• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    F-+CH3Cl→CH3F+Cl-反應(yīng)過程中的分子形貌變化

    2012-12-21 06:33:40張明波宮利東
    物理化學(xué)學(xué)報 2012年5期
    關(guān)鍵詞:親核遼寧大連電子密度

    張明波 宮利東

    (1遼寧中醫(yī)藥大學(xué)藥學(xué)院,遼寧大連116600;2遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    F-+CH3Cl→CH3F+Cl-反應(yīng)過程中的分子形貌變化

    張明波1,2宮利東2,*

    (1遼寧中醫(yī)藥大學(xué)藥學(xué)院,遼寧大連116600;2遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    雙分子親核(SN2)反應(yīng)是重要的基本有機反應(yīng)之一,其中電子從親核基團向離去基團的轉(zhuǎn)移發(fā)揮著關(guān)鍵作用.利用從頭計算方法CCSD(T)/aug-cc-pVDZ和我們發(fā)展的分子形貌理論,對反應(yīng)F-+CH3Cl→CH3F+Cl-進行了研究,給出了反應(yīng)過程中分子形狀和電子轉(zhuǎn)移的動態(tài)變化圖像.結(jié)果表明,沿內(nèi)稟反應(yīng)坐標,從反應(yīng)開始到生成反應(yīng)前復(fù)合物,親核試劑F-的分子內(nèi)稟特征輪廓在緩慢收縮,而其上的電子密度在緩慢增大.此后,F的輪廓迅速膨脹,電子密度急劇下降,尤其是從過渡態(tài)到產(chǎn)物復(fù)合物的過程中.而在反應(yīng)過程中,離去基團Cl的輪廓一直在收縮,其上的電子密度一直在增大.對反應(yīng)過程中電子所受到作用勢的研究表明,隨著反應(yīng)的進行,電子在F與C間受到的作用勢逐漸降低,而在C與Cl間受到的作用勢逐漸升高,清楚地展現(xiàn)反應(yīng)過程中F與C間化學(xué)鍵生成和C與Cl間化學(xué)鍵斷裂的動態(tài)過程.

    從頭計算;分子形貌理論;SN2反應(yīng);電子轉(zhuǎn)移;反應(yīng)機理

    1 Introduction

    Bimolecular nucleophilic substitution(SN2)reactions are one of the fundamental organic reactions,which have been paid great attention from both theoretical and experimental points of view.1-10In particular,halogen exchange reactions of CH3X+Y-→CH3Y+X-(X and Y are halogen atoms),as the simplest prototypes for SN2 reactions,have been extensively studied.11-15Some features of this kind of reactions have been well established.Both theoretical and experimental studies indicate that the preferred gas-phase reaction pathway of such reaction involves a backside attack of the halide ion,Y-,at the carbon atom followed by the familiar“Walden inversion”of the CH3group.16The resulting potential energy profile can be characterized by two local-minima,formed by the association of halide ion with the dipolar halomethane due to the strong attraction between them and separated by a central barrier.1

    Lots of computational studies have been performed on the SN2 reactions,which have provided quantitative information about the reaction energy potential profiles.14,17-21Various methods including HF,MP2,QCISD,CCSD(T),and G2(+)have been used to study the title reaction,presenting a central barrier ranging from 0 to 26 kJ·mol-1.17-21The barrier obtained with MP2(full)/6-31++G**is 25.56 kJ·mol-1.19Studies performed by Gonzales et al.20indicate that B3LYP method gave a transition structure too low in energy compared to CCSD(T)method. By using CCSD(T)method with a basis set of aug-cc-pVQZ, Botschwina et al.21present a definitive theoretical study,recommending that the central barrier should be(13.8±1.3)kJ·mol-1.

    Chemists are interested in not only obtaining accurate results for energetics of chemical reactions,but also exploring other important factors during the reaction process,such as the spatial and electron density changing features.For SN2 reactions,some progresses have already been made toward this end.22-25For instance,by subdividing the charge density and energy into contributions from spatially defined fragments of the total system,Bader et al.22presented a detailed study of the redistribution of the charge density and energy changes for the two gas SN2 reactions.Knoerr and Eberhart23employed several density-based parameters to predict the reactivity of a series of SN2 reactions,and showed that the obtained results correlated well with those from energy-based parameters.Using an ab initio modern valence bond calculation,Blavins and Copper24investigated the influence of the strength of nucleophile and the size of R group on the electronic rearrangements in a series of SN2 identity reactions(X-+RX,X=F,Cl).Geerlings and coworkers25interpreted the variations of the exothermicity and the central barrier of the SN2 reactions(CH3X+Y-→CH3Y+X-) with halogenatoms X and Y,in terms of the hard and soft acids and bases principle(HSAB).In addition,they found that the increase in the electronegativity of Y will decrease the central barrier,but increase the exothermicity of the reactions.

    Recently,Yang et al.26-37have developed a novel model for describing a molecule,the molecular face theory(MFT),based on the potential acting on an electron in a molecule(PAEM). The molecular face is an intrinsic characteristic of molecule, which can present the molecular shape and electron density distribution at the same time.In addition,the molecular recognition and regioselectivity involved in Markovnikov reactions of alkenes have been successfully explained in terms of MFT.36More recently,the molecular face surface area(MFSA)and molecular face volume(MFV)were defined and calculated by a program of our own.It is found that the MFSA and MFV had significant linear correlations with those of the commonly used hard-sphere model and the electron density isosurface.37

    Previous studies have shown that the essence of a SN2 reaction is the transfer of an electron from the nucleophile to the leaving group,and thus the tendency of electron transfer is closely related to the reactivity of a SN2 reaction.38The goal of this work is not to obtain quantitative information about the potential energy surface,which has been well done by others,but to describe the spatial changing and electron transfer features during the reaction course of F-+CH3Cl→CH3F+Cl-in a more vivid way by applying the MFT.

