• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    F-+CH3Cl→CH3F+Cl-反應(yīng)過程中的分子形貌變化

    2012-12-21 06:33:40張明波宮利東
    物理化學(xué)學(xué)報 2012年5期
    關(guān)鍵詞:親核遼寧大連電子密度

    張明波 宮利東

    (1遼寧中醫(yī)藥大學(xué)藥學(xué)院,遼寧大連116600;2遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    F-+CH3Cl→CH3F+Cl-反應(yīng)過程中的分子形貌變化

    張明波1,2宮利東2,*

    (1遼寧中醫(yī)藥大學(xué)藥學(xué)院,遼寧大連116600;2遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    雙分子親核(SN2)反應(yīng)是重要的基本有機反應(yīng)之一,其中電子從親核基團向離去基團的轉(zhuǎn)移發(fā)揮著關(guān)鍵作用.利用從頭計算方法CCSD(T)/aug-cc-pVDZ和我們發(fā)展的分子形貌理論,對反應(yīng)F-+CH3Cl→CH3F+Cl-進行了研究,給出了反應(yīng)過程中分子形狀和電子轉(zhuǎn)移的動態(tài)變化圖像.結(jié)果表明,沿內(nèi)稟反應(yīng)坐標,從反應(yīng)開始到生成反應(yīng)前復(fù)合物,親核試劑F-的分子內(nèi)稟特征輪廓在緩慢收縮,而其上的電子密度在緩慢增大.此后,F的輪廓迅速膨脹,電子密度急劇下降,尤其是從過渡態(tài)到產(chǎn)物復(fù)合物的過程中.而在反應(yīng)過程中,離去基團Cl的輪廓一直在收縮,其上的電子密度一直在增大.對反應(yīng)過程中電子所受到作用勢的研究表明,隨著反應(yīng)的進行,電子在F與C間受到的作用勢逐漸降低,而在C與Cl間受到的作用勢逐漸升高,清楚地展現(xiàn)反應(yīng)過程中F與C間化學(xué)鍵生成和C與Cl間化學(xué)鍵斷裂的動態(tài)過程.

    從頭計算;分子形貌理論;SN2反應(yīng);電子轉(zhuǎn)移;反應(yīng)機理

    1 Introduction

    Bimolecular nucleophilic substitution(SN2)reactions are one of the fundamental organic reactions,which have been paid great attention from both theoretical and experimental points of view.1-10In particular,halogen exchange reactions of CH3X+Y-→CH3Y+X-(X and Y are halogen atoms),as the simplest prototypes for SN2 reactions,have been extensively studied.11-15Some features of this kind of reactions have been well established.Both theoretical and experimental studies indicate that the preferred gas-phase reaction pathway of such reaction involves a backside attack of the halide ion,Y-,at the carbon atom followed by the familiar“Walden inversion”of the CH3group.16The resulting potential energy profile can be characterized by two local-minima,formed by the association of halide ion with the dipolar halomethane due to the strong attraction between them and separated by a central barrier.1

    Lots of computational studies have been performed on the SN2 reactions,which have provided quantitative information about the reaction energy potential profiles.14,17-21Various methods including HF,MP2,QCISD,CCSD(T),and G2(+)have been used to study the title reaction,presenting a central barrier ranging from 0 to 26 kJ·mol-1.17-21The barrier obtained with MP2(full)/6-31++G**is 25.56 kJ·mol-1.19Studies performed by Gonzales et al.20indicate that B3LYP method gave a transition structure too low in energy compared to CCSD(T)method. By using CCSD(T)method with a basis set of aug-cc-pVQZ, Botschwina et al.21present a definitive theoretical study,recommending that the central barrier should be(13.8±1.3)kJ·mol-1.

    Chemists are interested in not only obtaining accurate results for energetics of chemical reactions,but also exploring other important factors during the reaction process,such as the spatial and electron density changing features.For SN2 reactions,some progresses have already been made toward this end.22-25For instance,by subdividing the charge density and energy into contributions from spatially defined fragments of the total system,Bader et al.22presented a detailed study of the redistribution of the charge density and energy changes for the two gas SN2 reactions.Knoerr and Eberhart23employed several density-based parameters to predict the reactivity of a series of SN2 reactions,and showed that the obtained results correlated well with those from energy-based parameters.Using an ab initio modern valence bond calculation,Blavins and Copper24investigated the influence of the strength of nucleophile and the size of R group on the electronic rearrangements in a series of SN2 identity reactions(X-+RX,X=F,Cl).Geerlings and coworkers25interpreted the variations of the exothermicity and the central barrier of the SN2 reactions(CH3X+Y-→CH3Y+X-) with halogenatoms X and Y,in terms of the hard and soft acids and bases principle(HSAB).In addition,they found that the increase in the electronegativity of Y will decrease the central barrier,but increase the exothermicity of the reactions.

    Recently,Yang et al.26-37have developed a novel model for describing a molecule,the molecular face theory(MFT),based on the potential acting on an electron in a molecule(PAEM). The molecular face is an intrinsic characteristic of molecule, which can present the molecular shape and electron density distribution at the same time.In addition,the molecular recognition and regioselectivity involved in Markovnikov reactions of alkenes have been successfully explained in terms of MFT.36More recently,the molecular face surface area(MFSA)and molecular face volume(MFV)were defined and calculated by a program of our own.It is found that the MFSA and MFV had significant linear correlations with those of the commonly used hard-sphere model and the electron density isosurface.37

    Previous studies have shown that the essence of a SN2 reaction is the transfer of an electron from the nucleophile to the leaving group,and thus the tendency of electron transfer is closely related to the reactivity of a SN2 reaction.38The goal of this work is not to obtain quantitative information about the potential energy surface,which has been well done by others,but to describe the spatial changing and electron transfer features during the reaction course of F-+CH3Cl→CH3F+Cl-in a more vivid way by applying the MFT.

