur chemicals”, Energy Convers. Manage., 58, 185-196 (2012).

    35 Bagheri, M., Bagheri, M., Gandomi, A.H, Golbraikh, A., “Simple yet accurate prediction method for sublimation enthalpies of organic contaminants”, Thermochim. Acta., 543, 96-106 (2012).

    36 Bagheri, M., Yerramsetty, K.M., Neely, B.J., Gasem, K.A.M., “Molecular modeling of the standard state heat of formation”, Energy Convers. Manage., 65, 587-596 (2013)

    37 Bagheri, M., Bagheri, M., Gandomi, A. H., Shahbaznezhad, M.,“Multi expression programming based model for prediction of formation enthalpies of nitro-energetic materials”, Expert Systems, 30, 66-78 (2012).

    38 Kasabov, N.K., Foundations of Neural Networks Fuzzy Systems and Knowledge Engineering, MIT Press, Cambridge (1998).

    39 Golbraikh, A., Tropsha, A., “Beware of q2!”, J. Molecul. Graph. Model., 20, 269-276 (2002).

    40 Roy, P.P., Roy, K., “On some aspects of variable selection for partial least squares regression models”, QSAR Comb. Sci., 27, 302-313 (2008).

    41 Bagheri, M., Yerramsetty, K.M., Neely, B.J., Gasem, K.A.M., “A new auto-ignition temperature model for pure hydrocarbons”, In: Proceedings of AIChE Annual Meeting, Minneapolis, MN (2011).

    42 Bagheri, M., Yerramsetty, K.M., Neely, B.J., Gasem, K.A.M., “Improved nonlinear models for the refractive index (RI) of organic and inorganic materials”, In: Proceedings of AIChE Annual Meeting, Minneapolis, MN (2011).

    2012-04-30, accepted 2012-12-07.

    * Supported by the “Tehran Naftoon Arya Eng. Co.” research committee of Iran.

