• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    有機染料D-SS和D-ST用于染料敏化太陽能電池光敏劑的比較

    2012-12-21 06:33:36詹衛(wèi)伸
    物理化學(xué)學(xué)報 2012年1期
    關(guān)鍵詞:敏化物理化學(xué)吸收光譜

    詹衛(wèi)伸 潘 石 王 喬 李 宏 張 毅

    (大連理工大學(xué)物理與光電工程學(xué)院,近場光學(xué)與納米技術(shù)研究所,遼寧大連116024)

    有機染料D-SS和D-ST用于染料敏化太陽能電池光敏劑的比較

    詹衛(wèi)伸 潘 石*王 喬 李 宏 張 毅

    (大連理工大學(xué)物理與光電工程學(xué)院,近場光學(xué)與納米技術(shù)研究所,遼寧大連116024)

    為了揭示D-SS和D-ST分子敏化的染料敏化太陽能電池(DSSCs)的物理機制,采用密度泛函理論(DFT)、含時密度泛函理論(TDDFT)和自然鍵軌道(NBO)分析,模擬計算染料D-SS和D-ST分子的結(jié)構(gòu)、紫外-可見吸收光譜和能級結(jié)構(gòu).D-SS的紫外-可見吸收光譜相比于D-ST的有明顯的紅移,而且D-SS分子的摩爾吸光系數(shù)也高于D-ST分子的.D-SS分子本應(yīng)該比D-ST分子擁有更高的俘獲太陽輻射光子的能力,但由于D-SS分子的最高占據(jù)分子軌道(HOMO)能級位置比氧化還原電解質(zhì)(I-/I-3)的氧化還原能級高,處于光激發(fā)態(tài)的D-SS分子向TiO2電極注入電子而被氧化后,不能順利地從電解質(zhì)中得到電子而還原,使得D-SS分子俘獲光子的能力不能充分發(fā)揮,從而嚴(yán)重地降低了由其敏化的DSSCs的光電性能和光電能量轉(zhuǎn)換效率.揭示了D-SS敏化的DSSCs的光電性能,特別是光電能量轉(zhuǎn)換效率比D-ST敏化的DSSCs的低的原因.染料敏化劑分子的HOMO能級的位置對于DSSCs來說也是很重要的,用于DSSCs的有機敏化劑分子的HOMO能級的位置必須低于氧化還原電解質(zhì)的氧化還原能級.

    密度泛函理論;含時密度泛函理論;染料敏化太陽能電池;分子模擬;電子結(jié)構(gòu);吸收光譜;能級結(jié)構(gòu)

    1 Introduction

    Since Gr?tzel et al.1-4reported the dye-sensitized solar cells (DSSCs)based on Ru complex in 1991,more attention has been paid to DSSCs due to its comparatively low cost and high efficiency.5,6However,DSSCs sensitized by free-metal organic dye has attracted more interest from researchers because of its much lower cost.7-14The dye molecules applied to DSSCs should have a structure of“donor-conjugate π bridge-acceptor(D-π-A)”,8,15-20in which the“electron acceptor”must contain the“anchoring group”.By the“anchoring group”,dye molecules can be adsorbed on the surface of TiO2nanocrystalline.9,20-24At present,the“anchoring group”is usually chosen as carboxyl (-COOH).Most D-π-A dyes take dialkylamines or diphenylamine moieties as electron donor,while carboxylic acid,cyanoacrylic acid,or rhodanine-3-acetic acid moieties as electron acceptor which also acts as an anchoring group.Carboxy groups can hang on the surface of TiO2,providing a strong restriction to dyes and a good electron-channel.Photoabsorption characteristic of D-π-A dyes is connected with intramolecular charge transfer(ICT),the excitation from electron donor to electron acceptor moiety,which results in efficient electron transfer from dyes excitation state via electron acceptor moiety(carboxy groups)to TiO2conduction band(CB)edge.Charge transfer or separation between electron donors and acceptors in the excitation state can facilitate the electron injection from dyes to TiO2CB,thus it can separate the cationic charge from surface and prevent the photoelectron(the injected electron)from compounding with oxidized dyes effectively.20,25The conjugate π bridge of sensitizer molecule for DSSCs is usually planar, which is benefit for ICT of electrons transition from the electron-donating group to the electron-accepting group14,22,26,27.In the electronically excited state,an anomalous 90°twist will take place in the donor moiety of dye molecules,which will promote the intramolecular charge transfer28.Hydrogen bonds between dye molecules and solvent molecules will facilitate the intramolecular charge transfer in dye molecules.29,30

    Absorption spectra for dye are supposed to match well with solar radiation spectrum in order to effectively capture solar radiation photons.20,24,31To obtain effective injection electrons from excited dye to the conduction band of the TiO2electrode, the lowest unoccupied molecular orbital(LUMO)energy level of dye molecule must rank above the conduction band energy level of the TiO2.Not every excited dye molecule can inject electrons to TiO2electrode,because there are many other processes making the dye molecule de-excitation,which has a strong impact on the electron injection to the TiO2electrode. While energy level of the LUMO is higher,the driving forces of the electron injection from dye molecule to TiO2electrode will become stronger,which results in the higher transfer efficiency of DSSCs.32In order to make the oxidized(lose electrons)dye molecule efficiently recover(gain electrons)from I-/redox couple in the electrolyte,HOMO energy level of dye molecule has to be lower than the redox potential of.20,31To gain higher light-harvesting efficiency,dye molecule must possess higher molar absorption coefficient in the wide area of solar spectra.20

