蔣 銳 朱岱寅 朱兆達(dá)
(1.南京郵電大學(xué)通信與信息工程學(xué)院,南京,210023;2.南京航空航天大學(xué)電子信息工程學(xué)院,南京,210016)
合成孔徑雷達(dá)(Synthetic aperture radar,SAR)是一種全天候、全天時(shí)的現(xiàn)代高分辨率微波遙感成像雷達(dá)。它利用合成孔徑原理、脈沖壓縮技術(shù),獲得距離向和方位向高分辨的遙感圖像,能夠?qū)Φ匚锬繕?biāo)進(jìn)行大面積的成像。SAR至今已經(jīng)取得了飛速的發(fā)展,被廣泛地應(yīng)用于國民經(jīng)濟(jì)和國防建設(shè)的各個(gè)領(lǐng)域,發(fā)揮了極其重大的作用[1]。
利用SAR干涉技術(shù)測量目標(biāo)的高度信息,實(shí)現(xiàn)目標(biāo)場景的三維成像是SAR遙感技術(shù)的重要應(yīng)用之一。干涉合成孔徑雷達(dá)(Interferometric synthetic aperture radar,InSAR)通過跨航跡觀測,獲取地面同一區(qū)域的復(fù)圖像對(duì),經(jīng)過圖像配準(zhǔn)[2-3]、干涉處理、去平地效應(yīng)[4]、降噪濾波[5-8]以及相位解纏繞[9-14],可以得到復(fù)圖像對(duì)間的絕對(duì)相位差。最后利用該相位差,計(jì)算所觀測區(qū)域中各目標(biāo)高度,從而實(shí)現(xiàn)全天候、大面積、高精度的三維地形測量。
然而在實(shí)際應(yīng)用中,目標(biāo)自身高度會(huì)引起目標(biāo)在方位向和距離向上產(chǎn)生位移,從而導(dǎo)致數(shù)字地形高度圖(Digital elevation model,DEM)中目標(biāo)位置與實(shí)際觀測場景中目標(biāo)位置存在差異[1,15]。本文詳細(xì)分析了圖像中目標(biāo)位移的原因,并具體推導(dǎo)了目標(biāo)在方位向和距離向上的位移量與成像幾何,目標(biāo)高度之間的數(shù)學(xué)關(guān)系,提供了正確定位目標(biāo)真實(shí)位置的方法。通過仿真實(shí)驗(yàn),進(jìn)一步驗(yàn)證了本文理論分析的正確性。
假設(shè)載機(jī)沿X方向勻速直線運(yùn)動(dòng),在正側(cè)視情況下,載機(jī)視線所構(gòu)成的斜平面與X方向平行,此時(shí),目標(biāo)投影至成像平面時(shí),沿X方向不存在偏移。因此,在正側(cè)視情況下,僅需要考慮目標(biāo)自身高度對(duì)于目標(biāo)成像位置在距離向上的影響。
假設(shè)雷達(dá)位于S處,高度為H,與場景中心點(diǎn)O距離為R,其入射角為η。場景內(nèi)任意目標(biāo)P,當(dāng)其高度為0時(shí),該目標(biāo)在斜平面的投影位置為P′;當(dāng)其高度為ht時(shí),如圖1所示,該目標(biāo)在斜平面的投影位置為P′1,對(duì)應(yīng)地平面的投影位置為P1。
圖1 正側(cè)視情況下雷達(dá)成像幾何
圖1中可以明顯看出當(dāng)目標(biāo)自身高度不為0時(shí),其斜平面與地平面的投影位置都相應(yīng)地產(chǎn)生變化。根據(jù)圖1中的成像幾何,可以簡單推算出該目標(biāo)在斜平面的投影位移ΔR′和地平面的投影位移ΔR分別為
由式(1,2)可得
顯然,ΔR′即地平面的位移量ΔR在斜平面的投影。由于載機(jī)高度H和雷達(dá)作用距離R已知,在正側(cè)視條件下,有
將式(4)代入式(1,2)中,得到
利用InSAR處理估計(jì)目標(biāo)的高度信息ht,通過式(5-6),根據(jù)成像算法中距離向分辨單元長度,計(jì)算得到目標(biāo)在圖像中的位移量,可以將目標(biāo)準(zhǔn)確定位回其真實(shí)位置所對(duì)應(yīng)的像素單元中。
仿真場景由9個(gè)具有單位反射系數(shù)的點(diǎn)目標(biāo)組成,在場景中心處有一點(diǎn)目標(biāo),其余8個(gè)點(diǎn)目標(biāo)對(duì)稱分布在以場景中心為圓心,半徑為100m的圓上,雷達(dá)成像主要參數(shù)如表1所示。
表1 雷達(dá)工作參數(shù)
首先采用極坐標(biāo)格式算法(Polar format algorithm,PFA)在地平面對(duì)場景進(jìn)行成像。該算法先對(duì)雷達(dá)回波數(shù)據(jù)分別進(jìn)行方位向和距離向的插值處理,再通過在距離向和方位向分別作傅里葉變換,最終實(shí)現(xiàn)目標(biāo)聚焦。插值后圖像距離向分辨單元長度為0.668。仿真結(jié)果如圖2所示。
根據(jù)圖像分辨單元長度以及式(6)中所推導(dǎo)目標(biāo)隨自身高度在地平面的位移量,可以計(jì)算目標(biāo)在圖像中的理論偏移值
將其與實(shí)際仿真結(jié)果對(duì)比,如表2所示,發(fā)現(xiàn)所計(jì)算理論位置與實(shí)際仿真結(jié)果一致。
為了探究不同成像算法,不同成像平面,同一目標(biāo)但自身高度不同的情況下,對(duì)目標(biāo)偏移量的影響,在相同雷達(dá)工作參數(shù)下,選擇Chirp Scaling算法(CSA),對(duì)改變各目標(biāo)高度信息后的同一仿真場景在斜平面進(jìn)行成像。該成像算法利用兩維匹配濾波,實(shí)現(xiàn)目標(biāo)聚焦。仿真結(jié)果如圖3所示。
