• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Monitoring of Chemical Processes Based on Sensitive Kernel Principal Components*

    2013-06-07 11:21:31JIANGQingchao姜慶超andYANXuefeng顏學(xué)峰

    JIANG Qingchao (姜慶超) and YAN Xuefeng (顏學(xué)峰)**

    Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

    Statistical Monitoring of Chemical Processes Based on Sensitive Kernel Principal Components*

    JIANG Qingchao (姜慶超) and YAN Xuefeng (顏學(xué)峰)**

    Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

    The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2statistic and squared prediction error δSPEstatistic and reduce missed detection rates. T2statistic can be used to measure the variation directly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.

    statistical process monitoring, kernel principal component analysis, sensitive kernel principal component, Tennessee Eastman process

    1 INTRODUCTION

    As production equipment in modern chemical industry becomes larger, speed-higher, more complex and more intelligent, fault detection and diagnosis in chemical processes are more important for safety and improvement of productivity. Recently, multivariate statistical process monitoring (MSPM) methods, which identify linear relationships between the recorded process variables and generate reduced sets of scores, have great progress because of the development of equipment for measurement, data storage and computation [1-5]. Principal component analysis (PCA) is the most widely used method because it can effectively deal with high-dimensional, noisy and highly correlated data by projecting the data onto a lower-dimensional space that contains most variance information of data [6-8].

    To deal with the problem from nonlinear data, Kramer developed a nonlinear PCA method based on auto-associative neural networks [9], but it is difficult for the network to be trained because it has five layers and to determine the number of nodes in each layer. Dong and McAvoy [6] developed a nonlinear PCA approach based on principal curves and neural networks, with the assumption that the nonlinear function can be approximated by a linear combination of several univariate functions so that it can be expressed as a sum of functions of individual variables. Such mappings can be made only for a limited class of nonlinear models and the application of the principal curve algorithm is restricted to the identification of structures that exhibit additive-type behavior [10, 11]. Many extensional methods of PCA,such as kernel PCA (KPCA), dynamic PCA (DPCA) [12-15], probabilistic PCA (PPCA) [16, 17] and multiway PCA (MPCA) [18, 19], have been proposed to improve process monitoring performance, among which KPCA, as a new nonlinear PCA technique, progresses fast as a promising method for tackling nonlinear systems [20-22]. KPCA first maps the input space into a feature space via nonlinear mapping and then computes the principal components (PCs) in the high-dimensional feature space. Compared to other nonlinear methods, the main advantage of KPCA is that it does not involve nonlinear optimization.

    In KPCA monitoring, the first several kernel principal components (KPCs) corresponding to the largest eigenvalues based on normal observations are selected, without considering the information of process fault. However, the number of components in highdimensional space is large, and the sensitivities of principal components to faults are not the same and nor in the order of eigenvalue decrease. Process monitoring based on KPCA has a problem, i.e., T2statistic and squared prediction error (δSPE) statistic do not give the same result and miss detection when a fault occurs, which are mostly due to missing fault information in process data compressing, so only the first several KPCs are employed for process monitoring. Hence, sensitive kernel principal components that represent the character information of the fault are expected to be found and can be used to monitor the process for good monitoring performance.

    In this article, a novel fault detection method based on sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance. The definition of sensitive kernelprincipal component (SKPC) is introduced and the change rate of T2statistic is defined to determine SKPCs of some fault due to the ability of T2statistic to measure the variation directly along each kernel principal component. These SKPCs contain large amount of information for fault detection and diagnosis, which is illustrated by observing the monitoring behavior of T2statistics along each KPC on a simulated simple process. The case studies on the simulated process and Tennessee Eastman (TE) process demonstrate the performance of the SKPCA model on online monitoring.

    2 PROCESS M ONITORING B ASED O N KE RNEL PCA

    2.1 Kernel principal component analysis

    In KPCA, observations are nonlinearly mapped into a high-dimensional space, referred to as feature space F. In the feature space, the linear PCA is employed to extract the nonlinear correlation relationship between the variables. According to Cover’s theorem, the nonlinear data structure in the input space is more likely to be linear after high-dimensional nonlinear mapping [23]. KPCA finds a computationally tractable solution through a simple kernel function that intrinsically constructs a nonlinear mapping from the input space to the feature space [24, 25].

    where λ andvdenote eigenvalue and eigenvector of covariance matrixCF, respectively, and 〈x,y〉 denotes the dot product betweenxandy. This implies that all solutionsvwith λ≠0 must lie in the span ofΦ(x1),…,Φ(xN). Then λv=CFvis equivalent to

    Combining Eqs. (3) and (4), we obtain

    and the right-hand side of Eq. (5) can be expressed as

    Equation (7) becomes2(1/)NKα. Combining Eqs. (6) and (7), we obtain

    for nonzero eigenvalues. Now, performing PCA in F is equivalent to resolving the eigenvalue-problem of Eq. (9). This yields eigenvectorsα1,α2,…,αNwith eigenvalues λ1≥λ2≥,…,≥λN. The dimensionality of the problem can be reduced by retaining only the first p eigenvectors using the cumulative contribution rate rCCRmethod.