    In 2006,Yang et al.33designed and synthesized two D-π-A polyene dyes D-SS and D-ST,and applied them to sensitized DSSCs.In the polar solution of tetrahydrofuran(THF),the maximum absorption peak of dye D-SS is located at 513 nm (molar absorption coefficient:ε=3.84×104L·mol-1·cm-1); while that of dye D-ST is located at 488 nm(ε=5.01×104L· mol-1·cm-1).Compared with D-ST,D-SS has one more methenyl chain on the bridge base,due to the extension of bridge base,which naturally gives rise to the red-shift of absorption spectra.23,27,34The incident photo-to-current conversion efficiency(IPCE)value of dye D-ST sensitized DSSCs exceeds 70% within 470-580 nm,and reaches a maximum value of 82%at 515 nm;this value of dye D-SS sensitized DSSCs is relatively low,and reaches a maximum value of 66%at 540 nm.The photovoltaic properties(short-circuit current density:JSC=10.64 mA,open-circuit voitage:VOC=0.52 V,fill factor:FF=0.70)of dye D-SS sensitized DSSCs are lower than those(JSC=15.23 mA,VOC=0.56 V,FF=0.73)of dye D-ST.Especially,the photovoltaic energy conversion efficiency(η=3.87%)of dye D-SS sensitized DSSCs is much lower than that(η=6.23%)of dye D-ST.33By comparison of the experimental results for dyes D-SS and D-ST,we found that,the absorption spectrum of dye D-SS exhibited red-shift larger than that of dye D-ST.However,the photovoltaic properties of D-SS sensitized DSSCs,especially photovoltaic energy conversion efficiency,are lower than those of dye D-ST.

    The density functional theory(DFT)/time-dependent DFT (TDDFT)calculations has recently been used to investigate the absorption properties of molecules successfully.35-41The TDDFT method has been confirmed as a very useful and reliable tool to study the excited states of large molecules.42-46Compared with the experiment,the calculation of the TDDFT shows a considerable red-shift,especially the red-shift in the solution is more visible than the one in vacuum.The difference between the experiment and calculation of the TDDFT may come from the calculation method.The energy gaps calculated by the DFT are always smaller than those of the factual one,especially for the bigger conjugated system,which causes low calculated excited energy and significant red-shift in the calculated absorption spectra compared with the factual one.24,47,48It shows a difficulty in quantitative comparison of the calculation and the experiment.Though there is difference,the calculation of TDDFT can still describe the spectral features of the dye molecules,because the line shape and the relative intensity of spectra correspond with the experiment qualitatively.40,49In this article,we use a DFT/TDDFT method to investigate the molecular structures,absorption spectra,energy levels of D-SS and D-ST,trying to explain why the photovoltaic energy conversion efficiency of dye D-SS sensitized DSSCs is lower than that of D-ST.

    2 Computational methods

    DFT and TDDFT calculations were performed using the Gaussian 03 software package.50The ground-state geometries of dyes D-SS and D-ST were fully optimized in vacuum without any symmetry constraints at the B3LYP51-57level of theory with the 6-31G(d)basis set.The contribution of single excited state configurations to each electronic transition and the simulated absorption spectra of the dyes D-SS and D-ST were calculated. The electronic absorption spectra require calculation of the allowed excitations and oscillator strengths.These calculations were carried out using TDDFT with the same basis set and exchange-correlation functional in vacuum and solution.The TDB3LYP calculation containing the solvation effect in THF solution was performed on the geometries optimized in vacuum. The conductor polarizable continuum model(CPCM)19,58was conducted employing parameters and iterative computation methods as suggested by Klamt59,60to contain the solvation effect.Natural bond orbital(NBO)analysis was performed in ordertoanalyzethechargepopulationsof dyes D-SS andD-ST.48,61

    3 Results and discussion

    3.1 Molecular structures

    Fig.1 shows the molecular structures of the dyes D-SS and D-ST.Fig.2 shows the optimized geometrical structures and the frontier molecular orbitals of the dyes D-SS and D-ST.

    Fig.1 Molecular structures of dyes D-SS and D-ST

    Fig.2 Optimized geometrical structures and frontier molecular orbitals of dyes D-SS and D-STHOMO:the highest occupied molecular orbital; LUMO:the lowest unoccupied molecular orbital

    By analysis of NBO,we find that the charge populations of donor group,conjugated bridge,and acceptor group of D-SS are 0.065e,0.104e,and-0.166e,respectively;for D-ST,they are 0.074e,0.094e,and-0.171e,respectively.All of these molecules have similar D-π-A structures.The conjugate bridges of the dyes D-SS and D-ST are plane,which are conductive to intra molecular charge transfer for electrons from the electron-donating group to the electron-accepting group.14,22,26,27The electronic structures of HOMOs and LUMOs of the dyes D-SS and D-ST are alike.The HOMO is π orbital,while LUMO is single state of π*orbital.HOMOs have ground state characteristics, while LUMOs have excited state characteristics.In the ground state,the electrons are mainly distributed in the electron donor and conjugated bridge.In the excited state,the electrons are distributed in the thiophenes and cyanoacrylic acid groups,however,mostly in the anchoring groups(carboxyl:-COOH).Under illumination,through intramolecular charge transfer,electrons move from the HOMO to the LUMO,and eventually reach the anchoring groups.The molecular structures of the dyes D-SS and D-ST are very beneficial for solar cells.

    3.2 Electronic absorption spectra

    Fig.3 UV-Vis absorption spectra of the dyes D-SS and D-ST in vacuum and THF solution

    Fig.3 shows the calculated UV-Vis absorption spectra for the dyes D-SS and D-ST in vacuum and THF solution.Whenever in vacuum or THF solution,the dyes D-SS and D-ST have two clear absorption bands within the UV-Vis region.The central wavelength(also maximum peak absorption wavelength λmax) of the first absorption band in the absorption spectrum of dye D-SS molecules in vacuum is approximately 655 nm(molar absorption coefficient approximately 1.2×105L·mol-1·cm-1),and the central wavelength of the second absorption band is approximately 485 nm(molar absorption coefficient approximately 0.76×105L·mol-1·cm-1);the central wavelength(λmax)of the first absorption band in the absorption spectrum in THF solution is approximately 750 nm(molar absorption coefficient approximately 1.27×105L·mol-1·cm-1),and the central wavelength of the second absorption band is approximately 514 nm (molar absorption coefficient approximately 0.72×105L·mol-1· cm-1).The central wavelength of the first absorption band in the absorption spectrum of dye D-ST molecules in vacuum is approximately 575 nm(molar absorption coefficient approximately 1.1×105L·mol-1·cm-1),and the central wavelength of the second absorption band is approximately 430 nm(molar absorption coefficient approximately 0.4×105L·mol-1·cm-1);the central wavelength of the first absorption band in the absorption spectrum in THF solution is approximately 658 nm(molar absorption coefficient approximately 1.16×105L·mol-1·cm-1), and the central wavelength of the second absorption band is approximately 452 nm(molar absorption coefficient approximately 0.44×105L·mol-1·cm-1).