根據(jù)表1所示雷達(dá)工作參數(shù),計(jì)算圖像距離向分辨單元長度pixely為
圖2 PFA算法地平面成像
表2 PFA算法地平面成像點(diǎn)目標(biāo)坐標(biāo)
圖3 CSA算法斜平面成像
根據(jù)式(5)中所推導(dǎo)目標(biāo)隨自身高度在斜平面的位移量,可以計(jì)算目標(biāo)在圖像中的理論偏移值
將其與實(shí)際仿真結(jié)果對(duì)比,如表3所示,發(fā)現(xiàn)所計(jì)算理論位置與實(shí)際仿真結(jié)果一致。說明目標(biāo)隨自身高度在圖像中的位移量并不受成像算法的影響,僅與雷達(dá)成像幾何及圖像分辨單元大小有關(guān),且正如本文所分析,目標(biāo)在斜平面的偏移量就是該目標(biāo)的地平面偏移量在斜平面的投影。不失一般性,在后續(xù)的理論分析和仿真實(shí)驗(yàn)中,僅分析和討論利用PFA算法對(duì)目標(biāo)場景在地平面進(jìn)行成像。
表3 CSA算法斜平面成像點(diǎn)目標(biāo)坐標(biāo)
在斜視情況下,假設(shè)載機(jī)沿X方向勻速直線運(yùn)動(dòng),在地平面上定義垂直于載機(jī)方向?yàn)槟繕?biāo)場景距離向Y。此時(shí)不同于正側(cè)視情況,雷達(dá)視線所構(gòu)成的斜平面與由載機(jī)運(yùn)動(dòng)方向所定義的目標(biāo)場景方位向X存在夾角,目標(biāo)投影至成像平面時(shí),沿X,Y兩個(gè)方向均存在一定的偏移。因此,在斜視情況下,不僅需要考慮目標(biāo)自身高度對(duì)于目標(biāo)成像位置在距離向上的影響,同時(shí)還要考慮其方位向的偏移。
假設(shè)在位置S處,高度為H的雷達(dá),與場景中心點(diǎn)O距離為R,其入射角為η,斜視角為φ。如圖4(a)所示,雷達(dá)視線所構(gòu)成的斜平面與場景方位向X,距離向Y的夾角分別為ηx和ηy。根據(jù)式(2),可以得到高度為ht的任意目標(biāo),在地平面沿場景方位向X和距離向Y的投影偏移量ΔRx和ΔRy
圖4(b)為雷達(dá)成像幾何在地平面的投影。定義雷達(dá)視線方向在地平面的投影Y′為圖像距離向,垂直于該方向的X′為圖像方位向。在斜視情況下,目標(biāo)場景坐標(biāo)系和圖像坐標(biāo)系之間夾角為φg。結(jié)合圖4(a)和圖4(b),有
式中
圖4 斜視情況下雷達(dá)成像幾何
利用式(16~17)中所示目標(biāo),由自身高度沿X,Y方向上的偏移量,確定目標(biāo)在圖像中的偏移范圍,根據(jù)圖5中所示幾何關(guān)系,轉(zhuǎn)換求得目標(biāo)在圖像坐標(biāo)系中對(duì)應(yīng)沿X′,Y′方向上的偏移量
圖5 目標(biāo)位置偏移量轉(zhuǎn)換幾何關(guān)系
觀察式(20~21),與正側(cè)視情況下分析所得式(6)中結(jié)果一致。由于載機(jī)高度H,作用距離R和斜視角φ均已知,可以先利用InSAR處理估計(jì)得到目標(biāo)的高度信息ht,再通過式(18~19),根據(jù)圖像方位向和距離向的分辨單元長度,計(jì)算目標(biāo)在圖像中的位移量,準(zhǔn)確定位目標(biāo)真實(shí)位置所對(duì)應(yīng)的像素單元。
圖6 PFA算法地平面成像
觀察圖6(a),發(fā)現(xiàn)在斜視情況下,由于目標(biāo)場景坐標(biāo)系和圖像坐標(biāo)系之間存在夾角φg,所以圖像相比較于圖2(a)存在明顯的旋轉(zhuǎn)。在圖6(b)中,可以看到目標(biāo)因?yàn)樽陨砀叨?,在方位向和距離向上均產(chǎn)生了明顯位移。根據(jù)式(16~19),計(jì)算目標(biāo)的理論偏移值
將其與仿真結(jié)果進(jìn)行比較,如表4所示。仿真實(shí)驗(yàn)證明,本文分析理論偏移值與實(shí)驗(yàn)結(jié)果一致。
表4 PFA算法地平面成像點(diǎn)目標(biāo)坐標(biāo)
利用SAR干涉技術(shù)測量目標(biāo)的高度信息,對(duì)目標(biāo)場景進(jìn)行三維成像時(shí),目標(biāo)會(huì)由于自身高度在圖像上產(chǎn)生相應(yīng)的位移,從而導(dǎo)致DEM中目標(biāo)位置與實(shí)際觀測場景中目標(biāo)位置不一致。本文從正側(cè)視情況出發(fā),分析了目標(biāo)隨自身高度在圖像中產(chǎn)生位移的原因,并從簡單的正側(cè)視情況推廣到較為復(fù)雜的斜視情況,推導(dǎo)了目標(biāo)在DEM中的位移量與成像幾何,目標(biāo)高度之間的數(shù)學(xué)關(guān)系,提供了正確定位目標(biāo)位置的理論依據(jù)。通過仿真實(shí)驗(yàn),驗(yàn)證了本文理論分析的正確性。
[1] Jakowatz C J V,Daniel E W,Paul H E,et al.Spotlight mode synthetic aperture radar[M].Boston:Kluwer Academic Publishers,1996.
[2] Piotr Samczynski, Krzysztof S Kulpa.Coherent mapdrift technique [J].IEEE Trans on Geoscience and Remote Sensing,2010,48(3):1505-1517.