    We normalizeα1,α2,…,αpby requiring that the corresponding vectors in F be normalized, i.e.

    There exist a number of kernel functions and in this work the radial basis kernel function is used, which is

    where c is specified a priori by the user.

    Before applying KPCA, mean centering in the high-dimensional space should be performed. This can be done by substituting the kernel matrixKwith

    2.2 T2statistic and δSPEstatistic

    T2statistic and δSPEstatistic are constructed and monitored in KPCA based on the assumption that training data are multivariate normal in the feature space [10, 24]. T2statistic is the sum of the normalized squared scores and is defined as

    wherekt is obtained from Eq. (12) and1?Λis the diagonal matrix of the inverse of the eigenvalues with the retained PCs. The confidence limit for T2is obtained using the F-distribution

    where N is the number of samples in the model, p is the number of PCs, and γ is the level of significance.

    In KPCA model, the δSPEstatistic is obtained using the equations

    where n is the number of nonzero eigenvalues generated from Eq. (9) among the total N eigenvalues. The confidence limit for the δSPEcan be computed from its approximate distribution

    where g is a weighting parameter to account for the magnitude of the δSPE,2χ is the chi-square distribution and h accounts for the degree of freedom. More details on the two statistic parameters are represented in [10, 24].

    2.3 Process monitoring based on KPCA

    The following simulations are in Matlab 7.12.0 (2011a) environment. Consider the following simple system with three variables but only one factor, originally suggested by Dong and McAvoy [6, 24].

    where e1, e2 and e3 are independent noise variables N(0,0.01), and t∈[0.01,2]. Normal data comprising 100 samples are generated according to these equations. Two sets of test data comprising 300 samples each are also generated. The following two disturbances are applied separately during generation of the test data sets.

    Disturbance 1: a step change of x2by ?0.4 is introduced starting from sample 101.

    Disturbance 2: x1is linearly increased from sample 101 to 270 by adding 0.01×(s?100) to the x1value of each sample in this range, where s is the sample number.

    Monitoring performance of KPCA is shown in Fig. 1, in which the first 3 kernel principal components occupying 85% cumulative contribution rate are retained. For Disturbance 1 in this simple system, the disturbance ca2n be detected successfully by δSPEstatistic, while T statistic2does not behave very well. For Disturbance 2, both T statistic and δSPEstatistic detect the disturbance successfully.

    Figure 1 Online monitoring of Disturbance 1 (a) and Disturbance 2 (b) using KPCA model

    Figure 2of each kernel principal component

    3 PR OCESS MONITORING BASED ON SKPCA

    3.1 Sensitive kernel principal components

    where x is the data point under consideration, xiis an observation value from the data set, c is the window width (also known as the smoothing parameter), N is the number of observations, and K is the kernel function. The kernel function K determines the shape of the smooth curve and satisfies the condition

    3.2 Process monit oring using sensitive kernel principal components

    Off line modeling:

    Online monitoring:

    (1) Normalize the current sample data using mean values and variance of the training data.

    3.3 Simulations and application

    3.3.1Application in the simple system

    3.3.2Application in TE process

    TE process is a benchmark problem in chemical process engineering. Downs and Vogel presented this particular process at an AIChE meeting in 1990s as a plant-wide control problem [28]. This simulator of Tennessee Eastman process consists of five major unit operations: a reactor, a product condenser, a vaporliquid separator, a recycle compressor and a product stripper. Two products are produced by two simultaneous gas-liquid exothermic reactions, and a byproduct is from two additional exothermic reactions. The process has 12 manipulated variables, 22 continuous process measurements and 19 compositions. The simulator can generate 21 types of different faults. All the process measurements include Gaussian noise. Once the fault enters the process, it affects almost all state variables in the process [29, 30]. The control scheme for the Tennessee Eastman process is shown in Fig. 6.

    Figure 3 Cumulative probability density ofof the simple system (b)

    Figure 4 Eigenvalues of normal sample andof Disturbance 2

    Figure 5 Monitoring performance of Disturbances 1 (a) and 2 (b) using SKPCA

    Figure 6 Control scheme for the Tennessee Eastman processCWS: cooling water suck; CWR: cooling water return; A-E: components

    Figure 7 Sensitive kernel principal components of Faults 11 and 14

    Figure 8 Monitoring performance of Faults 11 (a) and 14 (b) using KPCA and SKPCA models

    Figure 8 presents the monitoring performance based on KPCA and SKPCA models and reveals that the T2statistic of the sensitive kernel principal components can detect the faults successfully and timely. When Fault 11 occurs, T2with SKPC presents a large jump and is more than the threshold. The result indicates that there is a fault in process. When Fault 14 occurs, both SKPC T2statistic and SKPC δSPEstatistic can detect the fault successfully, showing better monitoring performance than that in KPCA model.

