李赟
摘要:在高中數(shù)學的學習中,學生的主觀能動性顯得很重要,那么在學生自主學習的過程中,一定不能少了對教材的鉆研。數(shù)學教科書是基礎(chǔ)知識的來源,是考試內(nèi)容的依據(jù),所以仔細閱讀教科書,是學好高中數(shù)學必然步驟之一。
關(guān)鍵詞:數(shù)學教科書;學習方法;鉆研教材
中圖分類號:G633.6 文獻標志碼:A?搖 文章編號:1674-9324(2013)50-0162-02
數(shù)學教材是開展數(shù)學教學的主要知識載體,是教學的主要依據(jù)。在高中數(shù)學學習中,掌握好學習數(shù)學的方法,要注意很多方面,在這里我想重點談一下,學習要仔細閱讀和鉆研數(shù)學教材。
一、為什么要讀教材
高中數(shù)學的信息量是較大的,那么閱讀教材,不管是課前的預習,還是課后的復習,都有助于學生把知識融會貫通,在關(guān)鍵時候可以觸類旁通。教師在課堂上講的都是重點,如果學生能結(jié)合課堂學習,做好教材的閱讀,加深對教材上的細節(jié)的理解,那么在解決數(shù)學問題時,就能快速地想出各種解題方法。所以多讀書,能使思維活躍。通過教師的教學和學生自己對教材的鉆研,學生才能熟練地掌握數(shù)學的定義、定理、公式、法則等基礎(chǔ)知識,在解題時才會得心應(yīng)手。
二、讀完教材,要學以致用
同學們讀教材的目的,當然還是要為解題服務(wù)的,那么讀完教材對解題有什么樣的幫助呢。如2013年江蘇省高考試卷中的第13題,“在平面直角坐標系xoy中,設(shè)定點A(a,a),P是函數(shù)y=■(x>0)圖象上一動點,若點P,A之間的最短距離為2■,則滿足條件的實數(shù)a的所有值為_______?!痹诒匦?的教材中,我們可以看到函數(shù)y=x和y=■(x>0)的圖象如圖1,能快速地猜出定點A(a,a)在直線y=x上,所以我們可以畫出它們的函數(shù)圖象,直觀地觀察一下定點A(a,a)與動點P的關(guān)系。因為y=■(x>0)的圖象是關(guān)于直線y=x對稱的,而y=■(x>0)的圖象是凹的,我們可以從圖象上猜出,當a<1時,點A(a,a)與點P(1,1)距離最短,也就是■=2■(a<1),顯然a=-1。這些完全要靠平時對基本函數(shù)y=■的熟練掌握才能猜出來。當然也正靠著對y=■(x>0)這個函數(shù)圖象的了解,我們猜測,當a>1時,a的值不一定是3,也就是不能確定點(3,3)與曲線y=■(x>0)上動點的最短距離是(3,3)與點(1,1)之間的距離如圖2。
那么,我們要試著列式計算一下,假設(shè)動點P為(x,■)則PA的距離為■,化簡可得■合并后,我們發(fā)現(xiàn)這樣的項:■
其中,這個函數(shù)y=x+■在必修1的書后練習中多次出現(xiàn),如果同學們認真鉆研過教材,就會發(fā)現(xiàn):①在奇偶性的教材后面有練習題要證明是奇函數(shù);②在函數(shù)的簡單性質(zhì)的課后習題中有證明題:“求證:函數(shù)f(x)=x+■在區(qū)間(0,1]上是單調(diào)減函數(shù),在區(qū)間[1,+∞)上是單調(diào)增函數(shù)?!庇纱耍谧x教材的時候,同學們有沒有好好地考慮過函數(shù)y=x+■的圖象呢?所以我們可以設(shè)t=x+■,當x>0時,t≥2,從而我們得到一個函數(shù):y=t2-2-2at+2a2,這里為了計算方便我們可以把根號去掉。而這個函數(shù)y=t2-2-2at+2a2是一個二次函數(shù),對于它的最小值的討論就變得順理成章了。
當a<2時,t=2時y=8,所以4-4a+2a2-2=8,化簡得a=3或a=-1,又因為a<2,所以a=-1 綜上所述a=-1或a=■
這一個填空題所考查的內(nèi)容都是基本知識點,可是那么多基礎(chǔ)知識串聯(lián)在一起,我們?nèi)绾卧谟邢薜目荚嚂r間內(nèi)作出快速的反應(yīng)呢?那么只有靠反復仔細的閱讀教材,一邊讀一邊思考,不放過每一個知識點,包括教材上的例題,課后的練習題,每讀一遍,一定會有不同的收獲。
當同學們沉浸在題海之中的時候,不妨抽出時間,多讀幾遍教科書,仔細體會編者的意圖,更好地做出自己的領(lǐng)悟。所以要學好數(shù)學,同學們試著從鉆研教科書做起。