    In comparison with that in vacuum,the maximum peak absorption wavelength of dye D-SS molecules in THF solution has an approximately 95 nm red-shift;similarly,in comparison with the situation in vacuum,the maximum peak absorption wavelength of dye D-ST molecules in THF solution has an approximately 83 nm red-shift.This is due to the impact of solvent effect.58,62-66

    In vacuum,in comparison with the case of dye D-ST molecules,the maximum peak absorption wavelength of dye D-SS molecules has an approximately 80 nm red-shift;while in THF solution,it turns out approximetely 92 nm red-shift.This is mainly because the conjugate π bridge of dye D-SS molecules is longer than that of dye D-ST molecules.

    Table 1 shows details of the excitation energy,peak wavelength,and vibration strength of molecular absorption bands and the major components of electronic transitions.In fact, there is a very weak absorption band besides the two significant absorption bands shown in absorption spectra.Whether in vacuum or polar solution,the strongest absorption band(also the absorption band with a maximum red-shift)of the three absorption bands of molecules within UV-Vis region mainly consists of the transitions from the HOMO at the initial state to the LUMO at the final state.Other absorption bands mainly consist of the transitions HOMO→LUMO+1,HOMO-1→LUMO, HOMO-2→LUMO,and HOMO-3→LUMO.All the electronic transitions caused by these absorptions are π→π*transition, ICT,and the absorption spectra are electron spectrum.In these transitions,initial states are mainly related to electron donor groups,while the final states are mainly related to electron acceptor groups in the molecular orbital.This shows that absorption is a photoinduced electron transfer process,so the excitations generate charge separated states.

    From the simulated absorption spectra,whether in vacuum or polar solution of THF,in comparison with the case of dye D-ST,the UV-Vis absorption spectra of dye D-SS have significant red-shift,and their molar absorption coefficients are close, even the molar absorption coefficient of dye D-SS is higher than that of dye D-ST.Therefore,the solar photon harvesting ability of dye D-SS molecules is stronger than that of dye D-ST molecules.However,the experimental results are that the photovoltaic properties of dye D-ST sensitized DSSCs are better than that of dye D-SS sensitized DSSCs.Especially,the photovoltaic energy conversion efficiency of dye D-ST sensitized DSSCs is nearly two folds higher than that of dye D-SS sensitized DSSCs.While such experimental results can not be explained in absorption spectrum,so we turned to the energy analysis.

    3.3 Energy level diagram

    Fig.4 gives the D-SS and D-ST molecular orbital energy level structures in vacuum and in THF solution,which are simulated using DFT-B3LYP/6-31G(d).Whether in vacuum or THF solution,the LUMO energy level positions of D-SS are lower than that of D-ST,and the HOMO energy level positions of DSS are higher than those of D-ST.This leads to the fact that the energy gaps ΔEH→Lbetween the LUMO and HOMO of D-SS, ΔEH-1→Lbetween the LUMO and HOMO-1,ΔEH→L+1between the LUMO+1 and HOMO,and ΔEH-1→L+1between the LUMO+ 1 and HOMO-1 are smaller than those of D-ST,especially theenergy gap of D-SS(ΔEH→L=2.014 eV(1.823 eV in THF solution))is smaller than that of D-ST(ΔEH→L=2.259 eV(2.096 eV in THF solution)).This is the main cause of the red-shift of the UV-Vis absorption spectrum of D-SS(electron spectrum)in comparison with that of D-ST.

    Table 1 Vertical excitation energies,wavelengths,oscillator strengths,and two highest electronic transition configurations for D-SS and D-ST in vacuum and THF solution

    Fig.4 The frontier molecular orbital energy levels of D-SS and D-ST

    Both the LUMO energy level(ELposition)of-2.694 eV in vacuum(-2.830 eV in THF solution)for dye D-SS molecules and the LUMO energy level of-2.612 eV in vacuum(-2.748 eV in THF solution)for D-ST molecules are much higher than the energy level(approximately-4.0 eV)of the conduction band of TiO2electrode.Therefore,the dyes D-SS and D-ST molecules at optical excited state can successfully inject electron towards TiO2electrode.

    Whether in vacuum or polar solution,the LUMO energy levels of dye D-ST are slightly higher than those of dye D-SS. Therefore,the driving force for the electron injection of D-ST molecules towards the conduction band edge of TiO2electrode at excitation state is slightly greater than that of D-SS molecules.Thus,the photovoltaic properties of dye D-ST sensitized DSSCs should be slightly better than those of dye D-SS,and the photovoltaic energy conversion efficiency should be higher.However,at the same time,we notice that,the LUMO energy level of dye D-ST is not much higher than that of dye D-SS, which proves nothing about the experimental fact that the photovoltaic properties and photovoltaic energy conversion efficiency of dye D-ST sensitized DSSCs are much higher than that of dye D-SS.