    T2statistic is an important statistic when making a judgment for the process state. Process monitoring based on SKPCA takes the information of fault into account timely and can catch the largest variation inprocess, improving the fault detection performance of T2statistic significantly. Once a fault is detected, the next step is to determine the cause of the out-of-control status. The task of fault diagnosis is rather challenging when the number of process variables is large and the process is highly integrated. The sensitive kernel principal components contain a large amount of information of the coming fault, providing a novel approach for fault diagnosis, though more work is needed.

    4 CONCLU SIONS

    Since KPCA model can not detect some faults efficiently, the behavior of T2statistic and the monitoring performance are analyzed to find the cause. In order to improve the online monitoring performance, process monitoring based on sensitive kernel principal components is proposed. SKPCA examines T2statistic of each kernel principal component and searches the most sensitive kernel principal components of fault in feature space, which is applied to determine whether there is a fault in process or not. The novel modeling method is applied to online monitoring of a simple process and TE process. Compared with the classical KPCA models, the monitoring performance of SKPCA is improved. Future work will be focused on fault diagnosis based on SKPCA. The sensitive kernel principal components contain more information of some faults, may represent the fault character and provide significant information to facilitate process fault diagnosis.

    NOMENCLATURE

    CFcovariance matrix in feature space

    c smoothing parameter

    e1, e2 and e3 independent noise variables

    g weighting parameter

    h degree of freedom

    K kernel function

    K kernel matrix

    m number of variables

    n number of observations

    p number of principal components retained

    q number of sensitive kernel principal components

    rCCRcumulative contribution rate

    s sample number in the simple process

    t principal component

    v eigenvector of covariance matrix

    α eigenvector of kernel matrix

    γ level of significance

    Λ?1diagonal matrix of the inverse of eigenvalues

    λ eigenvalue of covariance matrix

    Φ(·) nonlinear mapping function

    X process sample set

    REFERENCES

    1 Lee, J., Kang, B., Kang, S.H., “Integrating independent component analysis and local outlier factor for plant-wide process monitoring”, J. Process Control, 21 (7), 1011-1021 (2011).

    2 Li, Y.F., Wang, Z.F., Yuan, J.Q., “On-line fault detection using SVM-based dynamic MPLS for batch processes”, Chin. J. Chem. Eng., 14 (6), 754-758 (2006).

    3 Liu, X.Q., Xie, L., Kruger, U., Littler, T., Wang, S.Q., “Statistical-based monitoring of multivariate non-Gaussian systems”, AIChE J., 54 (9), 2379-2391 (2008).

    4 MacGregor, J., Kourti, T., “Statistical process control of multivariate processes”, Control Eng. Pract., 3 (3), 403-414 (1995).

    5 Zhang, G.X., An Introduction to The New Multivariate Diagnosis Theory with Two Kinds of Quality, Science Press, Bei Jing, China (2001).

    6 Dong, D., McAvoy, T.J., “Nonlinear principal component analysis-based on principal curves and neural networks”, Comput. Chem. Eng., 20 (1), 65-78 (1996).

    7 Kresta, J.V., Macgregor, J.F., Marlin, T.E., “Multivariate statistical monitoring of process operating performance”, Can. J. Chem. Eng., 69 (1), 35-47 (2009).

    8 Wachs, A., Lewin, D.R., “Improved PCA methods for process disturbance and failure identification”, AIChE J., 45 (8), 1688-1700 (2004).

    9 Kramer, M.A., “Nonlinear principal component analysis using autoassociative neural networks”, AIChE J., 37 (2), 233-243 (1991).

    10 Cui, P., Li, J., Wang, G., “Improved kernel principal component analysis for fault detection”, Expert Syst. Appl., 34 (2), 1210-1219 (2008).

    11 Jia, F., Martin, E., Morris, A., “Non-linear principal components analysis with application to process fault detection”, Int. J. Sys. Sci., 31 (11), 1473-1487 (2000).

    12 Jia, M., Chu, F., Wang, F., Wang, W., “On-line batch process monitoring using batch dynamic kernel principal component analysis”, Chemom. Intell. Lab. Syst., 101 (2), 110-122 (2010).

    13 Ku, W., Storer, R.H., Georgakis, C., “Disturbance detection and isolation by dynamic principal component analysis”, Chemom. Intell. Lab. Syst., 30 (1), 179-196 (1995).