    2 Theoretical and computational details

    2.1 Molecular face theory

    We first introduce the potential acting on an electron in a molecule,on which the definition of the molecular face(MF) is based.For a molecule in electronic ground state,the PAEM can be expressed as32where the first term on the right of Eq.(1)is the attractive potential from all nuclei,the second term is the repulsive potential created by other electrons in the system;ZAis the nuclear charge of atom A,rAis the distance between the electron considered and the nucleus A,summation involving index A is over all atomic nuclei;ρ(r)represents the one-electron density of an electron appearing at position r,and ρ(r,r?)is the two-electron density function,i.e.the probability of finding one electron at r and at the same time finding another electron at r?.

    Considering an electron move within a molecule,its kinetic energy varies with its position relative to other particles in the molecule.If at a special position r,its energy is the same as the potential acting on it,which means that its average kinetic energy is equal to zero,and then r is called a classical turning point of the electron movement.Assuming that the potential,i.e. PAEM,is equal to the minus value of the first vertical ionization potential of this molecule,then we have the classical turning point equation of this electron movement,V(r)=-I,where I is the first vertical ionization potential of the molecule.The molecular intrinsic characteristic contour(MICC)can be defined as the assembly of the classical turning points as the following expression.26-31,34-37in which G denotes the MICC.The MICC has a clear physical meaning as it is an iso-PAEM contour where the PAEM(or one-electron energy)equals the minus ionization potential(-I) of the molecule.Thus,the MICC is a characteristic boundary of the electron movement;outside it is classical-forbidden while inside it is classical-permitted for an electron movement. The electron density distribution on the MICC called frontier electron density or molecular face electron density(MFED),35-37is also a remarkable feature of a molecule.The MFED is a direct indicator of electrophilic and nucleophilic stereo-reactivity and molecular interactions,including hydrogen bonding.35,36When MFED is mapped on the MICC,the MF is defined.35-37The MF,figuratively speaking,can be viewed as an intuitive“face”or an intrinsic characteristic“fingerprint”of a molecule,and it provides not only the spatial but also electron density distribution information of a molecule.

    2.2 Computational details

    In the present work,all geometrical structures considered were optimized at the CCSD(T)/aug-cc-pVDZ level,39-41which has been shown to be necessary to obtain reliable results for the reaction.42With the same model,vertical ionization potentials of these structures were calculated,which is a prerequisite for obtaining the MICC.The calculations mentioned above were carried out with Gaussian 03 program.43

    The PAEM and physical quantities in Eq.(1)were calculated by the configuration interaction method with all single and double substitutions in conjunction with 6-31+G(2d,p)basis set using the ab initio MELD program44and the in-house program developed by us.By a large number of calculations,the PAEM was obtained at each point of a grid covering the molecule, with certain spacing between the grid points.According to Eq. (2),the MICC was obtained by interpolation.Visualization plots of MF were implemented by the MATLAB 7.045and a program of our own.

    3 Results and discussion

    3.1 MFs of CH3F and CH3Cl

    At first,we calculated the molecular faces of CH3F and CH3Cl,presented in Fig.1,where the MFED is denoted by the color index on the right of the picture.So the magnitude of MFED is represented by its darkness,that is,the darkest place has the maximum MFED,and the brightest place has the minimum MFED.It can be seen that the MFs of CH3F and CH3Cl are similar to each other in both shape and electron density distribution.For both of halomethanes,the electron density on the halogen atom region is larger than that on the methyl group region.This is consistent with the fact that in a halomethane the halogen atom can draw bonding electrons towards itself,due to its higher electronegativity relative to methyl group.It has been well established both theoretically and experimentally that the backside attack of the halide ion on the halomethane is more favorable for a SN2 reaction than that from the frontside.42The observed stereoselectivity may partly be explained by difference in the electron density on the MF.Since the nucleophile is negatively charged,larger electron density is unfavorable for the access of the nucleophile due to electrostatic repulsion.So the attack of nucleophile on electron-deficient backside of the halomethanes is preferable to the attack on the electron-rich frontside.

    3.2 Variables for depicting the variations of MF

    To get a full view of the variations of the MFs during the SN2 reaction considered,six snapshots on the C3vpotential energy surface(PES)were considered.Besides the prereaction complex c,the transition structure d,and the product complex e,another two structures,a and b on the reactant side of the PES and one structure f on the product side were also considered.The geometries of c,d and e were obtained by geometrical optimization at the CCSD(T)/aug-cc-pVDZ level with a geometrical constraint of C3vsymmetry.Under the same constraint,the structures of a,b and f were optimized by fixing the bond length of r(C―F)at 0.348,0.320,and 0.143 nm,respectively.The geometries obtained are listed in Table 1,together with the ionization potentials and the Mulliken charges calculated with the same method.The reaction barrier we obtained without zero-point energy correction is 8.36 kJ·mol-1,consistent with result ofAngel and Ervin,42calculated at the same level,but lower than the value((13.8±1.3)kJ·mol-1)of the benchmark calculation at the CCSD(T)/aug-cc-pVQZ level.21The difference is due to relatively small basis set adopted by us,according to the work of Gonzales et al.,20who have performed a systematic study on the effect of basis set on the reaction barrier of the same reaction.

    Fig.1 Molecular faces of(a)CH3F and(b)CH3ClD:electron density

    To display the MFs,the following visual angle is chosen:the atoms F,C,and Cl are positioned along the C3vaxis from left to right in turn;keep one of F―C―H plane perpendicular to the paper plane with the hydrogen atom pointing outward.To quan-titatively demonstrate the changing features of molecular face, we defined several parameters.Fig.2 is one of the C3vcut-plane of the MFs of structure a.The C3vaxis has four crossing points with the MF of structure a,starting from left side of atom F,denoted by Fout,Fin,CF,and Cloutin turn.In the case of structure f (see Fig.3(f)),the corresponding four points are denoted by Fout,CCl,Clin,and Clout.In the following,the distances from these points to the corresponding nuclei and electron densities on these points are employed to delineate the spatial and electron density variations of MF during the reaction course.For example,the distance from the point of Foutto the fluorine nucleus is denoted by r(Fout),and the electron density on Foutis denoted by D(Fout).