    We also notice that,the HOMO energy level(EHposition) of-4.871 eV in vacuum(-4.844 eV in THF solution)for dye D-ST molecules is lower than the redox energy level(-4.8 eV) of redox electrolyte(I-/I-3).The D-ST molecules that lose electron(electron is injected to TiO2electrode)and are oxidized still can be recovered by obtaining electron from electrolyte,in order to be excited through further photon absorption.However,the HOMO energy level(-4.708 eV in vacuum;-4.653 eV in THF solution)of dye D-SS molecules is higher than the redox energy level of redox electrolyte,so the D-SS molecules that lose electron(electron is injected to TiO2electrode)can not be successfully recovered by obtaining electron from electrolyte.Compared with dye D-ST molecules,although dye D-SS molecules have stronger solar photon harvesting ability but the HOMO energy level is higher than the redox energy level of redox electrolyte,dye D-SS molecules can not be successfully recovered by themselves(only can be de-excited through other slow process),which seriously hinders their further solar photon absorption,disables the capability to harvest photons and finally causes the decrease in the photovoltaic properties of dye D-SS sensitized DSSCs.That is to say,D-SS molecules are incapable of normally absorbing photon in DSSCs,or their photon absorption ability can not perform completely.Therefore, although its photon harvesting ability is theoretically strong, but such strong photon harvesting ability has not been explored experimentally,which causes its experimental molar absorption coefficient much lower than its theoretical molar absorp-tion coefficient.

    4 Conclusions

    The UV-Vis absorption spectrum of dye D-SS molecules has a significant red-shift in comparison with that of dye D-ST molecules,and the molar absorption coefficient of dye D-SS molecules is also higher than that of dye D-ST molecules.Dye D-SS molecules should have had higher solar radiation photon harvesting ability in comparison with dye D-ST molecules,but the HOMO energy level position of dye D-SS molecules is

    higher than the redox energy level of redox electrolytetherefore,the D-SS molecules at optically excited state are incapable of being successfully recovered by obtaining electron from electrolyte after being oxidized by injecting electron towards TiO2electrode,which disables full play to be given to the photon harvesting ability.Thereby it seriously decreases the photovoltaic properties and photovoltaic energy conversion efficiency of dye D-SS sensitized DSSCs.Such organic dye molecules whose HOMO energy level is higher than the redox energy level of redox electrolyte are not suitable to be used as the sensitizer of DSSCs.In the process of designing and synthetizing the dyes for DSSCs,theoretical calculations should be carried out firstly to distinguish if the HOMO energy level of dyes can match the redox of redox electrolyte.The position of the HOMO energy level of dye molecules is also very important for DSSCs.When being applied to DSSCs,it must be lower than the redox energy level of redox electrolyte.

    (1) O?Regan,B.;Gr?tzel,M.Nature 1991,353,737.

    (2) Gr?tzel,M.J.Photochem.Photobiol.C 2003,4,145.

    (3) Gr?tzel,M.J.Photochem.Photobiol.A 2004,164,3.

    (4) Nazeeruddin,M.K.;Klein,C.;Liska,P.;Gr?tzel,M.Coord. Chem.Rev.2005,249,1460.

    (5) Gr?tzel,M.Inorg.Chem.2005,44,6841.

    (6) Peter,L.M.Phys.Chem.Chem.Phys.2007,9,2630.

    (7)Wang,Z.S.;Cui,Y.;Dan-oh,Y.;Kasada,C.;Shinpo,A.;Hara, K.J.Phys.Chem.C 2007,111,7224.

    (8) Chen,R.;Yang,X.;Tian,H.;Sun,L.C.J.Photochem. Photobiol.A-Chem.2007,189,295.

    (9)Tian,H.;Yang,X.;Chen,R.;Pan,Y.;Li,L.;Hagfeldt,A.;Sun, L.C.Chem.Commun.2007,No.36,3741.

    (10)Kim,S.;Kim,D.;Choi,H.;Kang,M.S.;Song,K.;Kang,S.O.; Ko,J.Chem.Commun.2008,No.40,4951.

    (11) Ito,S.;Miura,H.;Uchida,S.;Takata,M.;Sumioka,K.;Liska, P.;Comte,P.;Péchy,P.;Gr?tzel,M.Chem.Commun.2008, No.41,5194.

    (12) Li,C.;Yum,J.H.;Moon,S.J.;Herrmann,A.;Eickemeyer,F.; Pschirer,N.G.;Erk,P.;Sch?neboom,J.;Müllen,K.;Gr?tzel, M.;Nazeeruddin,M.K.ChemSusChem 2008,1,615.

    (13) Jin,Y.;Hua,J.;Wu,W.;Ma,X.;Meng,F.Synth.Met.2008, 158,64.

    (14) Burke,A.;Ito,S.;Snaith,H.;Bach,U.;Kwiatkowski,J.; Gr?tzel,M.Nano Lett.2008,8,977.

    (15) Hagberg,D.P.;Marinado,T.;Karlsson,K.M.;Nonomura,K.; Qin,P.;Boschloo,G.;Brinck,T.;Hagfeldt,A.;Sun,L.C. J.Org.Chem.2007,72,9550.

    (16) Qin,P.;Yang,X.;Chen,R.;Sun,L.C.;Marinado,T.; Edvinsson,T.;Boschloo,G.;Hagfeldt,A.J.Phys.Chem.C 2007,111,1853.

    (17) Boschloo,G.;Marinado,T.;Nonomura,K.;Edvinsson,T.; Agrios,A.G.;Hagberg,D.P.;Sun,L.C.;Quintana,M.; Karthikeyan,C.S.;Thelakkat,M.;Hagfeldt,A.Thin Solid Films 2008,516,7214.

    (18)Yen,Y.S.;Hsu,Y.C.;Lin,J.T.;Chang,C.W.;Hsu,C.P.;Yin, D.J.J.Phys.Chem.C 2008,112,12557.

    (19)Balanay,M.P.;Kim,D.H.Phys.Chem.Chem.Phys.2008,10, 5121.

    (20)Ooyama,Y.;Harima,Y.Eur.J.Org.Chem.2009,No.18,2903.

    (21) Rochford,J.;Chu,D.;Hagfeldt,A.;Galoppini,E.J.Am.Chem. Soc.2007,129,4655.

    (22) Chen,R.;Yang,X.;Tian,H.;Wang,X.;Hagfeldt,A.;Sun,L.C. Chem.Mater.2007,19,4007.