    2 Theoretical and computational details

    2.1 Molecular face theory

    We first introduce the potential acting on an electron in a molecule,on which the definition of the molecular face(MF) is based.For a molecule in electronic ground state,the PAEM can be expressed as32where the first term on the right of Eq.(1)is the attractive potential from all nuclei,the second term is the repulsive potential created by other electrons in the system;ZAis the nuclear charge of atom A,rAis the distance between the electron considered and the nucleus A,summation involving index A is over all atomic nuclei;ρ(r)represents the one-electron density of an electron appearing at position r,and ρ(r,r?)is the two-electron density function,i.e.the probability of finding one electron at r and at the same time finding another electron at r?.

    Considering an electron move within a molecule,its kinetic energy varies with its position relative to other particles in the molecule.If at a special position r,its energy is the same as the potential acting on it,which means that its average kinetic energy is equal to zero,and then r is called a classical turning point of the electron movement.Assuming that the potential,i.e. PAEM,is equal to the minus value of the first vertical ionization potential of this molecule,then we have the classical turning point equation of this electron movement,V(r)=-I,where I is the first vertical ionization potential of the molecule.The molecular intrinsic characteristic contour(MICC)can be defined as the assembly of the classical turning points as the following expression.26-31,34-37in which G denotes the MICC.The MICC has a clear physical meaning as it is an iso-PAEM contour where the PAEM(or one-electron energy)equals the minus ionization potential(-I) of the molecule.Thus,the MICC is a characteristic boundary of the electron movement;outside it is classical-forbidden while inside it is classical-permitted for an electron movement. The electron density distribution on the MICC called frontier electron density or molecular face electron density(MFED),35-37is also a remarkable feature of a molecule.The MFED is a direct indicator of electrophilic and nucleophilic stereo-reactivity and molecular interactions,including hydrogen bonding.35,36When MFED is mapped on the MICC,the MF is defined.35-37The MF,figuratively speaking,can be viewed as an intuitive“face”or an intrinsic characteristic“fingerprint”of a molecule,and it provides not only the spatial but also electron density distribution information of a molecule.

    2.2 Computational details

    In the present work,all geometrical structures considered were optimized at the CCSD(T)/aug-cc-pVDZ level,39-41which has been shown to be necessary to obtain reliable results for the reaction.42With the same model,vertical ionization potentials of these structures were calculated,which is a prerequisite for obtaining the MICC.The calculations mentioned above were carried out with Gaussian 03 program.43

    The PAEM and physical quantities in Eq.(1)were calculated by the configuration interaction method with all single and double substitutions in conjunction with 6-31+G(2d,p)basis set using the ab initio MELD program44and the in-house program developed by us.By a large number of calculations,the PAEM was obtained at each point of a grid covering the molecule, with certain spacing between the grid points.According to Eq. (2),the MICC was obtained by interpolation.Visualization plots of MF were implemented by the MATLAB 7.045and a program of our own.

    3 Results and discussion

    3.1 MFs of CH3F and CH3Cl

    At first,we calculated the molecular faces of CH3F and CH3Cl,presented in Fig.1,where the MFED is denoted by the color index on the right of the picture.So the magnitude of MFED is represented by its darkness,that is,the darkest place has the maximum MFED,and the brightest place has the minimum MFED.It can be seen that the MFs of CH3F and CH3Cl are similar to each other in both shape and electron density distribution.For both of halomethanes,the electron density on the halogen atom region is larger than that on the methyl group region.This is consistent with the fact that in a halomethane the halogen atom can draw bonding electrons towards itself,due to its higher electronegativity relative to methyl group.It has been well established both theoretically and experimentally that the backside attack of the halide ion on the halomethane is more favorable for a SN2 reaction than that from the frontside.42The observed stereoselectivity may partly be explained by difference in the electron density on the MF.Since the nucleophile is negatively charged,larger electron density is unfavorable for the access of the nucleophile due to electrostatic repulsion.So the attack of nucleophile on electron-deficient backside of the halomethanes is preferable to the attack on the electron-rich frontside.

    3.2 Variables for depicting the variations of MF

    To get a full view of the variations of the MFs during the SN2 reaction considered,six snapshots on the C3vpotential energy surface(PES)were considered.Besides the prereaction complex c,the transition structure d,and the product complex e,another two structures,a and b on the reactant side of the PES and one structure f on the product side were also considered.The geometries of c,d and e were obtained by geometrical optimization at the CCSD(T)/aug-cc-pVDZ level with a geometrical constraint of C3vsymmetry.Under the same constraint,the structures of a,b and f were optimized by fixing the bond length of r(C―F)at 0.348,0.320,and 0.143 nm,respectively.The geometries obtained are listed in Table 1,together with the ionization potentials and the Mulliken charges calculated with the same method.The reaction barrier we obtained without zero-point energy correction is 8.36 kJ·mol-1,consistent with result ofAngel and Ervin,42calculated at the same level,but lower than the value((13.8±1.3)kJ·mol-1)of the benchmark calculation at the CCSD(T)/aug-cc-pVQZ level.21The difference is due to relatively small basis set adopted by us,according to the work of Gonzales et al.,20who have performed a systematic study on the effect of basis set on the reaction barrier of the same reaction.

    Fig.1 Molecular faces of(a)CH3F and(b)CH3ClD:electron density

    To display the MFs,the following visual angle is chosen:the atoms F,C,and Cl are positioned along the C3vaxis from left to right in turn;keep one of F―C―H plane perpendicular to the paper plane with the hydrogen atom pointing outward.To quan-titatively demonstrate the changing features of molecular face, we defined several parameters.Fig.2 is one of the C3vcut-plane of the MFs of structure a.The C3vaxis has four crossing points with the MF of structure a,starting from left side of atom F,denoted by Fout,Fin,CF,and Cloutin turn.In the case of structure f (see Fig.3(f)),the corresponding four points are denoted by Fout,CCl,Clin,and Clout.In the following,the distances from these points to the corresponding nuclei and electron densities on these points are employed to delineate the spatial and electron density variations of MF during the reaction course.For example,the distance from the point of Foutto the fluorine nucleus is denoted by r(Fout),and the electron density on Foutis denoted by D(Fout).