    Table 1 Geometrical parameters(length in nm and angle in degree),vertical ionization potentials,Mulliken charges and Dpbcomputed with CCSD(T)/aug-cc-pVDZ level

    Fig.2 Representative characteristic points employed to delineate the shape and electron density evolutions of the reaction system

    3.3 Variations of MFs during the reaction course

    The MFs of each structure(a-f)involved in the reaction pathway are depicted in Fig.3(a-f),respectively.Representative charateristic distances and electron densities on the MFs for structures(a-f)are listed in Table 2.Note that in the following discussion,we use F and Cl to represent fluorine and chlorine element regardless of their true charged state for the sake of simplicity.

    For structure a,where r(C―F)=0.348 nm,the contour of F keeps separated from that of CH3Cl,as shown in Fig.3(a).This means that there exists a classical forbidden region for electron movement between F and CH3Cl and electrons transfer from F to CH3Cl is prohibited.An impressing feature of Fig.3(a)is that the electron density on the F is evidently larger than that on CH3Cl.D(Fout)is tens of times larger than D(Clout)as listed in Table 1.This indicates that at this moment the extra electron of system mainly locates on the F,which is supported by the calculated Mulliken charge of F(-0.990 a.u.).Our calculations show that r(Fin)is 0.016 nm longer than r(Fout),which means that the contour of F expands towards CH3Cl and the interpolarization between F and CH3Cl has taken place.

    As F approaches further to CH3Cl,forming the structure b, where r(C―F)=0.320 nm,the MF of F begins to contact with that of CH3Cl,as shown in Fig.3(b).It is evident that the contour of Fis strongly polarized and swells towards CH3Cl.In the structure b,the classical forbidden region between F and CH3Cl disappears,so the electrons begin to flow between them.This can be viewed as a starting point for the bond forming between F and CH3Cl.However,the electron density on F region remains larger than CH3Cl,as reflected by the color of MF.The Mulliken charge of F(-0.982 a.u.)still keeps close to-1,which indicates that no evident electron transfer occurs as yet.

    Structure c is a prereaction complex formed between F andCH3Cl.As shown in Fig.3(c),the contour of F has fused with that of CH3Cl into a whole in structure c.The electron density on the F region is still larger than that on the Cl region,as indicated by the color of MF of Fig.3(c).According to our calculations,D(Fout)is 7.473×10-3a.u.,much larger than D(Clout),being 0.594×10-3a.u..The Mulliken charges of Cl and F are-0.392 and-0.953 a.u.,respectively,which indicates that the extra electron still locates on F atom by now.

    Table 2 Representative characteristic distances and electron densities on the MFs

    Fig.3 Variations of the MF through the reaction of F-+CH3Cl→Cl-+CH3F

    Structure d is the transition state for the title reaction.As shown in Fig.3(d),the electron density on the MF of F becomes evidently smaller than the previous structures,while that of Cl becomes larger.This indicates that the extra electron has transferred from F to Cl to a certain degree.But the color of MF for F is still darker than that of Cl.In accord with this, the Mulliken charge of F(-0.900 a.u.)is more negative than that of Cl(-0.691 a.u.).Therefore,the electron transfer has only partly fulfilled at the transition state.

    The most obvious changes of the MFs take places from structure d to e,and the latter is the product complex of the reaction.The MF of e is shown in Fig.3(e).The conjoint part between F and C swells evidently with a 0.67 a.u.increasement of r(Fver),while the region that between Cl and C shrinks inward with a 0.16 a.u.decreasement of r(Clver).At the same time,the electron densities on the MF of F greatly decrease dozens of times,and D(Fout)and D(Fver)decrease from 6.00× 10-3and 4.80×10-3a.u.to 0.17×10-3and 0.18×10-3a.u.,respectively;while the electron densities on the MF of Cl greatly get larger,as a result,D(Clout)and D(Clver)consumedly exceed the corresponding D(Fout)and D(Fver).The Mulliken charge of Cl (-0.980 a.u.)also becomes more negative than that of F (-0.633 a.u.),which indicates that the extra electron of the system has almost totally transferred to Cl.This indicates that there is strong bonding effect between F and C,and the bonding interaction of Cl and C gets weaker.

    In structure f,the contour of Cl has separated with that of CH3F completely as shown in Fig.3(f).Similar to the structure a,a classical forbidden region for electron movement appears between CH3F and Cl.There exists evident difference in the electron densities on the MFs of CH3F and Cl.The electron density of Cl region is much larger than that of the CH3F. D(Fout)is 0.07×10-3a.u.,while D(Clout)is 6.13×10-3a.u..This implies that the extra electron is totally localized in the region of Cl,which is corroborated by the calculated Mulliken charge of Cl(-0.994 a.u.).

    It is also interesting to note that the volumes of F and Cl change through the reaction process.In general,the volume of F increases while that of Cl decreases.For instance,from structure a to f,r(Fver)increase from 0.142 to 0.232 nm;on the contrary,r(Clver)decreases from 0.264 to 0.173 nm.Essentially,the molecular face is an iso-PAEM contour,and the variations in atomic size reflect the changes of their electron density.

    3.4 Variation of PEAM through the reaction

    Essentially,chemical reaction is a process,in which electron redistribution occurs among the reagents.So it is natural to describe a chemical reaction with the property of electrons in molecules.Bader contributed distinctive work in this field with atoms in molecule(AIM)theory,which has been widely used to study bond forming/breaking with a certain extent of success.46

    Bond-forming between two reagents means that they can share their electrons with each other.That is to say,electrons are permitted to shuttle between two atoms in case of bonding. The PAEM is the potential felt by an electron in a molecule and thus reflects the easiness for an electron moving from one position to another.So the PAEM can be used as an indicator for the bond strength between two atoms.Here,we calculated the PAEM along the F―C―Cl axis for the six structures shown in Fig.3,and the variations of the PAEM were depicted in Fig.4.It can be seen that the PAEM at atomic nuclei is negatively infinite and rises sharply as the distance of electron to the nucleus increases.This means that there exists a potential well around each nucleus,which traps electrons around the vi-cinity of nuclei as much as possible.Our previous studies32showed that the PAEM surface has a saddle point along a chemical bond,and the energy gap from it to the energy level of zero is defined as Dpb.Dpbhas good linear correlations with the force constant and bond length,and hence characterizes the strength of chemical bond.The calculated Dpbfor the structures considered were listed in Table 1.