    ** To whom correspondence should be addressed. E-mail: Mbagheri@chbe.ubc.ca

    精品酒店卫生间| 又大又黄又爽视频免费| 亚洲欧美成人综合另类久久久| 精品一区二区免费观看| av免费在线看不卡| 一级a做视频免费观看| 久久久久人妻精品一区果冻| av国产精品久久久久影院| 欧美日韩国产mv在线观看视频| 咕卡用的链子| 亚洲精品第二区| 建设人人有责人人尽责人人享有的| 免费黄网站久久成人精品| 亚洲,欧美精品.| 天天操日日干夜夜撸| 99久久中文字幕三级久久日本| 亚洲成人手机| 乱码一卡2卡4卡精品| 国产白丝娇喘喷水9色精品| 午夜av观看不卡| av天堂久久9| 熟女人妻精品中文字幕| 国产不卡av网站在线观看| 欧美精品一区二区大全| 大码成人一级视频| 2021少妇久久久久久久久久久| 亚洲国产精品国产精品| 中文字幕人妻丝袜制服| 国产国拍精品亚洲av在线观看| 最近手机中文字幕大全| av在线老鸭窝| 天堂中文最新版在线下载| 日本vs欧美在线观看视频| 91精品伊人久久大香线蕉| 香蕉精品网在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费黄色在线免费观看| 亚洲丝袜综合中文字幕| 1024视频免费在线观看| 黑人欧美特级aaaaaa片| 久久久久久人人人人人| 国产精品一区二区在线观看99| 看非洲黑人一级黄片| 久久青草综合色| 热re99久久精品国产66热6| 国产精品人妻久久久久久| 日韩人妻精品一区2区三区| 亚洲av福利一区| 欧美 亚洲 国产 日韩一| 国产日韩欧美亚洲二区| 色网站视频免费| 菩萨蛮人人尽说江南好唐韦庄| 毛片一级片免费看久久久久| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 成人影院久久| 欧美日韩亚洲高清精品| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 大片免费播放器 马上看| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 观看av在线不卡| 高清不卡的av网站| 老女人水多毛片| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| 久久精品国产综合久久久 | 2018国产大陆天天弄谢| 侵犯人妻中文字幕一二三四区| 午夜视频国产福利| 国产熟女午夜一区二区三区| 丝袜美足系列| 天天躁夜夜躁狠狠躁躁| 97超碰精品成人国产| 日韩视频在线欧美| 久久婷婷青草| 久久精品熟女亚洲av麻豆精品| 大香蕉久久网| 国产黄色免费在线视频| 日韩大片免费观看网站| 亚洲 欧美一区二区三区| a级毛片黄视频| 狠狠精品人妻久久久久久综合| 久久久精品免费免费高清| 亚洲成av片中文字幕在线观看 | 久久久久久人妻| 高清毛片免费看| 热99久久久久精品小说推荐| 日韩,欧美,国产一区二区三区| 不卡视频在线观看欧美| 性高湖久久久久久久久免费观看| 成人亚洲精品一区在线观看| 国产有黄有色有爽视频| 一级毛片黄色毛片免费观看视频| 高清黄色对白视频在线免费看| 在线观看免费日韩欧美大片| 如日韩欧美国产精品一区二区三区| 又大又黄又爽视频免费| 2018国产大陆天天弄谢| 黄色毛片三级朝国网站| 亚洲国产精品成人久久小说| 韩国高清视频一区二区三区| 极品少妇高潮喷水抽搐| av网站免费在线观看视频| 九色成人免费人妻av| 侵犯人妻中文字幕一二三四区| 色5月婷婷丁香| 一区在线观看完整版| 久久 成人 亚洲| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 亚洲av福利一区| 51国产日韩欧美| 人人妻人人爽人人添夜夜欢视频| 波多野结衣一区麻豆| 一级片'在线观看视频| 美女xxoo啪啪120秒动态图| 精品第一国产精品| 少妇猛男粗大的猛烈进出视频| 亚洲人与动物交配视频| 午夜福利视频在线观看免费| 伦精品一区二区三区| 国产免费一级a男人的天堂| 又大又黄又爽视频免费| 丰满迷人的少妇在线观看| 欧美日韩av久久| av在线app专区| 久久久久国产网址| 22中文网久久字幕| 各种免费的搞黄视频| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 亚洲精品乱码久久久久久按摩| 成人18禁高潮啪啪吃奶动态图| 中文字幕亚洲精品专区| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 乱人伦中国视频| 日本-黄色视频高清免费观看| 有码 亚洲区| 99热这里只有是精品在线观看| 国产欧美亚洲国产| 日本猛色少妇xxxxx猛交久久| 国产乱来视频区| 久久久久国产网址| 午夜久久久在线观看| a级毛色黄片| 