    Table 1 Geometrical parameters(length in nm and angle in degree),vertical ionization potentials,Mulliken charges and Dpbcomputed with CCSD(T)/aug-cc-pVDZ level

    Fig.2 Representative characteristic points employed to delineate the shape and electron density evolutions of the reaction system

    3.3 Variations of MFs during the reaction course

    The MFs of each structure(a-f)involved in the reaction pathway are depicted in Fig.3(a-f),respectively.Representative charateristic distances and electron densities on the MFs for structures(a-f)are listed in Table 2.Note that in the following discussion,we use F and Cl to represent fluorine and chlorine element regardless of their true charged state for the sake of simplicity.

    For structure a,where r(C―F)=0.348 nm,the contour of F keeps separated from that of CH3Cl,as shown in Fig.3(a).This means that there exists a classical forbidden region for electron movement between F and CH3Cl and electrons transfer from F to CH3Cl is prohibited.An impressing feature of Fig.3(a)is that the electron density on the F is evidently larger than that on CH3Cl.D(Fout)is tens of times larger than D(Clout)as listed in Table 1.This indicates that at this moment the extra electron of system mainly locates on the F,which is supported by the calculated Mulliken charge of F(-0.990 a.u.).Our calculations show that r(Fin)is 0.016 nm longer than r(Fout),which means that the contour of F expands towards CH3Cl and the interpolarization between F and CH3Cl has taken place.

    As F approaches further to CH3Cl,forming the structure b, where r(C―F)=0.320 nm,the MF of F begins to contact with that of CH3Cl,as shown in Fig.3(b).It is evident that the contour of Fis strongly polarized and swells towards CH3Cl.In the structure b,the classical forbidden region between F and CH3Cl disappears,so the electrons begin to flow between them.This can be viewed as a starting point for the bond forming between F and CH3Cl.However,the electron density on F region remains larger than CH3Cl,as reflected by the color of MF.The Mulliken charge of F(-0.982 a.u.)still keeps close to-1,which indicates that no evident electron transfer occurs as yet.

    Structure c is a prereaction complex formed between F andCH3Cl.As shown in Fig.3(c),the contour of F has fused with that of CH3Cl into a whole in structure c.The electron density on the F region is still larger than that on the Cl region,as indicated by the color of MF of Fig.3(c).According to our calculations,D(Fout)is 7.473×10-3a.u.,much larger than D(Clout),being 0.594×10-3a.u..The Mulliken charges of Cl and F are-0.392 and-0.953 a.u.,respectively,which indicates that the extra electron still locates on F atom by now.

    Table 2 Representative characteristic distances and electron densities on the MFs

    Fig.3 Variations of the MF through the reaction of F-+CH3Cl→Cl-+CH3F

    Structure d is the transition state for the title reaction.As shown in Fig.3(d),the electron density on the MF of F becomes evidently smaller than the previous structures,while that of Cl becomes larger.This indicates that the extra electron has transferred from F to Cl to a certain degree.But the color of MF for F is still darker than that of Cl.In accord with this, the Mulliken charge of F(-0.900 a.u.)is more negative than that of Cl(-0.691 a.u.).Therefore,the electron transfer has only partly fulfilled at the transition state.

    The most obvious changes of the MFs take places from structure d to e,and the latter is the product complex of the reaction.The MF of e is shown in Fig.3(e).The conjoint part between F and C swells evidently with a 0.67 a.u.increasement of r(Fver),while the region that between Cl and C shrinks inward with a 0.16 a.u.decreasement of r(Clver).At the same time,the electron densities on the MF of F greatly decrease dozens of times,and D(Fout)and D(Fver)decrease from 6.00× 10-3and 4.80×10-3a.u.to 0.17×10-3and 0.18×10-3a.u.,respectively;while the electron densities on the MF of Cl greatly get larger,as a result,D(Clout)and D(Clver)consumedly exceed the corresponding D(Fout)and D(Fver).The Mulliken charge of Cl (-0.980 a.u.)also becomes more negative than that of F (-0.633 a.u.),which indicates that the extra electron of the system has almost totally transferred to Cl.This indicates that there is strong bonding effect between F and C,and the bonding interaction of Cl and C gets weaker.

    In structure f,the contour of Cl has separated with that of CH3F completely as shown in Fig.3(f).Similar to the structure a,a classical forbidden region for electron movement appears between CH3F and Cl.There exists evident difference in the electron densities on the MFs of CH3F and Cl.The electron density of Cl region is much larger than that of the CH3F. D(Fout)is 0.07×10-3a.u.,while D(Clout)is 6.13×10-3a.u..This implies that the extra electron is totally localized in the region of Cl,which is corroborated by the calculated Mulliken charge of Cl(-0.994 a.u.).

    It is also interesting to note that the volumes of F and Cl change through the reaction process.In general,the volume of F increases while that of Cl decreases.For instance,from structure a to f,r(Fver)increase from 0.142 to 0.232 nm;on the contrary,r(Clver)decreases from 0.264 to 0.173 nm.Essentially,the molecular face is an iso-PAEM contour,and the variations in atomic size reflect the changes of their electron density.

    3.4 Variation of PEAM through the reaction

    Essentially,chemical reaction is a process,in which electron redistribution occurs among the reagents.So it is natural to describe a chemical reaction with the property of electrons in molecules.Bader contributed distinctive work in this field with atoms in molecule(AIM)theory,which has been widely used to study bond forming/breaking with a certain extent of success.46

    Bond-forming between two reagents means that they can share their electrons with each other.That is to say,electrons are permitted to shuttle between two atoms in case of bonding. The PAEM is the potential felt by an electron in a molecule and thus reflects the easiness for an electron moving from one position to another.So the PAEM can be used as an indicator for the bond strength between two atoms.Here,we calculated the PAEM along the F―C―Cl axis for the six structures shown in Fig.3,and the variations of the PAEM were depicted in Fig.4.It can be seen that the PAEM at atomic nuclei is negatively infinite and rises sharply as the distance of electron to the nucleus increases.This means that there exists a potential well around each nucleus,which traps electrons around the vi-cinity of nuclei as much as possible.Our previous studies32showed that the PAEM surface has a saddle point along a chemical bond,and the energy gap from it to the energy level of zero is defined as Dpb.Dpbhas good linear correlations with the force constant and bond length,and hence characterizes the strength of chemical bond.The calculated Dpbfor the structures considered were listed in Table 1.