    14 Li, R., Rong, G., “Fault isolation by partial dynamic principal component analysis in dynamic process”, Chin. J. Chem. Eng., 14 (4), 486-493 (2006).

    15 Xie, L., Zhang, J., Wang, S., “Investigation of dynamic multivariate chemical process monitoring”, Chin. J. Chem. Eng., 14 (5), 559-568 (2006).

    16 Chen, T., Martin, E., Montague, G., “Robust probabilistic PCA with missing data and contribution analysis for outlier detection”, Comput. Stat. Data An., 53 (10), 3706-3716 (2009).

    17 Kim, D., Lee, I.B., “Process monitoring based on probabilistic PCA”,Chemom. Intell. Lab. Syst., 67 (2), 109-123 (2003).

    18 Lee, J.M., Yoo, C.K., Lee, I.B., “Fault detection of batch processes using multiway kernel principal component analysis”, Comput. Chem. Eng., 28 (9), 1837-1847 (2004).

    19 Wang, Z.F., Yuan, J.Q., “Online supervision of penicillin cultivations based on rolling MPCA”, Chin. J. Chem. Eng., 15 (1), 92-96 (2007).

    20 Choi, S.W., Lee, C., Lee, J.M., Park, J.H., Lee, I.B., “Fault detection and identification of nonlinear processes based on kernel PCA”, Chemom. Intell. Lab. Syst., 75 (1), 55-67 (2005).

    21 Nguyen, V.H., Golinval, J.C., “Fault detection based on Kernel principal component analysis”, Eng. Struct., 32 (11), 3683-3691 (2010).

    22 Sch?lkopf, B., Smola, A., Müller, K.R., “Nonlinear component analysis as a kernel eigenvalue problem”, Neural comput., 10 (5), 1299-1319 (1998).

    23 Haykin, S., Neural Networks., Practice-Hall Press, New Jersey, U.S.A. (1999).

    24 Lee, J.M., Yoo, C.K., Choi, S.W., Vanrolleghem, P.A., Lee, I.B.,“Nonlinear process monitoring using kernel principal component analysis”, Chem. Eng. Sci., 59 (1), 223-234 (2004).

    25 Romdhani, S., Gong, S., Psarrou, A., “A multi-view nonlinear active shape model using kernel PCA”, In: British Machine Vision Conference, Nottingham, U.K. (1999).

    26 Webb, A.R., Statistical Pattern Recognition, Oxford University Press, New York, U.S.A. (1999).

    27 Read, C.B., Kotz, S., Johnson, N.L., Encyclopedia of Statistical Sciences, Wiley, Germany (1988).

    28 Downs, J.J., Vogel, E.F., “A plant-wide industrial process control problem”, Comput. Chem. Eng., 17 (3), 245-255 (1993).

    29 Lyman, P.R., Georgakis, C., “Plant-wide control of the Tennessee Eastman problem”, Comput. Chem. Eng., 19 (3), 321-331 (1995).

    30 McAvoy, T., Ye, N., “Base control for the Tennessee Eastman problem”, Comput. Chem. Eng., 18 (5), 383-413 (1994).

    2011-11-29, accepted 2012-08-30.

    * Supported by the 973 project of China (2013CB733600), the National Natural Science Foundation (21176073), the Doctoral Fund of Ministry of Education (20090074110005), the New Century Excellent Talents in University (NCET-09-0346), “Shu Guang”project (09SG29) and the Fundamental Research Funds for the Central Universities.