    Fig.4 Variations of the PAEM along the F―C―Cl axis through the reaction course

    In structure a,F and CH3Cl are far from each other,the highest point of the PAEM between F and C atom is-0.1072 a.u., which is higher than the minus of the ionization potential (-I=-0.119 a.u.).This implies that,at this moment,electrons of each reagent are localized to itself and no exchange between them is permitted.For structure b,the highest point of PAEM between atoms F and C is-0.153 a.u.,which is lower than the corresponding-I(-0.138 a.u.).So from this point,electrons are allowed to flow between two reagents and a chemical bond begins to form between F and C.As two reagents get closer gradually,viz.from structure c to f,the PAEM between F and C lowers gradually,indicating that more electrons can shuttle between two atoms and C―F bond is strengthened gradually. In contrast,the PAEM between the leaving group Cl and C increases from-1.345 to-0.010 a.u.gradually as the reaction proceeds,indicating that as the Cl―C bond gets weaker and weaker,the movement of electrons between them gets more and more difficult and their previously shared electrons are getting localized to the region of each own.In terms of above descriptions,we can see that the PAEM can loyally reflect the processes of bonding-forming and bond-breaking during the title reaction.

    4 Conclusions

    Using the newly developed molecular face theory,in combination with a high level ab initio CCSD(T)/aug-cc-pVDZ method,the shape changing and electron transfer during the reaction course of F-+CH3Cl→Cl-+CH3F are vividly presented.It is found that the electron density mapped on the MFs of CH3F and CH3Cl can soundly explain stereoselectivity for the attack of a nucleophile.As F approaches CH3Cl,evident interpolarization effect is presented by the MFs.In addition,the variations in electron density on the contours can well reflect the electron transfer features,and the sizes of the nucleophile and leaving groups are closely related to the reaction process.Investigations on the potential acting on an electron in a molecule (PAEM)show that,as the reaction progresses,the PAEM gradually decreases between fluorine and carbon,while it gradually increases between carbon and chlorine.This shed light on the dynamic processes of bond-forming between F and C atoms and bond-breaking between C and Cl atoms.The molecular face model can loyally reflect the essential features of shape evolution and electron transfer involved in a reaction.Both the MF and PAEM can be utilized as a useful tool to describe the dynamic progress of the title reaction.

    (1) Brauman,J.I.;Olmstead,W.N.;Lieder,C.J.Am.Chem.Soc. 1974,96,4030.

    (2) Glukhovtsev,M.N.;Bach,R.D.;Pross,A.;Radom,L.Chem. Phys.Lett.1996,260,558.

    (3) Flanagin,L.W.;Balbuena,P.B.;Johnston,K.P.;Rossky,P.T. J.Phys.Chem.1995,99,5196.

    (4) Wladkowski,B.D.;Brauman,J.I.J.Phys.Chem.1993,97, 13158.

    (5) Duke,A.J.;Bader,R.F.W.Chem.Phys.Lett.1971,10,631.

    (6) Tachikawa,H.;Igarashi,M.Chem.Phys.Lett.1999,303,81.

    (7) Li,C.;Ross,P.;Szulejko,J.E.;McMahon,T.B.J.Am.Chem. Soc.1996,118,9360.

    (8) Hase,W.L.;Sun,L.;Song,K.Science 2002,296,875.

    (9) Hase,W.L.Science 1994,266,998.

    (10) Katherine,V.;Benjamin,I.J.Phys.Chem.C 2011,115,2290.

    (11) Glukhovtsev,M.N.;Pross,A.;Radom,L.J.Am.Chem.Soc. 1995,117,2024.

    (12) Chandrasekhar,J.;Smith,S.F.;Jorgensen,W.L.J.Am.Chem. Soc.1985,107,154

    (13) Zhang,J.;William,L.H.J.Phys.Chem.A 2010,114,9635.

    (14) Parthiban,S.;Oliveira,G.;Martin,J.M.L.J.Phys.Chem.A 2001,105,895.

    (15) DeTuri,V.F.;Hintz,P.A.;Ervin,K.M.J.Phys.Chem.A 1997, 101,5969.

    (16) Chabinyc,M.L.;Craig,S.L.;Regan,C.K.;Brauman,J.I. Science 1998,279,1882.

    (17) Wolfe,S.Can.J.Chem.1984,62,1465.

    (18) Shi,Z.;Boyd,R.J.J.Am.Chem.Soc.1990,112,6789.

    (19) Glukhovtsev,M.N.;Pross,A.;Radom,L.J.Am.Chem.Soc. 1996,118,6273.

    (20) Gonzales,J.M.;Cox,R.S.,III;Brown,S.T.;Allen,W.D.; Schaefer,H.F.,III.J.Phys.Chem.A 2001,105,11327.

    (21) Botschwina,P.;Horn,M.;Seeger,S.;Oswald,R.Ber. Bunsen-Ges.Phys.Chem.1997,101,387.

    (22) Bader,R.F.W.;Duke,A.J.;Messer,R.R.J.Am.Chem.Soc. 1973,95,7715.

    (23) Knoerr,E.K.;Eberhart,M.E.J.Phys.Chem.A 2001,105,880.

    (24) Balvins,J.J.;Copper,D.L.J.Phys.Chem.A 2004,108,914.

    (25) Safi,B.;Choko,K.;Geerlings,P.J.Phys.Chem.A 2001,105, 591.

    (26) Yang,Z.Z.;Davidson,E.R.Int.J.Quantum Chem.1996,62, 47.

    (27) Yang,Z.Z.;Zhao,D.X.Chem.Phys.Lett.1998,292,387.

    (28) Gong,L.D.;Zhao,D.X.;Yang,Z.Z.J.Mol.Struc.-Theochem 2003,636,57.

    (29)Yang,Z.Z.;Zhao,D.X.;Wu,Y.J.Chem.Phys.2004,121, 3452.

    (30) Zhang,M.B.;Yang,Z.Z.J.Phys.Chem.A 2005,109,4816.

    (31)Yang,Z.Z.;Gong,L.D.;Zhao,D.X.;Zhang,M.B.J.Comput. Chem.2005,26,35.