    Fig.4 Variations of the PAEM along the F―C―Cl axis through the reaction course

    In structure a,F and CH3Cl are far from each other,the highest point of the PAEM between F and C atom is-0.1072 a.u., which is higher than the minus of the ionization potential (-I=-0.119 a.u.).This implies that,at this moment,electrons of each reagent are localized to itself and no exchange between them is permitted.For structure b,the highest point of PAEM between atoms F and C is-0.153 a.u.,which is lower than the corresponding-I(-0.138 a.u.).So from this point,electrons are allowed to flow between two reagents and a chemical bond begins to form between F and C.As two reagents get closer gradually,viz.from structure c to f,the PAEM between F and C lowers gradually,indicating that more electrons can shuttle between two atoms and C―F bond is strengthened gradually. In contrast,the PAEM between the leaving group Cl and C increases from-1.345 to-0.010 a.u.gradually as the reaction proceeds,indicating that as the Cl―C bond gets weaker and weaker,the movement of electrons between them gets more and more difficult and their previously shared electrons are getting localized to the region of each own.In terms of above descriptions,we can see that the PAEM can loyally reflect the processes of bonding-forming and bond-breaking during the title reaction.

    4 Conclusions

    Using the newly developed molecular face theory,in combination with a high level ab initio CCSD(T)/aug-cc-pVDZ method,the shape changing and electron transfer during the reaction course of F-+CH3Cl→Cl-+CH3F are vividly presented.It is found that the electron density mapped on the MFs of CH3F and CH3Cl can soundly explain stereoselectivity for the attack of a nucleophile.As F approaches CH3Cl,evident interpolarization effect is presented by the MFs.In addition,the variations in electron density on the contours can well reflect the electron transfer features,and the sizes of the nucleophile and leaving groups are closely related to the reaction process.Investigations on the potential acting on an electron in a molecule (PAEM)show that,as the reaction progresses,the PAEM gradually decreases between fluorine and carbon,while it gradually increases between carbon and chlorine.This shed light on the dynamic processes of bond-forming between F and C atoms and bond-breaking between C and Cl atoms.The molecular face model can loyally reflect the essential features of shape evolution and electron transfer involved in a reaction.Both the MF and PAEM can be utilized as a useful tool to describe the dynamic progress of the title reaction.

    (1) Brauman,J.I.;Olmstead,W.N.;Lieder,C.J.Am.Chem.Soc. 1974,96,4030.

    (2) Glukhovtsev,M.N.;Bach,R.D.;Pross,A.;Radom,L.Chem. Phys.Lett.1996,260,558.

    (3) Flanagin,L.W.;Balbuena,P.B.;Johnston,K.P.;Rossky,P.T. J.Phys.Chem.1995,99,5196.

    (4) Wladkowski,B.D.;Brauman,J.I.J.Phys.Chem.1993,97, 13158.

    (5) Duke,A.J.;Bader,R.F.W.Chem.Phys.Lett.1971,10,631.

    (6) Tachikawa,H.;Igarashi,M.Chem.Phys.Lett.1999,303,81.

    (7) Li,C.;Ross,P.;Szulejko,J.E.;McMahon,T.B.J.Am.Chem. Soc.1996,118,9360.

    (8) Hase,W.L.;Sun,L.;Song,K.Science 2002,296,875.

    (9) Hase,W.L.Science 1994,266,998.

    (10) Katherine,V.;Benjamin,I.J.Phys.Chem.C 2011,115,2290.

    (11) Glukhovtsev,M.N.;Pross,A.;Radom,L.J.Am.Chem.Soc. 1995,117,2024.

    (12) Chandrasekhar,J.;Smith,S.F.;Jorgensen,W.L.J.Am.Chem. Soc.1985,107,154

    (13) Zhang,J.;William,L.H.J.Phys.Chem.A 2010,114,9635.

    (14) Parthiban,S.;Oliveira,G.;Martin,J.M.L.J.Phys.Chem.A 2001,105,895.

    (15) DeTuri,V.F.;Hintz,P.A.;Ervin,K.M.J.Phys.Chem.A 1997, 101,5969.

    (16) Chabinyc,M.L.;Craig,S.L.;Regan,C.K.;Brauman,J.I. Science 1998,279,1882.

    (17) Wolfe,S.Can.J.Chem.1984,62,1465.

    (18) Shi,Z.;Boyd,R.J.J.Am.Chem.Soc.1990,112,6789.

    (19) Glukhovtsev,M.N.;Pross,A.;Radom,L.J.Am.Chem.Soc. 1996,118,6273.

    (20) Gonzales,J.M.;Cox,R.S.,III;Brown,S.T.;Allen,W.D.; Schaefer,H.F.,III.J.Phys.Chem.A 2001,105,11327.

    (21) Botschwina,P.;Horn,M.;Seeger,S.;Oswald,R.Ber. Bunsen-Ges.Phys.Chem.1997,101,387.

    (22) Bader,R.F.W.;Duke,A.J.;Messer,R.R.J.Am.Chem.Soc. 1973,95,7715.

    (23) Knoerr,E.K.;Eberhart,M.E.J.Phys.Chem.A 2001,105,880.

    (24) Balvins,J.J.;Copper,D.L.J.Phys.Chem.A 2004,108,914.

    (25) Safi,B.;Choko,K.;Geerlings,P.J.Phys.Chem.A 2001,105, 591.

    (26) Yang,Z.Z.;Davidson,E.R.Int.J.Quantum Chem.1996,62, 47.

    (27) Yang,Z.Z.;Zhao,D.X.Chem.Phys.Lett.1998,292,387.

    (28) Gong,L.D.;Zhao,D.X.;Yang,Z.Z.J.Mol.Struc.-Theochem 2003,636,57.

    (29)Yang,Z.Z.;Zhao,D.X.;Wu,Y.J.Chem.Phys.2004,121, 3452.

    (30) Zhang,M.B.;Yang,Z.Z.J.Phys.Chem.A 2005,109,4816.