岛国毛片在线播放| 男女边吃奶边做爰视频| 99久久人妻综合| 永久免费av网站大全| av天堂久久9| 韩国精品一区二区三区 | 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 十分钟在线观看高清视频www| 9热在线视频观看99| 免费在线观看完整版高清| 免费播放大片免费观看视频在线观看| 国产黄色视频一区二区在线观看| videosex国产| 搡老乐熟女国产| 欧美成人午夜精品| 香蕉丝袜av| 97在线视频观看| 丝袜在线中文字幕| 欧美精品人与动牲交sv欧美| 精品少妇内射三级| 国产午夜精品一二区理论片| 国产精品无大码| 日韩欧美精品免费久久| 欧美激情 高清一区二区三区| 亚洲av成人精品一二三区| 99久国产av精品国产电影| 国产不卡av网站在线观看| 国产极品粉嫩免费观看在线| 18禁在线无遮挡免费观看视频| 青春草视频在线免费观看| 黄片无遮挡物在线观看| av女优亚洲男人天堂| 在线精品无人区一区二区三| 国产成人精品婷婷| av线在线观看网站| 久久久亚洲精品成人影院| 高清不卡的av网站| 国产不卡av网站在线观看| 精品国产一区二区久久| 久久久精品区二区三区| 亚洲av日韩在线播放| 人人澡人人妻人| 精品亚洲成a人片在线观看| 国产精品 国内视频| 免费观看无遮挡的男女| 少妇被粗大的猛进出69影院 | 建设人人有责人人尽责人人享有的| 久久女婷五月综合色啪小说| 国产精品女同一区二区软件| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 亚洲精品第二区| 免费av不卡在线播放| 男女边吃奶边做爰视频| videos熟女内射| 亚洲一区二区三区欧美精品| 99久久精品国产国产毛片| 高清黄色对白视频在线免费看| 国产男女内射视频| 亚洲国产欧美日韩在线播放| 日韩人妻精品一区2区三区| 毛片一级片免费看久久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产麻豆69| 黄色视频在线播放观看不卡| 免费高清在线观看日韩| 久久久久人妻精品一区果冻| 男人添女人高潮全过程视频| 久久久久久伊人网av| 韩国av在线不卡| 免费高清在线观看日韩| 久久99热这里只频精品6学生| 久久久久久久亚洲中文字幕| 免费播放大片免费观看视频在线观看| 丰满饥渴人妻一区二区三| 精品国产露脸久久av麻豆| 国产片内射在线| 亚洲精品一区蜜桃| 国产熟女午夜一区二区三区| 久久久久精品性色| 国产av一区二区精品久久| 一区二区三区精品91| 亚洲欧美日韩卡通动漫| 丁香六月天网| av播播在线观看一区| 高清欧美精品videossex| 国产探花极品一区二区| 久久久精品94久久精品| 国产色婷婷99| 国产成人免费观看mmmm| 男人舔女人的私密视频| 两性夫妻黄色片 | 国产在线视频一区二区| 成人影院久久| 精品一品国产午夜福利视频| 一本色道久久久久久精品综合| 成人二区视频| 亚洲精品久久久久久婷婷小说| 美国免费a级毛片| 人人妻人人爽人人添夜夜欢视频| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av蜜桃| 日韩一本色道免费dvd| 最后的刺客免费高清国语| 人妻一区二区av| 亚洲av福利一区| 韩国精品一区二区三区 | 新久久久久国产一级毛片| 街头女战士在线观看网站| 国产精品久久久久成人av| 亚洲精品美女久久久久99蜜臀 | 国产精品人妻久久久久久| 最新的欧美精品一区二区| 精品午夜福利在线看| 国内精品宾馆在线| 国产日韩欧美亚洲二区| 成人手机av| 成年人午夜在线观看视频| 久久久久久久久久久免费av| 黄色怎么调成土黄色| 午夜福利乱码中文字幕| 国产亚洲欧美精品永久| 99久久人妻综合| 成人黄色视频免费在线看| 97人妻天天添夜夜摸| 最近中文字幕2019免费版| 天堂8中文在线网| 成年女人在线观看亚洲视频| 国产一区亚洲一区在线观看| 91成人精品电影| 免费观看a级毛片全部| 熟女人妻精品中文字幕| 边亲边吃奶的免费视频| av不卡在线播放| 国产精品.久久久| 国产日韩一区二区三区精品不卡| 国产色婷婷99| 亚洲国产欧美在线一区| videos熟女内射| 26uuu在线亚洲综合色| 国产精品国产三级国产专区5o| 高清黄色对白视频在线免费看| 国产免费一区二区三区四区乱码| 国产免费现黄频在线看| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频| 青春草亚洲视频在线观看| 日韩电影二区| 2018国产大陆天天弄谢| 亚洲三级黄色毛片| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲av片在线观看秒播厂| 日韩中字成人| 国产成人欧美| 制服诱惑二区| 妹子高潮喷水视频| 