    (32) Zhao,D.X.;Gong,L.D.;Yang,Z.Z.J.Phys.Chem.A 2005, 109,10121.

    (33) Gong,L.D.;Zhao,D.X.;Yang,Z.Z.Sci.China Ser.B-Chem. 2005,48,89.

    (34) Shi,H.;Zhao,D.X.;Yang,Z.Z.Acta Phys.-Chim.Sin.2007, 23,1145.[石 華,趙東霞,楊忠志.物理化學(xué)學(xué)報,2007,23, 1145.]

    (35) Zhao,D.X.;Yang,Z.Z.J.Theor.Comput.Chem.2008,7,303.

    (36)Yang,Z.Z.;Ding,Y.L.;Zhao,D.X.ChemPhysChem 2008,9, 2379.

    (37) Gong,L.D.;Yang,Z.Z.J.Comput.Chem.2010,31,2098.

    (38) Polo,V.;Gonzalez,N.P.;Silvi,B.;Andres,J.Theor.Chem.Acc. 2008,120,341.

    (39) Purvis,G.D.,III;Bartlett,R.J.J.Chem.Phys.1982,76,1910.

    (40) Scuseria,G.E.;Janssen,C.L.;Schaeffer,H.F.,III.J.Chem. Phys.1988,89,7382.

    (41) Woon,D.E.;Dunning,T.H.,Jr.J.Chem.Phys.1993,98,1358.

    (42)Angel,L.A.;Ervin,K.M.J.Phys.Chem.A 2001,105,4042.

    (43) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, RevisionA.01.Gaussian Inc.:Pittsburgh,PA,2003.

    (44)Davidson,E.R.MELD Program Description;ESCOM:New York,1990.

    (45) Matlab 7.0,Release 14;The Mathworks Inc.:Natick,MA,2005.

    (46) Bader,R.F.W.Accounts Chem.Rev.1985,18,9.

    December 27,2011;Revised:March 7,2012;Published on Web:March 8,2012.

    Evolution of the Molecular Face during the Reaction Process of F-+CH3Cl→CH3F+Cl-

    ZHANG Ming-Bo1,2GONG Li-Dong2,*
    (1College of Pharmacy,Liaoning University of Traditional Chinese Medicine,Dalian 116600,Liaoning Province,P.R.China;2School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Bimolecular nucleophilic substitution(SN2)reactions are among the fundamental organic reactions,in which electron transfer from the nucleophilic group to the leaving group plays an essential role.We use a high-level ab initio CCSD(T)/aug-cc-pVDZ method in conjunction with our previouslydeveloped molecular face(MF)theory,to investigate the SN2 reaction F-+CH3Cl→CH3F+Cl-.Dynamic representations of molecular shape evolution and electron transfer features throughout the reaction are vividly presented.It is found that along the intrinsic reaction coordinate(IRC),from the beginning of the reaction to the prereaction complex,the molecular intrinsic characteristic contour(MICC)of the nucleophile (F-)contracts slowly,while the electron density on the MICC increases slowly.The MICC of F then expands quickly,and the electron density decreases sharply,especially from the transition state to the product complex.However,for the leaving group(Cl),the MICC contracts,and the electron density increases all along the reaction.Investigations of the potential acting on an electron in a molecule(PAEM)show that,as the reaction progresses,the PAEM gradually decreases between fluorine and carbon,while it gradually increases between carbon and chlorine.This study enhances our understanding of the dynamic processes of bond-forming between F and C atoms and bond-breaking between C and Cl atoms.

    Ab initio calculation;Molecular face theory;SN2 reaction;Electron transfer;Reaction mechanism

    10.3866/PKU.WHXB201203082

    ?Corresponding author.Email:gongjw@lnnu.edu.cn;Tel:+86-411-82158977.

    The project was supported by the National Natural Science Foundation of China(21133005,21073080,21011120087,20703022).