    (23) Li,G.;Jiang,K.J.;Li,Y.F.;Li,S.L.;Yang,L.M.J.Phys. Chem.C 2008,112,11591.

    (24) Marinado,T.;Hagberg,D.P.;Hedlund,M.;Edvinsson,T.; Johansson,E.M.J.;Boschloo,G.;Rensmo,H.;Brinck,T.;Sun, L.C.;Hagfeldty,A.Phys.Chem.Chem.Phys.2009,11,133.

    (25) Chen,Z.;Li,F.;Huang,C.H.Curr.Org.Chem.2007,11,1241.

    (26) Tsai,M.S.;Hsu,Y.C.;Lin,J.T.;Chen,H.C.;Hsu,C.P. J.Phys.Chem.C 2007,111,18785.

    (27) Choi,H.;Lee,J.K.;Song,K.H.;Song,K.;Kang,S.O.;Ko,J. Tetrahedron 2007,63,1553.

    (28) Zhao,G.J.;Chen,R.K.;Sun,M.T.;Liu,J.Y.;Li,G.Y.;Gao, Y.L.;Han,K.L.;Yang,X.C.;Sun,L.C.Chem.Eur.J.2008, 14,6935.

    (29)Zhao,G.J.;Liu,J.Y.;Zhou,L.C.;Han,K.L.J.Phys.Chem.B 2007,111,8940.

    (30) Zhao,G.J.;Han,K.L.Biophys.J.2008,94,38.

    (31) Kurashige,Y.;Nakajima,T.;Kurashige,S.;Hirao,K.; Nishikitani,Y.J.Phys.Chem.A 2007,111,5544.

    (32) Zhang,X.;Zhang,J.J.;Xia,Y.Y.J.Photochem.Photobiol. A-Chem.2008,194,167.

    (33) Li,S.L.;Jiang,K.J.;Shao,K.F.;Yang,L.M.Chem.Commun. 2006,No.26,2792.

    (34) Sayama,K.Tsukagoshi,S.;Mori,T.;Hara,K.;Ohga,Y.; Shinpo,A.;Abe,Y.;Suga,S.;Arakawa,H.Sol.Energy Mater. Sol.Cells 2003,80,47.

    (35) DeAngelis,F.;Fantacci,S.;Selloni,A.;Nazeeruddin,M.K. Chem.Phys.Lett.2005,415,115.

    (36) Xu,Y.;Chen,W.K.;Cao,M.J.;Liu,S.H.;Li,J.Q.; Philippopoulos,A.I.;Falaras,P.Chem.Phys.2006,330,204.

    (37) Sun,J.;Song,J.;Zhao,Y.;Liang,W.Z.J.Chem.Phys.2007, 127,234107.

    (38) Wang,Y.L.;Wu,G.S.Acta Phys.-Chim.Sin.2008,24,552. [王溢磊,吳國是.物理化學(xué)學(xué)報,2008,24,552.]

    (39) Li,H.X.;Pan,S.J.;Wang,X.F.;Xiao,T.Chin.J.Chem.Phys. 2008,21,263.

    (40)Zhang,C.R.;Wu,Y.Z.;Chen,Y.H.;Chen,H.S.Acta Phys.-Chim.Sin.2009,25,53.[張材榮,吳有智,陳玉紅,陳宏善.物理化學(xué)學(xué)報,2009,25,53.]

    (41)Zhan,W.S.;Pan,S.;Li,Y.Z.;Chen,M.D.Acta Phys.-Chim. Sin.2009,25,2087. [詹衛(wèi)伸,潘 石,李源作,陳茂篤.物理化學(xué)學(xué)報,2009,25,2087.]

    (42)Sobolewski,A.L.;Domcke,W.J.Phys.Chem.A 1999,103, 4494.

    (43)Sobolewski,A.L.;Domcke,W.J.Phys.Chem.A 2004,108, 10917.

    (44)Sobolewski,A.L.;Domcke,W.;H?ttig,C.J.Phys.Chem.A 2006,110,6301.

    (45) Zhao,G.J.;Han,K.L.J.Phys.Chem.A 2007,111,2469.

    (46) Zhao,G.J.;Han,K.L.J.Phys.Chem.A 2007,111,9218.

    (47)Wang,Y.L.;Wu,G.S.Acta Phys.-Chim.Sin.2007,23,1831. [王溢磊,吳國是.物理化學(xué)學(xué)報,2007,23,1831.]

    (48) Zhang,C.R.;Liu,Z.J.;Chen,Y.H.;Chen,H.S.;Wu,Y.Z.; Yuan,L.H.J.Mol.Struct.-Theochem 2009,899,86.

    (49)Zhan,W.S.;Pan,S.;Li,Y.Z.;Chen,M.D.Acta Phys.-Chim. Sin.2010,26,1408. [詹衛(wèi)伸,潘 石,李源作,陳茂篤.物理化學(xué)學(xué)報,2010,26,1408.]

    (50) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision C.02;Gaussian Inc.:Pittsburgh,PA,2003.

    (51) Becke,A.D.J.Chem.Phys.1993,98,1372.

    (52) Becke,A.D.J.Chem.Phys.1993,98,5648.

    (53) Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J. J.Phys.Chem.1994,98,11623.

    (54) Bene,J.E.D.;Person,W.B.;Szczepaniak,K.J.Phys.Chem. 1995,99,10705.

    (55) Hertwig,R.H.;Koch,W.Chem.Phys.Lett.1997,268,345.

    (56) Tozer,D.J.;Handy,N.C.J.Chem.Phys.1998,109,10180.

    (57)Yanai,T.;Tew,D.P.;Handy,N.C.Chem.Phys.Lett.2004,393, 51.

    (58) Barone,V.;Cossi,M.J.Phys.Chem.A 1998,102,1995.

    (59) Klamt,A.J.Phys.Chem.1995,99,2224.

    (60) Klamt,A.J.Phys.Chem.1996,100,3349.

    (61) Reed,A.E.;Weinstock,R.B.;Weinhold,F.J.Chem.Phys. 1985,83,735.