    (31)Yang,Z.Z.;Gong,L.D.;Zhao,D.X.;Zhang,M.B.J.Comput. Chem.2005,26,35.

    (32) Zhao,D.X.;Gong,L.D.;Yang,Z.Z.J.Phys.Chem.A 2005, 109,10121.

    (33) Gong,L.D.;Zhao,D.X.;Yang,Z.Z.Sci.China Ser.B-Chem. 2005,48,89.

    (34) Shi,H.;Zhao,D.X.;Yang,Z.Z.Acta Phys.-Chim.Sin.2007, 23,1145.[石 華,趙東霞,楊忠志.物理化學(xué)學(xué)報,2007,23, 1145.]

    (35) Zhao,D.X.;Yang,Z.Z.J.Theor.Comput.Chem.2008,7,303.

    (36)Yang,Z.Z.;Ding,Y.L.;Zhao,D.X.ChemPhysChem 2008,9, 2379.

    (37) Gong,L.D.;Yang,Z.Z.J.Comput.Chem.2010,31,2098.

    (38) Polo,V.;Gonzalez,N.P.;Silvi,B.;Andres,J.Theor.Chem.Acc. 2008,120,341.

    (39) Purvis,G.D.,III;Bartlett,R.J.J.Chem.Phys.1982,76,1910.

    (40) Scuseria,G.E.;Janssen,C.L.;Schaeffer,H.F.,III.J.Chem. Phys.1988,89,7382.

    (41) Woon,D.E.;Dunning,T.H.,Jr.J.Chem.Phys.1993,98,1358.

    (42)Angel,L.A.;Ervin,K.M.J.Phys.Chem.A 2001,105,4042.

    (43) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, RevisionA.01.Gaussian Inc.:Pittsburgh,PA,2003.

    (44)Davidson,E.R.MELD Program Description;ESCOM:New York,1990.

    (45) Matlab 7.0,Release 14;The Mathworks Inc.:Natick,MA,2005.

    (46) Bader,R.F.W.Accounts Chem.Rev.1985,18,9.

    December 27,2011;Revised:March 7,2012;Published on Web:March 8,2012.

    Evolution of the Molecular Face during the Reaction Process of F-+CH3Cl→CH3F+Cl-

    ZHANG Ming-Bo1,2GONG Li-Dong2,*
    (1College of Pharmacy,Liaoning University of Traditional Chinese Medicine,Dalian 116600,Liaoning Province,P.R.China;2School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Bimolecular nucleophilic substitution(SN2)reactions are among the fundamental organic reactions,in which electron transfer from the nucleophilic group to the leaving group plays an essential role.We use a high-level ab initio CCSD(T)/aug-cc-pVDZ method in conjunction with our previouslydeveloped molecular face(MF)theory,to investigate the SN2 reaction F-+CH3Cl→CH3F+Cl-.Dynamic representations of molecular shape evolution and electron transfer features throughout the reaction are vividly presented.It is found that along the intrinsic reaction coordinate(IRC),from the beginning of the reaction to the prereaction complex,the molecular intrinsic characteristic contour(MICC)of the nucleophile (F-)contracts slowly,while the electron density on the MICC increases slowly.The MICC of F then expands quickly,and the electron density decreases sharply,especially from the transition state to the product complex.However,for the leaving group(Cl),the MICC contracts,and the electron density increases all along the reaction.Investigations of the potential acting on an electron in a molecule(PAEM)show that,as the reaction progresses,the PAEM gradually decreases between fluorine and carbon,while it gradually increases between carbon and chlorine.This study enhances our understanding of the dynamic processes of bond-forming between F and C atoms and bond-breaking between C and Cl atoms.

    Ab initio calculation;Molecular face theory;SN2 reaction;Electron transfer;Reaction mechanism

    10.3866/PKU.WHXB201203082

    ?Corresponding author.Email:gongjw@lnnu.edu.cn;Tel:+86-411-82158977.

    The project was supported by the National Natural Science Foundation of China(21133005,21073080,21011120087,20703022).