    ** To whom correspondence should be addressed. E-mail: xfyan@ecust.edu.cn

    老司机午夜十八禁免费视频| 国产精品av久久久久免费| 久久亚洲真实| 免费看日本二区| 精品第一国产精品| 亚洲五月色婷婷综合| 最好的美女福利视频网| videosex国产| 久9热在线精品视频| 色综合欧美亚洲国产小说| 精品久久久久久久人妻蜜臀av| 在线观看66精品国产| 欧美又色又爽又黄视频| 变态另类丝袜制服| 最近在线观看免费完整版| svipshipincom国产片| netflix在线观看网站| 亚洲国产高清在线一区二区三 | 日韩 欧美 亚洲 中文字幕| 国产一区二区三区视频了| 看黄色毛片网站| av片东京热男人的天堂| 久久久久久人人人人人| 国产黄片美女视频| 中文资源天堂在线| 真人做人爱边吃奶动态| 成人精品一区二区免费| 中文字幕高清在线视频| 国产激情偷乱视频一区二区| 亚洲中文日韩欧美视频| 一区二区三区国产精品乱码| 亚洲专区字幕在线| 婷婷亚洲欧美| 又黄又爽又免费观看的视频| 国产视频一区二区在线看| 亚洲国产欧美日韩在线播放| 亚洲精品一区av在线观看| 久久国产精品男人的天堂亚洲| a级毛片a级免费在线| 国产熟女午夜一区二区三区| 中文字幕av电影在线播放| 国产视频一区二区在线看| 男人舔女人下体高潮全视频| 久久久国产精品麻豆| 久9热在线精品视频| 我的亚洲天堂| 精品国产亚洲在线| 91麻豆精品激情在线观看国产| 欧美在线一区亚洲| 久久草成人影院| 欧美乱码精品一区二区三区| 欧美一区二区精品小视频在线| 久久中文看片网| 中亚洲国语对白在线视频| 熟女少妇亚洲综合色aaa.| 欧美激情久久久久久爽电影| 婷婷精品国产亚洲av在线| 亚洲精品国产精品久久久不卡| 两性夫妻黄色片| 久久午夜综合久久蜜桃| 国产99白浆流出| 在线免费观看的www视频| 免费看十八禁软件| 欧美一级a爱片免费观看看 | 国内揄拍国产精品人妻在线 | 亚洲国产日韩欧美精品在线观看 | 性欧美人与动物交配| 9191精品国产免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 99国产精品一区二区蜜桃av| 黄色丝袜av网址大全| 婷婷精品国产亚洲av| 国产不卡一卡二| 国产高清有码在线观看视频 | 丰满人妻熟妇乱又伦精品不卡| 老熟妇乱子伦视频在线观看| 1024香蕉在线观看| 1024手机看黄色片| 久久青草综合色| 老熟妇仑乱视频hdxx| 久久久水蜜桃国产精品网| 好男人在线观看高清免费视频 | 久久中文字幕一级| 99久久综合精品五月天人人| 国产精品免费视频内射| 欧美黑人欧美精品刺激| 99在线视频只有这里精品首页| 精品久久久久久久久久免费视频| 一进一出抽搐gif免费好疼| 久久久水蜜桃国产精品网| 操出白浆在线播放| 国产伦在线观看视频一区| 国产三级在线视频| 国产高清有码在线观看视频 | 怎么达到女性高潮| 久久欧美精品欧美久久欧美| а√天堂www在线а√下载| www国产在线视频色| 超碰成人久久| 99re在线观看精品视频| 十八禁人妻一区二区| 精品第一国产精品| 老熟妇仑乱视频hdxx| 亚洲无线在线观看| 中出人妻视频一区二区| 国产亚洲av高清不卡| 欧美激情 高清一区二区三区| 一区二区三区精品91| 国产精品一区二区免费欧美| 嫩草影视91久久| 丝袜美腿诱惑在线| 欧洲精品卡2卡3卡4卡5卡区| 成人av一区二区三区在线看| 极品教师在线免费播放| 国产精品久久电影中文字幕| 999久久久精品免费观看国产| 长腿黑丝高跟| 久久久久久亚洲精品国产蜜桃av| 国产精品99久久99久久久不卡| 婷婷六月久久综合丁香| 日韩大码丰满熟妇| 久久国产亚洲av麻豆专区| 最好的美女福利视频网| 久久久久国内视频| 成人精品一区二区免费| 日本 av在线| 丝袜人妻中文字幕| 麻豆一二三区av精品| 国产精品影院久久| 麻豆av在线久日| 黄色a级毛片大全视频| 少妇粗大呻吟视频| 51午夜福利影视在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国语自产精品视频在线第100页| 丰满的人妻完整版| 人人妻人人澡人人看| netflix在线观看网站| 欧美在线黄色| 午夜精品在线福利| 国产成人精品久久二区二区免费| 男女下面进入的视频免费午夜 | 亚洲自偷自拍图片 自拍| 99re在线观看精品视频| a在线观看视频网站| 夜夜躁狠狠躁天天躁| 99久久久亚洲精品蜜臀av| 90打野战视频偷拍视频| 国产单亲对白刺激| 精品国产亚洲在线| 性色av乱码一区二区三区2| 亚洲男人的天堂狠狠| 中文亚洲av片在线观看爽| 99在线人妻在线中文字幕| 