王毅
我們的課堂,應該如何讓學生去經(jīng)歷過程、感受方法、體會思想、領悟精神,一直是數(shù)學教師追求的目標。一次,筆者進行了圓柱體體積的教學,圓柱體體積公式的推導是把圓柱體轉換成學過的立體圖形,發(fā)現(xiàn)它們間的關系。筆者在教學中思考著,如何能讓學生想到圓柱體和長方體的體積間是有關系?筆者首先復習了長方體和正方體的體積計算方法,然后設計了一個“猜”的環(huán)節(jié)。
師:猜一猜圓柱體的體積公式是什么?
學生猜測的結果有:底面積乘以高,底面周長乘以高等。
師:只是猜測,還不行,怎么來驗證我們的猜測是否正確呢?有什么好的辦法嗎?
筆者的預設是學生將圓柱體轉化成學過的立體圖形,下面的驗證環(huán)節(jié)就能進行。出乎筆者的預料,學生有了下面一段的對話
生1:用這個公式計算出圓柱體的體積,再看體積是不是這樣。
生2:那也不知道你算的體積是不是準確的呀!
生1:我們可以用量杯來測量圓柱體的體積。(在學生認識體積和容積的時候用過這樣的例子)測量后看它們對沒對上,對上了就說明猜測是正確的,對不上說明不行,再想別的辦法。
師:測量一個圓柱體就夠了嗎?怎么辦?
生1:多做幾個實驗就知道了,如果都對上了就不是巧合,就是規(guī)律
師:他的想法可以嗎?這樣的方法可行嗎?那我們給他的方法起個名字。
生:實驗法、轉換法……
師:那我就叫這種方法為實驗法,我感謝同學們給大家啟迪了一個解決問題的新的思路。
筆者課前沒有預設到這個問題,也沒有準備這樣的教具讓學生進行活動。但如果有這樣的教具讓學生去動手操作,一定會推導出圓柱體的體積公式。
(作者單位:內(nèi)蒙古自治區(qū)烏蘭浩特市勝利第一小學 責任編輯:王彬)