久久99精品国语久久久| 一边摸一边做爽爽视频免费| 亚洲精品乱码久久久久久按摩| 免费日韩欧美在线观看| 一级毛片黄色毛片免费观看视频| 国产免费一区二区三区四区乱码| 亚洲人成77777在线视频| 啦啦啦中文免费视频观看日本| 国产成人午夜福利电影在线观看| 黑人猛操日本美女一级片| 国产免费又黄又爽又色| 大码成人一级视频| 国产xxxxx性猛交| 亚洲av.av天堂| 久久久久久久国产电影| 国产熟女午夜一区二区三区| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 国产爽快片一区二区三区| 街头女战士在线观看网站| 免费黄色在线免费观看| 亚洲精品aⅴ在线观看| 国语对白做爰xxxⅹ性视频网站| 少妇高潮的动态图| 亚洲精品av麻豆狂野| 高清视频免费观看一区二区| 国产成人av激情在线播放| 少妇被粗大的猛进出69影院 | 亚洲av在线观看美女高潮| av福利片在线| 啦啦啦啦在线视频资源| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡 | 免费av不卡在线播放| 久久 成人 亚洲| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 97超碰精品成人国产| 伦理电影免费视频| 国产精品不卡视频一区二区| 免费大片18禁| 看免费成人av毛片| 热re99久久国产66热| 久久久久国产网址| 91精品伊人久久大香线蕉| 精品酒店卫生间| 亚洲精品av麻豆狂野| 看免费成人av毛片| 毛片一级片免费看久久久久| 大陆偷拍与自拍| 午夜91福利影院| 久久女婷五月综合色啪小说| 美国免费a级毛片| 美女脱内裤让男人舔精品视频| 9191精品国产免费久久| 中文字幕另类日韩欧美亚洲嫩草| 一本大道久久a久久精品| 国产熟女欧美一区二区| 我要看黄色一级片免费的| 国产av精品麻豆| 久久午夜福利片| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 国产一区二区激情短视频 | 波多野结衣一区麻豆| 在线免费观看不下载黄p国产| 国产免费现黄频在线看| 自拍欧美九色日韩亚洲蝌蚪91| 好男人视频免费观看在线| 成人综合一区亚洲| 成人手机av| 日本欧美国产在线视频| 久久亚洲国产成人精品v| 日本vs欧美在线观看视频| 亚洲精品成人av观看孕妇| 90打野战视频偷拍视频| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片| 一级片免费观看大全| av卡一久久| 亚洲精华国产精华液的使用体验| 亚洲国产av新网站| 人妻系列 视频| 精品国产一区二区三区久久久樱花| 在线观看国产h片| 国产精品久久久av美女十八| 一区在线观看完整版| 曰老女人黄片| 免费av不卡在线播放| 人人妻人人添人人爽欧美一区卜| 久久精品熟女亚洲av麻豆精品| 精品一区二区免费观看| 久久人人97超碰香蕉20202| 国产麻豆69| 在线观看人妻少妇| 日本猛色少妇xxxxx猛交久久| 80岁老熟妇乱子伦牲交| 国产综合精华液| 亚洲久久久国产精品| 天美传媒精品一区二区| 久久久久久久久久久免费av| 夜夜骑夜夜射夜夜干| 制服丝袜香蕉在线| av女优亚洲男人天堂| 日韩一本色道免费dvd| 麻豆乱淫一区二区| 看非洲黑人一级黄片| 久久精品国产a三级三级三级| 精品久久久久久电影网| 一级爰片在线观看| 欧美另类一区| 欧美激情国产日韩精品一区| 嫩草影院入口| 国产免费福利视频在线观看| 久久久久国产精品人妻一区二区| 国产 一区精品| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 国产精品久久久av美女十八| 精品一区在线观看国产| 久久久久精品人妻al黑| 亚洲国产最新在线播放| 高清黄色对白视频在线免费看| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 成人二区视频| 日本vs欧美在线观看视频| 久久久久久久亚洲中文字幕| 男女国产视频网站| 看免费成人av毛片| 亚洲欧美清纯卡通| 亚洲精品乱码久久久久久按摩| 在线观看www视频免费| 最黄视频免费看| 中文字幕制服av| 黄片无遮挡物在线观看| 秋霞在线观看毛片| 狠狠婷婷综合久久久久久88av| 久久韩国三级中文字幕| 婷婷成人精品国产| 精品国产一区二区三区久久久樱花| 国产1区2区3区精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av网站免费在线观看视频| 婷婷色综合www| 日本黄色日本黄色录像| 少妇的逼好多水| 国产日韩欧美亚洲二区| 成人手机av| 亚洲国产精品成人久久小说| 免费高清在线观看日韩| 国产日韩一区二区三区精品不卡| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 香蕉精品网在线| 国产av精品麻豆| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影| 香蕉丝袜av| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 最新中文字幕久久久久| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| 男人爽女人下面视频在线观看| 欧美激情极品国产一区二区三区 | 又黄又爽又刺激的免费视频.