日韩高清综合在线| 很黄的视频免费| 日本撒尿小便嘘嘘汇集6| 观看免费一级毛片| 久久久久免费精品人妻一区二区 | 哪里可以看免费的av片| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱码精品一区二区三区| 亚洲三区欧美一区| 午夜a级毛片| 欧美日韩乱码在线| 给我免费播放毛片高清在线观看| 最新在线观看一区二区三区| 国产av一区在线观看免费| 亚洲av成人一区二区三| 色老头精品视频在线观看| 天天躁夜夜躁狠狠躁躁| 每晚都被弄得嗷嗷叫到高潮| 精品午夜福利视频在线观看一区| 一卡2卡三卡四卡精品乱码亚洲| 日日夜夜操网爽| 在线观看66精品国产| 黑人欧美特级aaaaaa片| 国产熟女午夜一区二区三区| 看黄色毛片网站| 精品不卡国产一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲国产高清在线一区二区三 | 叶爱在线成人免费视频播放| 亚洲人成伊人成综合网2020| 精品国产国语对白av| 精品少妇一区二区三区视频日本电影| 欧美在线黄色| 男女之事视频高清在线观看| x7x7x7水蜜桃| 真人做人爱边吃奶动态| 999久久久国产精品视频| 哪里可以看免费的av片| 99在线视频只有这里精品首页| 日本一本二区三区精品| 国产精品亚洲一级av第二区| 久久亚洲精品不卡| av视频在线观看入口| 欧美日韩福利视频一区二区| 国产精品永久免费网站| 久久精品亚洲精品国产色婷小说| 好男人电影高清在线观看| 亚洲精品美女久久av网站| 一边摸一边抽搐一进一小说| 中文字幕最新亚洲高清| 侵犯人妻中文字幕一二三四区| 欧美日本亚洲视频在线播放| 国产精品av久久久久免费| aaaaa片日本免费| 国产1区2区3区精品| 久久久久久人人人人人| 色综合站精品国产| 国产精品美女特级片免费视频播放器 | 精品卡一卡二卡四卡免费| 国产成人欧美| 亚洲久久久国产精品| 麻豆av在线久日| 亚洲第一电影网av| 欧美精品亚洲一区二区| av欧美777| 久久精品国产亚洲av高清一级| 两人在一起打扑克的视频| 欧美一级a爱片免费观看看 | av天堂在线播放| 国产一区二区激情短视频| 91国产中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 成人永久免费在线观看视频| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩精品亚洲av| 一区二区三区精品91| 最近最新中文字幕大全电影3 | 免费在线观看完整版高清| 国产精品 国内视频| 欧美成人免费av一区二区三区| 国产熟女xx| 熟女电影av网| 免费电影在线观看免费观看| 男人操女人黄网站| 一区二区三区国产精品乱码| 人人妻人人澡欧美一区二区| 精品免费久久久久久久清纯| 久久久国产成人免费| 成年免费大片在线观看| 国产精品一区二区免费欧美| 久热爱精品视频在线9| 男女午夜视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 在线观看午夜福利视频| 亚洲avbb在线观看| 欧美激情久久久久久爽电影| 亚洲国产精品999在线| 亚洲狠狠婷婷综合久久图片| 很黄的视频免费| 久久久久精品国产欧美久久久| 欧美日本视频| 国内少妇人妻偷人精品xxx网站 | 精品第一国产精品| 欧美不卡视频在线免费观看 | 婷婷六月久久综合丁香| 欧美黑人巨大hd| 成熟少妇高潮喷水视频| 天天一区二区日本电影三级| 亚洲国产毛片av蜜桃av| 国产一区二区三区在线臀色熟女| 久久香蕉激情| 看免费av毛片| 日本成人三级电影网站| 久久精品夜夜夜夜夜久久蜜豆 | 午夜福利一区二区在线看| 亚洲av熟女| 欧美成人免费av一区二区三区| 国产精品乱码一区二三区的特点| 欧美又色又爽又黄视频| 亚洲国产毛片av蜜桃av| 天天添夜夜摸| xxxwww97欧美| 99久久99久久久精品蜜桃| 久久精品人妻少妇| 国产三级黄色录像| 后天国语完整版免费观看| 国产aⅴ精品一区二区三区波| 亚洲人成网站在线播放欧美日韩| 精华霜和精华液先用哪个| 精品久久久久久久毛片微露脸| 精品熟女少妇八av免费久了| 精品久久久久久久久久免费视频| 亚洲一区二区三区色噜噜| 亚洲,欧美精品.