    (62)Cossi,M.;Barone,V.;Cammi,R.;Tomasi,J.Chem.Phys.Lett. 1996,255,327.

    (63) Foresman,J.B.;Keith,T.A.;Wiberg,K.B.;Snoonian,J.; Frisch,M.J.J.Phys.Chem.1996,100,16098.

    (64) Cossi,M.;Barone,V.;Mennucci,B.;Tomasi,J.Chem.Phys. Lett.1998,286,253.

    (65) Klamt,A.;Jonas,V.;Bürger,T.;Lohrenz,J.C.W.J.Phys. Chem.A 1998,102,5074.

    (66) Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem. 2003,24,669.

    June 10,2011;Revised:November 7,2011;Published on Web:November 9,2011.

    Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells

    ZHAN Wei-Shen PAN Shi*WANG Qiao LI Hong ZHANG Yi
    (Institute of Near-Field Optics and Nanotechnology,School of Physics and Optoelectronic Technology, Dalian University of Technology,Dalian 116024,Liaoning Province,P.R.China)

    The molecular structures,UV-Vis absorption spectra,and energy level structures of the dyes D-SS and D-ST were simulated using density functional theory,time-dependent density functional theory (TDDFT),and natural bond orbital analysis,which provided the physical mechanisms of dye-sensitized solar cells(DSSCs)containing D-ST and D-SS.The UV-Vis absorption spectrum of D-SS showed a significant red shift compared with that of D-ST and the molar absorption coefficient of D-SS was higher than that of D-ST.D-SS molecules should have a higher solar radiation photon-harvesting ability than D-ST molecules,but the energy level of the highest occupied molecular orbital(HOMO)of D-SS was higher than the redox energy level of the electrolyteAs a result,an optically excited D-SS molecule cannot be successfully recovered by accepting an electron from the electrolyte after being oxidized by injecting an electron towards the TiO2electrode.This limits the photon harvesting ability of D-SS molecules,and thereby significantly decreases the photovoltaic properties and energy conversion efficiency of DSSCs containing D-SS.This allows the photovoltaic properties of DSSCs containing D-SS to be understood, especially why its photovoltaic energy conversion efficiency is lower than that of DSSCs containing D-ST. The position of the HOMO energy level of dye-sensitized molecules is very important for the operation of DSSCs,and that of the organic sensitizer molecules used in DSSCs must be lower than the redox energy level of the electrolyte.

    Density functional theory;Time-dependent density functional theory;Dye-sensitized solar cells;Molecular simulation;Electronic structure;Absorption spectrum; Energy level

    10.3866/PKU.WHXB20122878

    *Corresponding author.Email:span@dlut.edu.cn;Tel:+86-411-84707863;Fax:+86-411-84706061