| 国产 一区精品| 男人爽女人下面视频在线观看| www.av在线官网国产| 一边亲一边摸免费视频| 亚洲少妇的诱惑av| 国产国语露脸激情在线看| 国产精品蜜桃在线观看| 日本av免费视频播放| 人妻系列 视频| 国产黄色免费在线视频| 51国产日韩欧美| 美女大奶头黄色视频| 在线 av 中文字幕| 日本黄大片高清| 久久国内精品自在自线图片| 插逼视频在线观看| 久久午夜福利片| 黑丝袜美女国产一区| 久久精品久久精品一区二区三区| 亚洲性久久影院| 欧美性感艳星| 国产午夜精品一二区理论片| 高清不卡的av网站| 深夜精品福利| 两个人看的免费小视频| 国产淫语在线视频| 桃花免费在线播放| 高清在线视频一区二区三区| av福利片在线| 纯流量卡能插随身wifi吗| 26uuu在线亚洲综合色| 如何舔出高潮| 一区在线观看完整版| 国产成人欧美| 国产一区二区在线观看日韩| 如何舔出高潮| 少妇被粗大猛烈的视频| 欧美 日韩 精品 国产| 久久精品国产自在天天线| 狠狠精品人妻久久久久久综合| 免费播放大片免费观看视频在线观看| 久热久热在线精品观看| av福利片在线| 国产深夜福利视频在线观看| 亚洲综合色惰| 久久毛片免费看一区二区三区| 午夜福利视频精品| 久久免费观看电影| 欧美成人午夜免费资源| www.熟女人妻精品国产 | 在现免费观看毛片| 日本色播在线视频| 亚洲国产看品久久| 久久97久久精品| 永久免费av网站大全| 亚洲国产欧美日韩在线播放| 亚洲综合色网址| 亚洲精品美女久久av网站| 五月天丁香电影| 欧美人与性动交α欧美精品济南到 | 中文字幕精品免费在线观看视频 | 新久久久久国产一级毛片| 搡老乐熟女国产| 精品国产一区二区三区久久久樱花| 亚洲五月色婷婷综合| www.色视频.com| 亚洲精华国产精华液的使用体验| 一级毛片我不卡| 2022亚洲国产成人精品| 国产日韩欧美亚洲二区| 久久人人爽av亚洲精品天堂| 日本-黄色视频高清免费观看| 亚洲av综合色区一区| 亚洲精品色激情综合| 91精品三级在线观看| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久小说| 在线观看免费视频网站a站| 少妇猛男粗大的猛烈进出视频| 天天躁夜夜躁狠狠久久av| 国产深夜福利视频在线观看| 久久ye,这里只有精品| 熟女电影av网| 蜜桃国产av成人99| 又粗又硬又长又爽又黄的视频| 黄色配什么色好看| 中文乱码字字幕精品一区二区三区| 亚洲精品乱码久久久久久按摩| 久久久精品区二区三区| 精品国产乱码久久久久久小说| 国产深夜福利视频在线观看| 亚洲一级一片aⅴ在线观看| 青春草视频在线免费观看| 91久久精品国产一区二区三区| 亚洲性久久影院| 久久 成人 亚洲| 香蕉丝袜av| 国产精品久久久久久精品电影小说| 日韩av在线免费看完整版不卡| 亚洲成人一二三区av| 免费在线观看黄色视频的| 男女午夜视频在线观看 | 日韩电影二区| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 一本久久精品| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件| 国产成人精品一,二区| 91久久精品国产一区二区三区| 精品人妻熟女毛片av久久网站| 国产免费一区二区三区四区乱码| 高清黄色对白视频在线免费看| 免费黄网站久久成人精品| 久久ye,这里只有精品| 中文字幕另类日韩欧美亚洲嫩草| 飞空精品影院首页| www.熟女人妻精品国产 | 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 国产成人精品福利久久| 99热全是精品| 亚洲av福利一区| 90打野战视频偷拍视频| 在线观看www视频免费| 日韩av免费高清视频| 久久久久久久久久人人人人人人| 另类精品久久| 国国产精品蜜臀av免费| 国产av码专区亚洲av| 女人被躁到高潮嗷嗷叫费观| 精品一区在线观看国产| 成年美女黄网站色视频大全免费| 三上悠亚av全集在线观看| 久久午夜综合久久蜜桃| 国产成人精品无人区| 十八禁高潮呻吟视频| 久久99热这里只频精品6学生| 亚洲激情五月婷婷啪啪| 久久久久久久亚洲中文字幕| 午夜福利视频精品| 亚洲美女黄色视频免费看|