| 1024手机看黄色片| 可以在线观看毛片的网站| 国产爱豆传媒在线观看 | 两个人视频免费观看高清| 亚洲成a人片在线一区二区| ponron亚洲| 欧美黑人欧美精品刺激| 久久天躁狠狠躁夜夜2o2o| 欧美一级毛片孕妇| 女人爽到高潮嗷嗷叫在线视频| 伊人久久大香线蕉亚洲五| 免费高清在线观看日韩| 国产97色在线日韩免费| 又黄又粗又硬又大视频| 亚洲国产精品999在线| 亚洲一码二码三码区别大吗| 99热这里只有精品一区 | 欧美性猛交黑人性爽| 免费在线观看成人毛片| 色综合婷婷激情| 国产亚洲精品第一综合不卡| 久久中文字幕人妻熟女| 99久久国产精品久久久| 日韩国内少妇激情av| 亚洲专区中文字幕在线| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www| 91九色精品人成在线观看| 亚洲第一av免费看| 欧美黑人巨大hd| 欧美大码av| 亚洲熟女毛片儿| 久久精品国产清高在天天线| 一区二区三区精品91| 男女那种视频在线观看| 少妇粗大呻吟视频| 午夜福利免费观看在线| 国产97色在线日韩免费| 激情在线观看视频在线高清| 久热这里只有精品99| 久久午夜亚洲精品久久| 中文字幕av电影在线播放| 日韩欧美国产一区二区入口| а√天堂www在线а√下载| 国产片内射在线| 老汉色∧v一级毛片| 成人免费观看视频高清| 久久久国产成人精品二区| 白带黄色成豆腐渣| 国产成年人精品一区二区| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| 国产不卡一卡二| 亚洲五月天丁香| 午夜免费鲁丝| 精品电影一区二区在线| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 国产视频一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 久热爱精品视频在线9| 国产精品一区二区三区四区久久 | 99精品在免费线老司机午夜| 99国产极品粉嫩在线观看| 国产成人精品无人区| 天堂影院成人在线观看| 嫩草影视91久久| 欧美日韩乱码在线| 91大片在线观看| 亚洲专区中文字幕在线| 亚洲精品中文字幕一二三四区| 久久午夜综合久久蜜桃| 日韩欧美国产一区二区入口| 欧美zozozo另类| 日本一本二区三区精品| 亚洲自拍偷在线| 一个人观看的视频www高清免费观看 | 真人做人爱边吃奶动态| 午夜a级毛片| 一本一本综合久久| 91在线观看av| 男女做爰动态图高潮gif福利片| 两性夫妻黄色片| 黄色毛片三级朝国网站| 丁香欧美五月| 两性夫妻黄色片| 天天一区二区日本电影三级| 久久精品国产清高在天天线| 日本一区二区免费在线视频| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| 亚洲欧美精品综合一区二区三区| 女性生殖器流出的白浆| 精品久久久久久成人av| 精品卡一卡二卡四卡免费| 村上凉子中文字幕在线| 亚洲精品中文字幕一二三四区| 黄色a级毛片大全视频| 日韩成人在线观看一区二区三区| 日韩三级视频一区二区三区| 人人妻人人澡人人看| 色老头精品视频在线观看| 欧美av亚洲av综合av国产av| 欧美黑人巨大hd| 91九色精品人成在线观看| 久热这里只有精品99| 国产麻豆成人av免费视频| 老司机在亚洲福利影院| 国产黄a三级三级三级人| 精品欧美一区二区三区在线| 日本黄色视频三级网站网址| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 久久中文字幕一级| 夜夜躁狠狠躁天天躁| 亚洲国产毛片av蜜桃av| 制服诱惑二区| 亚洲av五月六月丁香网| 波多野结衣高清作品| 婷婷丁香在线五月| ponron亚洲| 亚洲国产欧美一区二区综合| 中文字幕av电影在线播放| 日韩精品免费视频一区二区三区| 亚洲成av人片免费观看| 一本大道久久a久久精品| 免费在线观看完整版高清| 久久久久久亚洲精品国产蜜桃av| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 亚洲在线自拍视频| 中文字幕人成人乱码亚洲影| 久久香蕉激情| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av日韩精品久久久久久密| 久久伊人香网站| 国产av在哪里看| 禁无遮挡网站| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| www.