    國家自然科學(xué)基金(21133005,21073080,21011120087,20703022)資助項目

    O641

    猜你喜歡
    親核遼寧大連電子密度
    有機化學(xué)微課設(shè)計思路探討——以雙分子親核取代反應(yīng)為例
    云南化工(2021年9期)2021-12-21 07:44:20
    遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
    顧及地磁影響的GNSS電離層層析不等像素間距算法*
    不同GPS掩星電離層剖面產(chǎn)品相關(guān)性分析
    測繪通報(2019年11期)2019-12-03 01:47:34
    等離子體電子密度分布信息提取方法研究
    一種適用于電離層電子密度重構(gòu)的AMART算法
    孫子垚
    “白草莓”亮相遼寧大連
    A 3-fold Interpenetrated lvt Cd(II) Network Constructed from 4-[(3-pyridyl)methylamino]benzoate Acid①
    有關(guān)親核取代反應(yīng)和β—消去反應(yīng)的教學(xué)思考
    中国美白少妇内射xxxbb| www.av在线官网国产| 国产白丝娇喘喷水9色精品| 欧美精品人与动牲交sv欧美| 国产成人91sexporn| 我要看日韩黄色一级片| 亚洲精品日本国产第一区| 九九爱精品视频在线观看| 国产又色又爽无遮挡免| 日韩av在线免费看完整版不卡| 亚洲国产av新网站| 免费观看性生交大片5| 日韩 亚洲 欧美在线| 国产69精品久久久久777片| 免费少妇av软件| 成人免费观看视频高清| 亚洲精品日韩av片在线观看| 一级毛片电影观看| 国产黄色视频一区二区在线观看| 日本欧美视频一区| 日本免费在线观看一区| 亚洲伊人久久精品综合| 91久久精品国产一区二区成人| 97精品久久久久久久久久精品| 中文在线观看免费www的网站| 久久久久国产网址| 日本与韩国留学比较| av免费在线看不卡| 久久99精品国语久久久| 在线亚洲精品国产二区图片欧美 | 一区二区av电影网| 日韩av在线免费看完整版不卡| 我的老师免费观看完整版| 高清黄色对白视频在线免费看 | 美女cb高潮喷水在线观看| 国产老妇伦熟女老妇高清| 免费在线观看成人毛片| 一级av片app| 丝瓜视频免费看黄片| 国产日韩欧美在线精品| 99久久精品一区二区三区| 尾随美女入室| 国产成人精品无人区| 99热网站在线观看| 亚洲婷婷狠狠爱综合网| 亚洲人与动物交配视频| 亚洲图色成人| 欧美日韩一区二区视频在线观看视频在线| 丰满人妻一区二区三区视频av| 99久久综合免费| 午夜精品国产一区二区电影| 欧美激情国产日韩精品一区| 美女主播在线视频| 六月丁香七月| 在线观看人妻少妇| 国产av精品麻豆| 亚洲欧美成人综合另类久久久| 一区二区三区四区激情视频| 99热这里只有精品一区| av天堂中文字幕网| 国产精品秋霞免费鲁丝片| 亚洲色图综合在线观看| 一级av片app| 插阴视频在线观看视频| 在线亚洲精品国产二区图片欧美 | 最新的欧美精品一区二区| 精品久久国产蜜桃| 国产精品国产三级国产专区5o| kizo精华| 深夜a级毛片| 亚洲国产精品一区三区| 中文字幕亚洲精品专区| 十八禁网站网址无遮挡 | 国产乱人偷精品视频| av有码第一页| 国产精品秋霞免费鲁丝片| 在线观看免费高清a一片| 欧美 日韩 精品 国产| 精品少妇黑人巨大在线播放| 欧美bdsm另类| 一级毛片我不卡| 精品亚洲乱码少妇综合久久| 欧美人与善性xxx| 欧美+日韩+精品| 久久久久久久久久成人| 欧美人与善性xxx| 欧美日韩一区二区视频在线观看视频在线| 午夜福利在线观看免费完整高清在| 国产永久视频网站| 日韩大片免费观看网站| 简卡轻食公司| 午夜视频国产福利| 国产精品偷伦视频观看了| 一级二级三级毛片免费看| 一级黄片播放器| 国产高清三级在线| 日韩欧美一区视频在线观看 | 精品久久久久久电影网| 亚洲欧洲日产国产| 国产av国产精品国产| 色婷婷久久久亚洲欧美| 国产精品久久久久久精品古装| 精品亚洲成国产av| 不卡视频在线观看欧美| 纵有疾风起免费观看全集完整版| 深夜a级毛片| 久久人人爽人人爽人人片va| 久久6这里有精品| 午夜激情福利司机影院| 久久鲁丝午夜福利片| 精品久久久久久久久亚洲| 久久青草综合色| 91精品国产九色| 国产一区二区三区综合在线观看 | 大话2 男鬼变身卡| 18禁裸乳无遮挡动漫免费视频| 国产高清国产精品国产三级| 亚洲av福利一区| 校园人妻丝袜中文字幕| 伊人久久国产一区二区| 国产美女午夜福利| 妹子高潮喷水视频| 免费看不卡的av| 国产在线男女| 精品一品国产午夜福利视频| 岛国毛片在线播放| 老熟女久久久| 亚洲欧美日韩卡通动漫| 亚洲四区av| 男人狂女人下面高潮的视频| 免费少妇av软件| 国产精品一区二区在线观看99| 一级,二级,三级黄色视频| 成年美女黄网站色视频大全免费 | 亚洲国产精品999| 人体艺术视频欧美日本| 少妇人妻一区二区三区视频| 国产精品免费大片| 国产免费一区二区三区四区乱码| 青春草国产在线视频| 国产免费又黄又爽又色| 看十八女毛片水多多多| 免费人妻精品一区二区三区视频| 精品午夜福利在线看| 观看美女的网站| 水蜜桃什么品种好| 久久久欧美国产精品| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 秋霞伦理黄片| 免费播放大片免费观看视频在线观看| 人妻少妇偷人精品九色| 人人妻人人爽人人添夜夜欢视频 | 97精品久久久久久久久久精品| 午夜福利,免费看| 欧美bdsm另类| 精品人妻熟女av久视频| 国产毛片在线视频| 免费观看a级毛片全部| 美女内射精品一级片tv| 欧美变态另类bdsm刘玥| av免费观看日本| 精品少妇内射三级| av在线老鸭窝| 国产黄频视频在线观看| 午夜老司机福利剧场| 大又大粗又爽又黄少妇毛片口| 国内少妇人妻偷人精品xxx网站| 久久人人爽av亚洲精品天堂| 又黄又爽又刺激的免费视频.| 天天操日日干夜夜撸| 噜噜噜噜噜久久久久久91| 香蕉精品网在线| 大陆偷拍与自拍| 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| 九草在线视频观看| 97在线视频观看| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 2021少妇久久久久久久久久久| 另类亚洲欧美激情| 最黄视频免费看| 最近手机中文字幕大全| 99re6热这里在线精品视频| 亚洲综合色惰| 久久久久国产精品人妻一区二区| .