    O641

    猜你喜歡
    敏化物理化學(xué)吸收光譜
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻計量學(xué)分析
    Chemical Concepts from Density Functional Theory
    原子吸收光譜分析的干擾與消除應(yīng)用研究
    淺析原子吸收光譜法在土壤環(huán)境監(jiān)測中的應(yīng)用
    茶油氧化過程中紫外吸收光譜特性
    耦聯(lián)劑輔助吸附法制備CuInS2量子點敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    香蕉丝袜av| 中文天堂在线官网| 久久这里只有精品19| 午夜免费鲁丝| 性色av一级| 国产又色又爽无遮挡免| 亚洲一区二区三区欧美精品| 中文字幕最新亚洲高清| 亚洲欧美中文字幕日韩二区| 国产亚洲精品第一综合不卡| 最近中文字幕2019免费版| 国产精品成人在线| 国产成人av激情在线播放| 老司机影院成人| 新久久久久国产一级毛片| 人妻一区二区av| 天天操日日干夜夜撸| 亚洲精品乱久久久久久| 午夜日韩欧美国产| 久久精品国产a三级三级三级| 欧美日本中文国产一区发布| 两性夫妻黄色片| 搡老乐熟女国产| 欧美日韩精品网址| 在线观看免费视频网站a站| 亚洲七黄色美女视频| 亚洲av男天堂| 我要看黄色一级片免费的| 自线自在国产av| 成年人免费黄色播放视频| 这个男人来自地球电影免费观看 | 又黄又粗又硬又大视频| 男人舔女人的私密视频| 免费高清在线观看日韩| 久久久久视频综合| 丝袜脚勾引网站| 巨乳人妻的诱惑在线观看| 狠狠婷婷综合久久久久久88av| 一区二区av电影网| 久久精品国产综合久久久| www.自偷自拍.com| 免费高清在线观看日韩| 成年女人毛片免费观看观看9 | 少妇 在线观看| 国产色婷婷99| 男女之事视频高清在线观看 | 亚洲欧洲精品一区二区精品久久久 | 欧美成人精品欧美一级黄| a级片在线免费高清观看视频| 亚洲激情五月婷婷啪啪| 久久久久精品国产欧美久久久 | 男女国产视频网站| 日韩中文字幕欧美一区二区 | 国产精品成人在线| 色视频在线一区二区三区| 另类精品久久| 美女高潮到喷水免费观看| 亚洲天堂av无毛| 精品一区二区三区av网在线观看 | 亚洲第一区二区三区不卡| 国产精品亚洲av一区麻豆 | 日韩一本色道免费dvd| 欧美日韩亚洲国产一区二区在线观看 | 日韩成人av中文字幕在线观看| 建设人人有责人人尽责人人享有的| 亚洲精品一二三| 最新的欧美精品一区二区| 国产精品 欧美亚洲| 丝袜脚勾引网站| 午夜免费观看性视频| 亚洲七黄色美女视频| 国产男人的电影天堂91| 亚洲四区av| 无遮挡黄片免费观看| 99国产综合亚洲精品| 少妇人妻久久综合中文| 2021少妇久久久久久久久久久| 在线观看人妻少妇| 男的添女的下面高潮视频| av网站在线播放免费| 色婷婷久久久亚洲欧美| 亚洲欧美成人精品一区二区| 中文字幕人妻熟女乱码| 最近手机中文字幕大全| h视频一区二区三区| 性高湖久久久久久久久免费观看| 欧美日韩亚洲综合一区二区三区_| 另类精品久久| 久久久精品免费免费高清| 国产日韩欧美亚洲二区| 伦理电影大哥的女人| 一区在线观看完整版| 久久久久国产一级毛片高清牌| 免费观看a级毛片全部| 欧美黄色片欧美黄色片| 亚洲av日韩精品久久久久久密 | 国产又爽黄色视频| 亚洲久久久国产精品| 亚洲精品美女久久av网站| 免费观看人在逋| 最新的欧美精品一区二区| 亚洲精品乱久久久久久| 久久久久久久精品精品| 一边摸一边抽搐一进一出视频| 狠狠精品人妻久久久久久综合| 97在线人人人人妻| 99re6热这里在线精品视频| 欧美精品一区二区大全| 亚洲av成人精品一二三区| 亚洲欧洲日产国产| 一级毛片我不卡| 亚洲欧美日韩另类电影网站| 男女午夜视频在线观看| 伊人亚洲综合成人网| 国产精品欧美亚洲77777| 亚洲精品第二区| 亚洲国产精品999| 哪个播放器可以免费观看大片| 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| 精品国产乱码久久久久久男人| 自拍欧美九色日韩亚洲蝌蚪91| 老司机在亚洲福利影院| 宅男免费午夜| 免费不卡黄色视频| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡| 成年女人毛片免费观看观看9 | 国产爽快片一区二区三区| 最近中文字幕2019免费版| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩国产mv在线观看视频| 亚洲美女搞黄在线观看| 国产成人精品无人区| 久久ye,这里只有精品| 亚洲av综合色区一区| 欧美激情极品国产一区二区三区| 国产精品免费大片| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品一区二区三区在线| xxxhd国产人妻xxx| 波多野结衣av一区二区av| 永久免费av网站大全| 亚洲欧洲日产国产| 亚洲图色成人| 亚洲精品视频女| 日韩成人av中文字幕在线观看| 乱人伦中国视频| 亚洲av日韩在线播放| 久久久久人妻精品一区果冻| 伊人久久国产一区二区| 汤姆久久久久久久影院中文字幕| 久久精品国产综合久久久| avwww免费| 黄片无遮挡物在线观看| 在现免费观看毛片| 欧美日本中文国产一区发布| 中文字幕色久视频| 国产亚洲一区二区精品| 久久女婷五月综合色啪小说| 国产精品免费大片| 亚洲国产精品国产精品| 亚洲精品自拍成人| 女人爽到高潮嗷嗷叫在线视频| 国产色婷婷99| 人人妻人人澡人人看| 欧美 亚洲 国产 日韩一| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 欧美成人午夜精品| 成人亚洲欧美一区二区av| 国产亚洲欧美精品永久| 亚洲精品国产av蜜桃| 中文字幕人妻丝袜制服| 久久午夜综合久久蜜桃| 久久久国产欧美日韩av| 男人操女人黄网站| 国产 精品1| 欧美人与善性xxx| 操美女的视频在线观看| 亚洲成人一二三区av| 90打野战视频偷拍视频| 黄片播放在线免费| 一个人免费看片子| 中文欧美无线码| netflix在线观看网站| 午夜免费观看性视频| 69精品国产乱码久久久| 国产精品免费视频内射| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图综合在线观看| 久久久欧美国产精品| 久久久精品国产亚洲av高清涩受| 麻豆乱淫一区二区| 免费观看av网站的网址| 国产av国产精品国产| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 9191精品国产免费久久| kizo精华| 日韩中文字幕视频在线看片| 免费黄网站久久成人精品| 精品免费久久久久久久清纯 | 欧美亚洲日本最大视频资源| 中文字幕另类日韩欧美亚洲嫩草| 久久人人爽av亚洲精品天堂| 亚洲精品久久成人aⅴ小说| bbb黄色大片| 午夜激情av网站| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产区一区二| 一级片免费观看大全| 亚洲 欧美一区二区三区| 美女午夜性视频免费| 日本午夜av视频| 色婷婷久久久亚洲欧美| 最近中文字幕2019免费版| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 亚洲人成电影观看| 