熟女人妻精品国产| 午夜福利在线在线| 午夜免费激情av| 日韩国内少妇激情av| 黄色视频不卡| 国产高清有码在线观看视频 | 别揉我奶头~嗯~啊~动态视频| 午夜激情av网站| or卡值多少钱| 91老司机精品| 国产一区在线观看成人免费| 好男人在线观看高清免费视频 | cao死你这个sao货| 丁香六月欧美| 18禁国产床啪视频网站| 婷婷丁香在线五月| 国产在线观看jvid| 长腿黑丝高跟| 亚洲国产精品久久男人天堂| 男人舔女人的私密视频| 国产亚洲av嫩草精品影院| 久久精品亚洲精品国产色婷小说| 黄色视频不卡| 欧美大码av| 亚洲国产看品久久| 国产亚洲欧美98| 999久久久精品免费观看国产| 老鸭窝网址在线观看| 女人爽到高潮嗷嗷叫在线视频| 哪里可以看免费的av片| 丰满人妻熟妇乱又伦精品不卡| 国产在线观看jvid| 最近在线观看免费完整版| 久热爱精品视频在线9| 香蕉丝袜av| 中文字幕久久专区| 91麻豆精品激情在线观看国产| 性欧美人与动物交配| 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 久久国产精品影院| 国产黄色小视频在线观看| 亚洲av片天天在线观看| 99在线人妻在线中文字幕| 观看免费一级毛片| 国产私拍福利视频在线观看| 欧美中文综合在线视频| 神马国产精品三级电影在线观看 | 午夜激情福利司机影院| 亚洲精品国产区一区二| 亚洲五月天丁香| 国产精品国产高清国产av| 欧美日韩中文字幕国产精品一区二区三区| 久久国产精品人妻蜜桃| 日韩精品免费视频一区二区三区| 美女 人体艺术 gogo| 悠悠久久av| 欧美乱妇无乱码| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久人妻精品电影| 欧美性长视频在线观看| 亚洲精品粉嫩美女一区| 精品第一国产精品| 在线永久观看黄色视频| 成人亚洲精品av一区二区| 在线视频色国产色| 国产国语露脸激情在线看| 99久久久亚洲精品蜜臀av| 青草久久国产| 一边摸一边做爽爽视频免费| 国产精品久久视频播放| 欧美不卡视频在线免费观看 | 国产精品久久视频播放| 国产乱人伦免费视频| 母亲3免费完整高清在线观看| 757午夜福利合集在线观看| 一夜夜www| 欧美乱色亚洲激情| or卡值多少钱| netflix在线观看网站| 久久久国产精品麻豆| 亚洲国产欧美网| 国产一区二区三区在线臀色熟女| 看片在线看免费视频| 国产一区二区在线av高清观看| 精品一区二区三区av网在线观看| 天堂动漫精品| 国内精品久久久久精免费| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添小说| 天堂√8在线中文| 欧美一级a爱片免费观看看 | 国产精品精品国产色婷婷| 欧美日本视频| or卡值多少钱| 91九色精品人成在线观看| 天天添夜夜摸| 精品第一国产精品| 丁香欧美五月| 成人三级做爰电影| 婷婷精品国产亚洲av在线| 成年免费大片在线观看| 日韩欧美国产一区二区入口| 亚洲国产欧美一区二区综合| 9191精品国产免费久久| 国产一区二区三区在线臀色熟女| 亚洲在线自拍视频| 午夜福利欧美成人| 可以免费在线观看a视频的电影网站| 成人三级黄色视频| 国产亚洲欧美精品永久| 亚洲国产精品sss在线观看| 亚洲第一欧美日韩一区二区三区| 丁香欧美五月| 人妻久久中文字幕网| 精品国产一区二区三区四区第35| 欧美另类亚洲清纯唯美| 中文字幕人成人乱码亚洲影| 日韩欧美在线二视频| 香蕉av资源在线| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 国产精品一区二区免费欧美| 一二三四社区在线视频社区8| 人妻丰满熟妇av一区二区三区| 亚洲精品美女久久久久99蜜臀| 日韩大尺度精品在线看网址| 久久香蕉国产精品| 亚洲国产日韩欧美精品在线观看 | 午夜精品久久久久久毛片777| 老司机靠b影院| 久久久精品国产亚洲av高清涩受| 男人舔奶头视频| 国产单亲对白刺激| 中文字幕人成人乱码亚洲影| 日本在线视频免费播放| 亚洲激情在线av| 夜夜躁狠狠躁天天躁| 亚洲精品粉嫩美女一区| 午夜日韩欧美国产| 叶爱在线成人免费视频播放| 日本熟妇午夜| 日本 欧美在线| 妹子高潮喷水视频| 免费在线观看黄色视频的| 欧美+亚洲+日韩+国产| 国产区一区二久久| 99re在线观看精品视频| 中文在线观看免费www的网站 | 国产精品日韩av在线免费观看| 一级毛片高清免费大全| 免费高清在线观看日韩| 日韩国内少妇激情av| 国产精品 国内视频| 日韩中文字幕欧美一区二区| 欧美色视频一区免费| 999久久久国产精品视频| 亚洲成a人片在线一区二区| 精品国产一区二区三区四区第35| 国产av一区在线观看免费| 国产精品国产高清国产av| 免费观看人在逋| 9191精品国产免费久久| 日本a在线网址| 国产伦一二天堂av在线观看| 免费高清在线观看日韩| 国产伦一二天堂av在线观看| 久久久国产精品麻豆| 天天一区二区日本电影三级| 亚洲国产欧美一区二区综合| 国产精品亚洲一级av第二区| 欧美成人一区二区免费高清观看 | 欧美精品啪啪一区二区三区| 大型av网站在线播放| 亚洲专区国产一区二区| 真人一进一出gif抽搐免费| 午夜福利在线在线| 色综合欧美亚洲国产小说| 香蕉av资源在线| 丁香六月欧美| а√天堂www在线а√下载| 亚洲成人免费电影在线观看| 日韩有码中文字幕|