国产精品久久| 少妇的逼好多水| 欧美3d第一页| 最近中文字幕2019免费版| 一级片'在线观看视频| 国产中年淑女户外野战色| 伦精品一区二区三区| 一级片'在线观看视频| 国产 精品1| 亚洲在久久综合| 色婷婷av一区二区三区视频| 97精品久久久久久久久久精品| 黄色一级大片看看| 欧美另类一区| 精品视频人人做人人爽| 精品酒店卫生间| 欧美日韩在线观看h| 国产欧美另类精品又又久久亚洲欧美| 色视频在线一区二区三区| 97精品久久久久久久久久精品| 久久精品熟女亚洲av麻豆精品| 国产熟女欧美一区二区| 少妇人妻久久综合中文| 午夜福利视频精品| 18禁动态无遮挡网站| 亚洲性久久影院| 蜜臀久久99精品久久宅男| 搡老乐熟女国产| 少妇人妻精品综合一区二区| 日韩精品免费视频一区二区三区 | 国产av国产精品国产| 亚洲精品日韩在线中文字幕| 日本猛色少妇xxxxx猛交久久| 中文乱码字字幕精品一区二区三区| 中文字幕制服av| 国产欧美日韩一区二区三区在线 | 亚洲精品国产色婷婷电影| 搡老乐熟女国产| 久久久久久久精品精品| 免费观看的影片在线观看| 精品国产一区二区久久| 观看美女的网站| 色婷婷久久久亚洲欧美| av线在线观看网站| 亚洲性久久影院| 精品人妻偷拍中文字幕| 一级片'在线观看视频| 国产老妇伦熟女老妇高清| 国产伦精品一区二区三区四那| 国产精品一区二区性色av| 国产成人免费观看mmmm| 99九九在线精品视频 | 你懂的网址亚洲精品在线观看| 美女国产视频在线观看| 热re99久久国产66热| 精品99又大又爽又粗少妇毛片| 精品酒店卫生间| 亚洲欧美成人综合另类久久久| 久久韩国三级中文字幕| 久久精品国产亚洲av天美| 国产精品一区二区在线观看99| 九九久久精品国产亚洲av麻豆| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 成人漫画全彩无遮挡| 久久精品国产鲁丝片午夜精品| 亚洲精品亚洲一区二区| 一本大道久久a久久精品| 亚洲,欧美,日韩| 国产男人的电影天堂91| 中文在线观看免费www的网站| 黄片无遮挡物在线观看| 亚洲精品第二区| 国产av码专区亚洲av| 色视频在线一区二区三区| 美女中出高潮动态图| 精品国产乱码久久久久久小说| 国产黄色视频一区二区在线观看| 欧美日韩综合久久久久久| 久久久久人妻精品一区果冻| 亚洲av成人精品一区久久| 五月伊人婷婷丁香| 天堂俺去俺来也www色官网| 中文字幕人妻丝袜制服| 精品久久国产蜜桃| 国产日韩欧美视频二区| 午夜免费鲁丝| 久久精品国产亚洲网站| 久久久久久久久久久免费av| 一级a做视频免费观看| 性色av一级| 国产探花极品一区二区| 91午夜精品亚洲一区二区三区| 国产成人91sexporn| 成人18禁高潮啪啪吃奶动态图 | 国产毛片在线视频| av福利片在线观看| 制服丝袜香蕉在线| 最黄视频免费看| 久久影院123| 美女内射精品一级片tv| 亚洲国产精品成人久久小说| 简卡轻食公司| 欧美日韩亚洲高清精品| 老女人水多毛片| 少妇被粗大的猛进出69影院 | 在线免费观看不下载黄p国产| 国产精品一二三区在线看| 亚洲精品一区蜜桃| 免费人成在线观看视频色| 熟女av电影| 在线看a的网站| 国产男人的电影天堂91| 国产爽快片一区二区三区| 2022亚洲国产成人精品| 国产 精品1| 全区人妻精品视频| 能在线免费看毛片的网站| 精品人妻熟女毛片av久久网站| 精品国产乱码久久久久久小说| 99热全是精品| 亚洲av中文av极速乱| 国产精品熟女久久久久浪| 色94色欧美一区二区| 国产综合精华液| a级一级毛片免费在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲av不卡在线观看| 久久热精品热| 熟女人妻精品中文字幕| 亚洲av欧美aⅴ国产| 婷婷色综合www| 久久久国产精品麻豆| 欧美性感艳星| 国产又色又爽无遮挡免| a级毛片免费高清观看在线播放| 国产精品麻豆人妻色哟哟久久| 久久精品国产自在天天线| 久久人人爽人人片av| 永久免费av网站大全| 亚洲国产最新在线播放| 久久久久久久久久人人人人人人| 91久久精品国产一区二区三区| 亚洲精品成人av观看孕妇| 久久热精品热| 交换朋友夫妻互换小说| 国产亚洲最大av| 男人和女人高潮做爰伦理| 亚洲人成网站在线观看播放| 国产熟女午夜一区二区三区 | 亚洲自偷自拍三级| 建设人人有责人人尽责人人享有的| 欧美人与善性xxx| 国产成人免费观看mmmm| 水蜜桃什么品种好| 久久久久国产网址| 男女国产视频网站| 国产午夜精品一二区理论片| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 精品午夜福利在线看| 国产日韩欧美亚洲二区| 国产极品粉嫩免费观看在线 | 黑人巨大精品欧美一区二区蜜桃 | 伊人亚洲综合成人网| 欧美 亚洲 国产 日韩一| .国产精品久久| 一二三四中文在线观看免费高清| 亚洲中文av在线| 人人澡人人妻人| 91精品一卡2卡3卡4卡| 多毛熟女@视频| 青春草视频在线免费观看| av免费在线看不卡| 国产色爽女视频免费观看| 美女国产视频在线观看| 精品亚洲乱码少妇综合久久| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| 十八禁高潮呻吟视频 | 亚洲国产毛片av蜜桃av| 五月玫瑰六月丁香| 美女中出高潮动态图| 五月玫瑰六月丁香| 久久精品熟女亚洲av麻豆精品| 中文精品一卡2卡3卡4更新| av在线app专区| www.色视频.com| 乱人伦中国视频| 人人妻人人澡人人看| 丝袜在线中文字幕| 亚洲精品日韩av片在线观看| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 国产精品三级大全| 男女无遮挡免费网站观看| 亚洲精品色激情综合| tube8黄色片| 日日撸夜夜添| 一级爰片在线观看| 日韩av免费高清视频| 日韩视频在线欧美| 午夜久久久在线观看| 精品一区二区三卡| 国产精品三级大全| 国产av一区二区精品久久| 男女边吃奶边做爰视频| kizo精华| 黄色怎么调成土黄色| 亚洲在久久综合| 嫩草影院新地址| 国产成人freesex在线| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| 丰满迷人的少妇在线观看| 国产又色又爽无遮挡免| 综合色丁香网| 女人久久www免费人成看片| 一二三四中文在线观看免费高清| .