    國家自然科學(xué)基金(21133005,21073080,21011120087,20703022)資助項目

    O641

    猜你喜歡
    親核遼寧大連電子密度
    有機化學(xué)微課設(shè)計思路探討——以雙分子親核取代反應(yīng)為例
    云南化工(2021年9期)2021-12-21 07:44:20
    遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
    顧及地磁影響的GNSS電離層層析不等像素間距算法*
    不同GPS掩星電離層剖面產(chǎn)品相關(guān)性分析
    測繪通報(2019年11期)2019-12-03 01:47:34
    等離子體電子密度分布信息提取方法研究
    一種適用于電離層電子密度重構(gòu)的AMART算法
    孫子垚
    “白草莓”亮相遼寧大連
    A 3-fold Interpenetrated lvt Cd(II) Network Constructed from 4-[(3-pyridyl)methylamino]benzoate Acid①
    有關(guān)親核取代反應(yīng)和β—消去反應(yīng)的教學(xué)思考
    亚洲欧美一区二区三区国产| 免费不卡的大黄色大毛片视频在线观看| 精品久久久久久久久亚洲| 亚洲精品日韩在线中文字幕| 看非洲黑人一级黄片| 色婷婷av一区二区三区视频| 最近最新中文字幕免费大全7| 有码 亚洲区| 国国产精品蜜臀av免费| 18禁在线无遮挡免费观看视频| 我要看黄色一级片免费的| 免费观看的影片在线观看| 国产片特级美女逼逼视频| 日韩一区二区三区影片| 亚洲欧美一区二区三区国产| 啦啦啦在线观看免费高清www| 日韩中字成人| 日本色播在线视频| 久久久久久久久久人人人人人人| 国产精品一区二区在线观看99| 一级毛片aaaaaa免费看小| 久久人人爽人人片av| 免费观看性生交大片5| 精品久久国产蜜桃| 99久久精品热视频| 日日啪夜夜撸| 夫妻性生交免费视频一级片| 人妻 亚洲 视频| 乱人伦中国视频| 热re99久久精品国产66热6| 高清欧美精品videossex| 久久6这里有精品| 精品卡一卡二卡四卡免费| 王馨瑶露胸无遮挡在线观看| 国产精品一二三区在线看| 亚洲图色成人| 亚洲欧美清纯卡通| 丰满饥渴人妻一区二区三| 高清毛片免费看| 中文字幕人妻熟人妻熟丝袜美| 大香蕉久久网| 国产片特级美女逼逼视频| 婷婷色av中文字幕| 精品一区二区三卡| 蜜桃久久精品国产亚洲av| 免费黄网站久久成人精品| 日韩电影二区| 老司机影院毛片| 日韩人妻高清精品专区| 99久久中文字幕三级久久日本| 国产精品成人在线| 一边亲一边摸免费视频| 一本大道久久a久久精品| 99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 美女中出高潮动态图| 熟女av电影| 人妻 亚洲 视频| 亚洲经典国产精华液单| 中文欧美无线码| 丰满人妻一区二区三区视频av| 搡老乐熟女国产| 亚洲婷婷狠狠爱综合网| 婷婷色av中文字幕| 97超碰精品成人国产| 久久久久久久久久人人人人人人| 欧美区成人在线视频| 寂寞人妻少妇视频99o| 成年人免费黄色播放视频 | 国产日韩欧美亚洲二区| 性色av一级| 亚洲精品第二区| 乱人伦中国视频| 欧美老熟妇乱子伦牲交| 精品熟女少妇av免费看| 九九久久精品国产亚洲av麻豆| 久久人人爽人人爽人人片va| 免费观看的影片在线观看| 免费看日本二区| 国产色婷婷99| 亚洲国产毛片av蜜桃av| 国产色婷婷99| 免费观看av网站的网址| 99久久精品热视频| 卡戴珊不雅视频在线播放| 高清欧美精品videossex| 在线观看www视频免费| videos熟女内射| 国产一区二区三区综合在线观看 | 亚洲精品乱码久久久久久按摩| 久久精品国产自在天天线| 久久人人爽人人爽人人片va| 黄色怎么调成土黄色| 久久青草综合色| 女性被躁到高潮视频| 免费看日本二区| 久久婷婷青草| 精品国产露脸久久av麻豆| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网| 久久国产乱子免费精品| 免费观看a级毛片全部| 一本—道久久a久久精品蜜桃钙片| 视频区图区小说| 多毛熟女@视频| 嫩草影院入口| 欧美3d第一页| videos熟女内射| 99re6热这里在线精品视频| 在线观看av片永久免费下载| 国产精品无大码| 一本色道久久久久久精品综合| 中国国产av一级| 亚洲婷婷狠狠爱综合网| 一级黄片播放器| 免费黄色在线免费观看| 国产亚洲精品久久久com| 一级毛片我不卡| 少妇裸体淫交视频免费看高清| 我的女老师完整版在线观看| 嫩草影院新地址| 简卡轻食公司| 免费黄频网站在线观看国产| 久久女婷五月综合色啪小说| 少妇被粗大猛烈的视频| 青春草亚洲视频在线观看| 性色avwww在线观看| 国产无遮挡羞羞视频在线观看| 国产一区有黄有色的免费视频| 人妻制服诱惑在线中文字幕| 深夜a级毛片| 夫妻午夜视频| 在线 av 中文字幕| 97精品久久久久久久久久精品| 嫩草影院入口| 久久久久久人妻| 亚洲,欧美,日韩| 亚洲一区二区三区欧美精品| av在线观看视频网站免费| 97超视频在线观看视频| 久久青草综合色| 麻豆精品久久久久久蜜桃| 欧美一级a爱片免费观看看| h日本视频在线播放| 国产精品成人在线| 亚洲精品国产成人久久av| 美女cb高潮喷水在线观看| 晚上一个人看的免费电影| 国产成人午夜福利电影在线观看| 在线观看av片永久免费下载| 七月丁香在线播放| 亚洲欧美中文字幕日韩二区| 中文在线观看免费www的网站| 久久久国产欧美日韩av| 精品国产一区二区三区久久久樱花| 如日韩欧美国产精品一区二区三区 | 国产亚洲精品久久久com| 大香蕉97超碰在线| 男人爽女人下面视频在线观看| 五月天丁香电影| 国产乱来视频区| 久久99热6这里只有精品| 国产精品久久久久久久久免| 妹子高潮喷水视频| 午夜精品国产一区二区电影| 亚洲图色成人| 中文字幕制服av| 久久精品国产鲁丝片午夜精品| 天堂俺去俺来也www色官网| 人妻系列 视频| 久久久久久久国产电影| 十八禁网站网址无遮挡 | 最新中文字幕久久久久| 校园人妻丝袜中文字幕| 成年av动漫网址| 久久久久国产网址| 少妇人妻一区二区三区视频| 久久 成人 亚洲| 国产精品一二三区在线看| 