[3] Ryo Natsuaki,Akira Hirose.SPEC method-A fine coregistration method for SAR interferometry [J].IEEE Trans on Geoscience and Remote Sensing,2011,49(1):1505-1517.
[4] Curlander J C.Location of spaceborne SAR imagery[J].IEEE Trans on Geoscience and Remote Sensing,1982,20(3):359-364.
[5] Carlos Lopez Martinez,Xavier Fabregas.Modeling and reduction of SAR interferometric phase noise in the wavelet domain[J].IEEE Trans on Geoscience and Remote Sensing,2002,40(12):2553-2566.
[6] Liao Guisheng,Li Hai.Estimation method for In-SAR interferometric phase based on generalized correlation steering vector[J].IEEE Trans on Aerospace and Electronic Systems,2010,46(3):1389-1403.
[7] Bian Yong,Mercer B.Interferometric SAR phase filtering in the wavelet domain using simultaneous detection and estimation [J].IEEE Trans on Geoscience and Remote Sensing,2011,49(4):1396-1416.
[8] Li Hai,Liao Guisheng.An estimation method for In-SAR interferometric phase based on MMSE criterion[J].IEEE Trans on Geoscience and Remote Sensing,2010,48(3):1457-1469.
[9] 李海,吳仁彪.基于加權(quán)聯(lián)合導(dǎo)向矢量模型的InSAR干涉相位估計(jì)[J].數(shù)據(jù)采集與處理,2012,27(2):131-137.Li Hai,Wu Renbiao.Estimation method for InSAR interferometric phase based on weight joint steering vector[J].Journal of Data Acquisition and Processing,2012,27(2):131-137.
[10]Wei Xu,Ian Cumming.A region growing algorithm for InSAR phase unwrapping [J].IEEE Trans on Geoscience and Remote Sensing,1999,37(1):124-134.
[11]Mark D P,Jerome S S.Least-squares two-dimensional phase unwrapping using FFT′s [J].IEEE Trans on Geoscience and Remote Sensing,1994,32(3):706-708.
[12]Zhong Heping,Tang Jinsong,Zhang Sen,et al.An improved quality-guided phase-unwrapping algorithm based on priority queue [J].IEEE Geoscience and Remote Sensing Letters,2011,8(2):364-368.
[13]Yamaki Ryo, Hirose Akria.Singularty-spreading phase unwrapping [J].IEEE Trans on Geoscience and Remote Sensing,2007,45(10):3240-3251.
[14]Zhang Kui,Ge Linlin,Hu Zhe.Phase unwrapping for very large interferometric data sets [J].IEEE Trans on Geoscience and Remote Sensing,2011,49(10):3240-3251.
[15]宮記松,趙振宇,馮星,等.基于幾何解析的雙雷達(dá)地面目標(biāo)定位算法[J].數(shù)據(jù)采集與處理,2012,27(5):620-624.Gong Jisong,Zhao Zhenyu,F(xiàn)eng Xing,et al.Location algorithm for ground target using twin-radar system based on geometry analytic method[J].Journal of Data Acquisition and Processing,2012,27(5):620-624.