国产精品久久| 成人无遮挡网站| 美女脱内裤让男人舔精品视频| 日韩免费高清中文字幕av| 最近中文字幕2019免费版| 亚洲综合精品二区| 天堂中文最新版在线下载| 国产精品嫩草影院av在线观看| 国产免费一级a男人的天堂| 亚洲国产精品成人久久小说| freevideosex欧美| 丝袜在线中文字幕| 99久久精品热视频| 欧美精品高潮呻吟av久久| xxx大片免费视频| 免费人成在线观看视频色| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院 | 亚洲精品视频女| 99热全是精品| 五月伊人婷婷丁香| av在线app专区| 国产欧美另类精品又又久久亚洲欧美| av专区在线播放| 多毛熟女@视频| 亚洲精品一二三| 免费大片18禁| 五月开心婷婷网| 好男人视频免费观看在线| 国产av码专区亚洲av| 国产精品熟女久久久久浪| 22中文网久久字幕| 青春草国产在线视频| 免费观看a级毛片全部| 内地一区二区视频在线| 久久久久视频综合| 亚洲人成网站在线观看播放| 黄色怎么调成土黄色| 精品酒店卫生间| 丰满少妇做爰视频| 交换朋友夫妻互换小说| 韩国高清视频一区二区三区| 又大又黄又爽视频免费| 国产精品麻豆人妻色哟哟久久| 一边亲一边摸免费视频| 亚洲精品一二三| 最近中文字幕高清免费大全6| 看十八女毛片水多多多| 国产无遮挡羞羞视频在线观看| 精品久久久久久久久亚洲| 国产日韩欧美视频二区| a级毛片在线看网站| 日韩亚洲欧美综合| 精品国产一区二区三区久久久樱花| 免费观看性生交大片5| 久久毛片免费看一区二区三区| av又黄又爽大尺度在线免费看| 国产在线视频一区二区| 久久久国产一区二区| 又紧又爽又黄一区二区| 女性生殖器流出的白浆| 高清在线国产一区| 亚洲成人免费av在线播放| 日韩一卡2卡3卡4卡2021年| 美女视频免费永久观看网站| 十八禁网站免费在线| 成人国产一区最新在线观看| 欧美精品一区二区免费开放| 啦啦啦啦在线视频资源| 满18在线观看网站| 岛国在线观看网站| 大型av网站在线播放| 91九色精品人成在线观看| 成人亚洲精品一区在线观看| 精品少妇久久久久久888优播| 亚洲第一青青草原| 制服人妻中文乱码| 国产不卡av网站在线观看| 欧美精品av麻豆av| 亚洲精品一二三| 国产一区二区 视频在线| 男女床上黄色一级片免费看| 天堂8中文在线网| 黄片小视频在线播放| 91老司机精品| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| 亚洲中文av在线| 一区二区三区四区激情视频| 国产欧美亚洲国产| 人人澡人人妻人| 国产精品国产av在线观看| 久久久国产一区二区| 国产成人系列免费观看| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区 | 午夜福利免费观看在线| 自拍欧美九色日韩亚洲蝌蚪91| 日韩中文字幕欧美一区二区| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| 国产精品久久久久久精品古装| 久久中文字幕一级| 久久国产精品人妻蜜桃| 乱人伦中国视频| 中国美女看黄片| 丰满少妇做爰视频| 午夜福利在线免费观看网站| 美女福利国产在线| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 天天添夜夜摸| 日韩免费高清中文字幕av| 欧美激情高清一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品一卡2卡三卡4卡5卡 | www.精华液| 一二三四在线观看免费中文在| 欧美黑人精品巨大| 波多野结衣一区麻豆| 在线 av 中文字幕| 国产成人精品久久二区二区91| 欧美精品啪啪一区二区三区 | 亚洲国产欧美在线一区| 巨乳人妻的诱惑在线观看| 欧美一级毛片孕妇| 精品一区二区三卡| 夫妻午夜视频| 国产又色又爽无遮挡免| 成人18禁高潮啪啪吃奶动态图| 亚洲av美国av| av国产精品久久久久影院| 亚洲中文av在线| 99久久99久久久精品蜜桃| 久久中文字幕一级| 免费日韩欧美在线观看| 交换朋友夫妻互换小说| 亚洲专区国产一区二区| 免费高清在线观看视频在线观看| 丰满饥渴人妻一区二区三| 青草久久国产| 欧美亚洲日本最大视频资源| 制服诱惑二区| av在线老鸭窝| 久久99热这里只频精品6学生| 免费女性裸体啪啪无遮挡网站| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆| 黄片小视频在线播放| 国产在视频线精品| 国产一区二区三区av在线| 亚洲第一av免费看| 啦啦啦在线免费观看视频4| 国产精品久久久久久人妻精品电影 | 免费在线观看影片大全网站| 亚洲综合色网址| 国产精品九九99| 国产精品一区二区精品视频观看| 久久这里只有精品19| 亚洲视频免费观看视频| 久久精品国产综合久久久| 日韩大码丰满熟妇| 欧美av亚洲av综合av国产av| 免费在线观看日本一区| 久久久久久久久久久久大奶| 国产精品影院久久| 国产精品一区二区在线不卡| 肉色欧美久久久久久久蜜桃| 悠悠久久av| 多毛熟女@视频| 日韩视频一区二区在线观看| 国产亚洲一区二区精品| 婷婷丁香在线五月| av有码第一页| 亚洲五月色婷婷综合| 首页视频小说图片口味搜索| 十八禁网站网址无遮挡| 黄色视频在线播放观看不卡| 日韩一卡2卡3卡4卡2021年| 人妻一区二区av| 国产老妇伦熟女老妇高清| 人人妻人人澡人人看| 国产91精品成人一区二区三区 | 国产又爽黄色视频| 啦啦啦视频在线资源免费观看| 午夜福利在线观看吧| 人人妻,人人澡人人爽秒播| 久久人人爽av亚洲精品天堂| 永久免费av网站大全| 老熟女久久久| 国产精品一区二区免费欧美 | 啦啦啦啦在线视频资源| 一级片'在线观看视频| 国产精品一区二区在线观看99| 久久久精品区二区三区| 婷婷丁香在线五月| 色94色欧美一区二区| 丰满饥渴人妻一区二区三| 高清av免费在线| 天天添夜夜摸| 黄色 视频免费看| 男女国产视频网站| 免费女性裸体啪啪无遮挡网站| 国产欧美日韩一区二区三区在线| 伦理电影免费视频| 亚洲欧美一区二区三区黑人|