久久久欧美国产精品| 美女大奶头黄色视频| 国产欧美另类精品又又久久亚洲欧美| 午夜免费鲁丝| 亚洲成人一二三区av| 国产精品不卡视频一区二区| 男人舔奶头视频| 久久久国产一区二区| 美女福利国产在线| 内地一区二区视频在线| 欧美老熟妇乱子伦牲交| 日本与韩国留学比较| 日本av手机在线免费观看| 免费在线观看成人毛片| 国产成人freesex在线| 国产精品成人在线| 91精品国产国语对白视频| 亚洲国产欧美日韩在线播放 | 国产精品蜜桃在线观看| 99热6这里只有精品| 亚洲国产精品国产精品| h日本视频在线播放| 日韩不卡一区二区三区视频在线| 国产高清有码在线观看视频| 国产欧美日韩一区二区三区在线 | 一二三四中文在线观看免费高清| 亚洲精品乱码久久久v下载方式| 超碰97精品在线观看| 国产午夜精品一二区理论片| 亚洲精品,欧美精品| 18禁在线播放成人免费| 一级黄片播放器| 久久久久网色| 久久6这里有精品| 九草在线视频观看| 国产成人freesex在线| 国产一区二区三区综合在线观看 | 国产成人一区二区在线| 亚洲无线观看免费| 少妇高潮的动态图| 伊人亚洲综合成人网| 国产熟女午夜一区二区三区 | 午夜91福利影院| 搡女人真爽免费视频火全软件| 午夜av观看不卡| 久久99精品国语久久久| 精品亚洲乱码少妇综合久久| 最近2019中文字幕mv第一页| 国产无遮挡羞羞视频在线观看| 熟妇人妻不卡中文字幕| 国产精品一区二区在线观看99| 国产欧美另类精品又又久久亚洲欧美| 99久久综合免费| 22中文网久久字幕| 亚洲欧美精品专区久久| 亚洲欧美精品专区久久| 美女福利国产在线| 建设人人有责人人尽责人人享有的| 亚洲av综合色区一区| 亚洲,欧美,日韩| 99热国产这里只有精品6| 热re99久久国产66热| 男人添女人高潮全过程视频| 亚洲精品自拍成人| av在线播放精品| 国产色爽女视频免费观看| 免费高清在线观看视频在线观看| 六月丁香七月| 人妻一区二区av| 极品人妻少妇av视频| 最近2019中文字幕mv第一页| 亚洲无线观看免费| 夫妻午夜视频| 国产色爽女视频免费观看| av播播在线观看一区| 一本久久精品| 国产成人精品福利久久| 国产高清国产精品国产三级| 国产在线一区二区三区精| 美女大奶头黄色视频| 国产成人a∨麻豆精品| 日韩欧美一区视频在线观看 | 国产av一区二区精品久久| 久久久久精品久久久久真实原创| 亚洲精品成人av观看孕妇| 夫妻性生交免费视频一级片| 少妇裸体淫交视频免费看高清| 国产一区有黄有色的免费视频| 街头女战士在线观看网站| 中文字幕精品免费在线观看视频 | 日韩电影二区| 亚洲综合色惰| 中文字幕制服av| 欧美精品人与动牲交sv欧美| 大香蕉97超碰在线| 久久久国产精品麻豆| 久久久精品94久久精品| 日韩成人av中文字幕在线观看| 2018国产大陆天天弄谢| 国产午夜精品久久久久久一区二区三区| 日本av免费视频播放| 久久影院123| 丰满饥渴人妻一区二区三| 熟女av电影| 永久网站在线| 一本色道久久久久久精品综合| 一二三四中文在线观看免费高清| 在线免费观看不下载黄p国产| 国产综合精华液| 亚洲伊人久久精品综合| 亚洲无线观看免费| 久久国产精品大桥未久av | 日韩强制内射视频| 成人无遮挡网站| 欧美丝袜亚洲另类| 国产午夜精品一二区理论片| 看免费成人av毛片| √禁漫天堂资源中文www| 亚洲av在线观看美女高潮| 欧美精品人与动牲交sv欧美| 一本一本综合久久| 久久久久久久久久成人| 亚洲精品国产成人久久av| 少妇精品久久久久久久| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 2022亚洲国产成人精品| 午夜激情福利司机影院| 日韩欧美 国产精品| 一区二区三区免费毛片| 80岁老熟妇乱子伦牲交| 国产亚洲91精品色在线| 国产深夜福利视频在线观看| 观看av在线不卡| 少妇人妻一区二区三区视频| 51国产日韩欧美| 全区人妻精品视频| 大片免费播放器 马上看| 免费看不卡的av| 18禁裸乳无遮挡动漫免费视频| 五月天丁香电影| 免费av不卡在线播放| 午夜免费鲁丝| 久久国产精品男人的天堂亚洲 | 日本与韩国留学比较| 中文乱码字字幕精品一区二区三区| 亚洲av二区三区四区| 亚州av有码| 中文字幕亚洲精品专区| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 成人毛片a级毛片在线播放| 最后的刺客免费高清国语| www.av在线官网国产| 人人澡人人妻人| av专区在线播放| 国产精品人妻久久久影院| 亚洲第一av免费看| 日韩大片免费观看网站| 高清在线视频一区二区三区| 国产成人91sexporn| 嘟嘟电影网在线观看| 久久免费观看电影| 中文乱码字字幕精品一区二区三区| 插逼视频在线观看| 六月丁香七月| 成人毛片a级毛片在线播放| 欧美 亚洲 国产 日韩一| 成人亚洲精品一区在线观看| 中文字幕av电影在线播放| 尾随美女入室| 少妇裸体淫交视频免费看高清| 欧美高清成人免费视频www| 欧美精品国产亚洲| 亚洲第一av免费看| 午夜激情久久久久久久| 免费人成在线观看视频色| 99热网站在线观看| 伊人久久国产一区二区| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 精品酒店卫生间| 天堂8中文在线网| 国产成人午夜福利电影在线观看| av天堂久久9| 成人美女网站在线观看视频| 亚洲av福利一区| 在线观看一区二区三区激情| 精品午夜福利在线看| 高清在线视频一区二区三区| 我的女老师完整版在线观看| tube8黄色片| 国产一区二区在线观看av| 中文字幕亚洲精品专区| 搡女人真爽免费视频火全软件| 中文字幕制服av| av福利片在线| 中文字幕制服av| 久久精品国产自在天天线| 嘟嘟电影网在线观看| 欧美日韩视频精品一区| 在线亚洲精品国产二区图片欧美 | 一二三四中文在线观看免费高清| 三级经典国产精品| 一级毛片我不卡| 成人亚洲欧美一区二区av| 一区二区三区免费毛片| av.在线天堂| 人妻人人澡人人爽人人| 熟女电影av网| 2021少妇久久久久久久久久久| 成人亚洲欧美一区二区av| 午夜91福利影院| 国产高清不卡午夜福利| 婷婷色综合www| 精品熟女少妇av免费看| 老司机影院成人| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 久久99一区二区三区| 老司机影院成人| 亚洲av欧美aⅴ国产| 国产成人aa在线观看| 最新的欧美精品一区二区| 韩国高清视频一区二区三区| 免费观看a级毛片全部| 国产精品蜜桃在线观看| 草草在线视频免费看| 乱码一卡2卡4卡精品| 亚洲一级一片aⅴ在线观看| 久久国产精品男人的天堂亚洲 | 亚洲av男天堂| 久久狼人影院| av一本久久久久| 亚洲精华国产精华液的使用体验| 校园人妻丝袜中文字幕| 五月开心婷婷网| av卡一久久| 免费av不卡在线播放| 性色avwww在线观看| 大话2 男鬼变身卡| 久久精品夜色国产| 亚洲欧美精品专区久久| 色视频www国产| 国产极品天堂在线| 国产精品一二三区在线看| 亚洲精品亚洲一区二区| 国产精品国产三级国产专区5o| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 亚洲av中文av极速乱| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 在现免费观看毛片| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 亚洲真实伦在线观看| 最近的中文字幕免费完整| 22中文网久久字幕| 人妻系列 视频| 日日啪夜夜撸| 免费看日本二区| 欧美精品一区二区免费开放| 美女视频免费永久观看网站| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 老熟女久久久| 国产成人免费观看mmmm| 成年av动漫网址| 菩萨蛮人人尽说江南好唐韦庄| 亚洲不卡免费看| 色婷婷av一区二区三区视频| 精品亚洲成国产av| 啦啦啦在线观看免费高清www| 国产日韩欧美在线精品| 亚洲欧洲精品一区二区精品久久久 | 女人久久www免费人成看片| 91久久精品国产一区二区成人| 国产精品一区二区在线观看99| 99九九在线精品视频 | 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 秋霞在线观看毛片| 欧美日韩视频精品一区| 亚洲不卡免费看| www.色视频.com| 蜜臀久久99精品久久宅男| 国产欧美亚洲国产| 成人国产av品久久久| 少妇被粗大的猛进出69影院 | 色94色欧美一区二区| 色哟哟·www| 国产日韩欧美亚洲二区| 成人毛片a级毛片在线播放| 成人无遮挡网站| 久久精品国产亚洲av涩爱| 精品国产乱码久久久久久小说| 久久国内精品自在自线图片| 国产探花极品一区二区| 99久久中文字幕三级久久日本| 丝袜脚勾引网站| 精品熟女少妇av免费看| 亚洲成人手机| kizo精华| 有码 亚洲区| 免费黄频网站在线观看国产| 国产真实伦视频高清在线观看| 少妇人妻精品综合一区二区| 成人亚洲欧美一区二区av| 成人影院久久| 人妻 亚洲 视频| 亚洲自偷自拍三级| 观看免费一级毛片| 国产精品久久久久久久电影| 我要看黄色一级片免费的| 亚洲激情五月婷婷啪啪| 在线观看www视频免费| 国产熟女午夜一区二区三区 | 免费大片黄手机在线观看| 大片免费播放器 马上看| 欧美精品一区二区大全| 国产无遮挡羞羞视频在线观看| 日韩制服骚丝袜av| 国产成人精品一,二区| 亚洲精品国产色婷婷电影| 看免费成人av毛片| 中文乱码字字幕精品一区二区三区| 国产欧美日韩精品一区二区| 中文字幕av电影在线播放| 在线看a的网站| a级毛色黄片| 精品久久国产蜜桃| 成人美女网站在线观看视频| 人人妻人人添人人爽欧美一区卜| 美女脱内裤让男人舔精品视频| 熟女人妻精品中文字幕| 日韩精品有码人妻一区| 久久国产精品男人的天堂亚洲 | 国产亚洲欧美精品永久| 伦精品一区二区三区| 一区二区三区免费毛片| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美日韩在线播放 | 亚洲精品一二三| 毛片一级片免费看久久久久| 国产免费一级a男人的天堂| 欧美丝袜亚洲另类| 亚洲精品色激情综合| 日日摸夜夜添夜夜添av毛片| 美女内射精品一级片tv| 亚洲一区二区三区欧美精品| 亚洲精品一区蜜桃| 久久午夜综合久久蜜桃| 插逼视频在线观看| 妹子高潮喷水视频| 97超视频在线观看视频| 精品少妇黑人巨大在线播放| 我要看黄色一级片免费的| av播播在线观看一区| 国产精品麻豆人妻色哟哟久久| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产欧美在线一区| 国产精品人妻久久久久久| 欧美日韩国产mv在线观看视频| 婷婷色麻豆天堂久久| 九九爱精品视频在线观看| 久久久精品94久久精品| 国产av精品麻豆| 国产乱来视频区| 成人国产麻豆网| 亚洲人成网站在线观看播放| 能在线免费看毛片的网站| 一区二区三区精品91| 亚洲精品第二区| 只有这里有精品99| 少妇 在线观看| 久久久亚洲精品成人影院| 99久久精品国产国产毛片| 亚洲成人av在线免费| 午夜福利视频精品| 性高湖久久久久久久久免费观看| 国产视频首页在线观看| 高清在线视频一区二区三区| 一本色道久久久久久精品综合| 精品一区二区三卡| 伦理电影免费视频| 国产精品不卡视频一区二区| 亚洲国产精品一区三区| 国产欧美亚洲国产| 一级毛片我不卡| 纵有疾风起免费观看全集完整版| 一级黄片播放器| 日本色播在线视频| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 久热久热在线精品观看| 久久精品国产自在天天线| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 尾随美女入室| 日日爽夜夜爽网站| 国产熟女欧美一区二区| 乱系列少妇在线播放| 国产精品成人在线| 18禁动态无遮挡网站| 成人国产av品久久久| 国产精品秋霞免费鲁丝片| 18+在线观看网站| 我要看黄色一级片免费的| 日韩中字成人| av视频免费观看在线观看| 亚洲综合精品二区| 美女中出高潮动态图| 中国国产av一级| 久久女婷五月综合色啪小说| 黄片无遮挡物在线观看| 久久午夜福利片| 免费观看在线日韩| 春色校园在线视频观看| 久久久久久久久久久久大奶| 一本一本综合久久| 午夜福利在线观看免费完整高清在| 久久久久网色| 国产黄频视频在线观看| 亚洲成人一二三区av| 久久久久久久久大av| av视频免费观看在线观看| av国产精品久久久久影院| 久久婷婷青草| 国产高清国产精品国产三级| 男女无遮挡免费网站观看| 中文精品一卡2卡3卡4更新| 人妻一区二区av|