一区二区三区乱码不卡18| 免费看不卡的av| 日韩一卡2卡3卡4卡2021年| 免费黄色在线免费观看| 色网站视频免费| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲 | 精品少妇久久久久久888优播| 在线观看一区二区三区激情| 免费在线观看黄色视频的| 男人爽女人下面视频在线观看| 亚洲,欧美,日韩| 中文精品一卡2卡3卡4更新| 美女视频免费永久观看网站| 这个男人来自地球电影免费观看 | 国产伦人伦偷精品视频| 王馨瑶露胸无遮挡在线观看| 老汉色av国产亚洲站长工具| 又粗又硬又长又爽又黄的视频| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说| 亚洲精品aⅴ在线观看| 看免费av毛片| 亚洲男人天堂网一区| 在线观看三级黄色| 亚洲图色成人| 免费在线观看黄色视频的| 亚洲精品第二区| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 国产精品香港三级国产av潘金莲 | 王馨瑶露胸无遮挡在线观看| 男女床上黄色一级片免费看| 亚洲综合色网址| 999久久久国产精品视频| 在线看a的网站| 少妇猛男粗大的猛烈进出视频| 免费看不卡的av| 国产一区亚洲一区在线观看| 高清在线视频一区二区三区| 人人妻人人澡人人看| 国产日韩欧美视频二区| 男女免费视频国产| 一本久久精品| 成人亚洲欧美一区二区av| 天美传媒精品一区二区| 亚洲第一青青草原| 激情五月婷婷亚洲| 国产精品香港三级国产av潘金莲 | 一本大道久久a久久精品| 91精品三级在线观看| 日韩av免费高清视频| 韩国精品一区二区三区| 免费在线观看黄色视频的| 国产精品国产三级国产专区5o| 亚洲国产精品一区二区三区在线| 中文字幕精品免费在线观看视频| 人体艺术视频欧美日本| 国产免费视频播放在线视频| 九草在线视频观看| 久久久久久久精品精品| 高清视频免费观看一区二区| 免费av中文字幕在线| 免费黄频网站在线观看国产| 国产麻豆69| 妹子高潮喷水视频| 一区二区三区精品91| 成年人午夜在线观看视频| 在线观看一区二区三区激情| 国产97色在线日韩免费| 日日啪夜夜爽| 精品一区二区免费观看| 欧美亚洲日本最大视频资源| 日本av免费视频播放| 久热爱精品视频在线9| 免费女性裸体啪啪无遮挡网站| 高清不卡的av网站| 在线天堂中文资源库| 久久久久人妻精品一区果冻| 亚洲精品一二三| 国产精品免费大片| 久久久亚洲精品成人影院| 国产精品久久久久成人av| 欧美最新免费一区二区三区| 中文字幕av电影在线播放| 18禁国产床啪视频网站| 青春草亚洲视频在线观看| 久久狼人影院| 国产成人免费观看mmmm| 中文字幕色久视频| 久久天堂一区二区三区四区| 国产精品久久久人人做人人爽| 18在线观看网站| 看免费av毛片| 搡老岳熟女国产| 99精品久久久久人妻精品| 亚洲国产精品成人久久小说| 19禁男女啪啪无遮挡网站| 国产精品人妻久久久影院| 欧美亚洲日本最大视频资源| 高清黄色对白视频在线免费看| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 观看av在线不卡| 亚洲欧美精品综合一区二区三区| 免费高清在线观看日韩| 青青草视频在线视频观看| 日韩 欧美 亚洲 中文字幕| 在线天堂中文资源库| 一级片'在线观看视频| 天堂俺去俺来也www色官网| 免费高清在线观看日韩| 成人免费观看视频高清| 国产精品久久久久久精品电影小说| 99精品久久久久人妻精品| 久热爱精品视频在线9| 欧美日韩亚洲综合一区二区三区_| 亚洲精品久久午夜乱码| 欧美日本中文国产一区发布| 丁香六月欧美| 五月开心婷婷网| 国产av国产精品国产| 精品人妻熟女毛片av久久网站| 国产人伦9x9x在线观看| 久久亚洲国产成人精品v| 男女国产视频网站| 欧美激情 高清一区二区三区| 丰满乱子伦码专区| 18禁国产床啪视频网站| 天堂8中文在线网| 尾随美女入室| 可以免费在线观看a视频的电影网站 | 考比视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产野战对白在线观看| 成人国产av品久久久| 黄片无遮挡物在线观看| 亚洲精品在线美女| 别揉我奶头~嗯~啊~动态视频 | 韩国av在线不卡| 亚洲一区二区三区欧美精品| 建设人人有责人人尽责人人享有的| 纵有疾风起免费观看全集完整版| 丝袜脚勾引网站| 国产麻豆69| 99久久人妻综合| 亚洲欧美成人综合另类久久久| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 国产爽快片一区二区三区| 免费在线观看黄色视频的| 狠狠精品人妻久久久久久综合| 免费在线观看黄色视频的| 亚洲专区中文字幕在线 | 亚洲欧美色中文字幕在线| 十分钟在线观看高清视频www| 嫩草影视91久久| 操出白浆在线播放| 欧美成人精品欧美一级黄| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲一区二区精品| 免费人妻精品一区二区三区视频| 婷婷色av中文字幕| 人人妻人人澡人人看| 99久久人妻综合| 99久久精品国产亚洲精品| 男女午夜视频在线观看| 亚洲综合色网址| 男女无遮挡免费网站观看| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 黄片播放在线免费| 亚洲av日韩精品久久久久久密 | a 毛片基地| 一级片免费观看大全| 亚洲精品第二区| 大香蕉久久成人网| 午夜精品国产一区二区电影| e午夜精品久久久久久久| 十八禁高潮呻吟视频| 成人国语在线视频| h视频一区二区三区| av一本久久久久| a级片在线免费高清观看视频| 久久久久久久久免费视频了| 国产一区二区激情短视频 | 最近中文字幕高清免费大全6| 热99久久久久精品小说推荐| 国产成人欧美在线观看 | 国产极品天堂在线| 老鸭窝网址在线观看| 日韩,欧美,国产一区二区三区| 青春草视频在线免费观看| 1024视频免费在线观看| 大片电影免费在线观看免费| 日韩免费高清中文字幕av| 国产日韩欧美亚洲二区| 日本午夜av视频| e午夜精品久久久久久久| av女优亚洲男人天堂| 日本wwww免费看| 一本久久精品| 国产精品国产av在线观看| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 在线观看免费视频网站a站| 免费人妻精品一区二区三区视频| 中文字幕高清在线视频| www.自偷自拍.com| 欧美激情高清一区二区三区 | 久久久精品区二区三区| 国产成人午夜福利电影在线观看| 汤姆久久久久久久影院中文字幕| 国产日韩欧美在线精品| 免费在线观看完整版高清| 免费在线观看黄色视频的| 婷婷色综合www| 久久毛片免费看一区二区三区| 欧美人与性动交α欧美精品济南到| 婷婷色综合www| 欧美黄色片欧美黄色片| e午夜精品久久久久久久| 亚洲精品在线美女| 亚洲一码二码三码区别大吗| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 黄片无遮挡物在线观看| 免费日韩欧美在线观看| a级片在线免费高清观看视频| 国产亚洲最大av| 亚洲久久久国产精品| 我的亚洲天堂| 人体艺术视频欧美日本| 亚洲欧美中文字幕日韩二区| 久久性视频一级片| 成年av动漫网址| 国产97色在线日韩免费| 另类亚洲欧美激情| 精品少妇久久久久久888优播| 亚洲av日韩精品久久久久久密 | 国产精品久久久久久精品电影小说| 亚洲国产欧美一区二区综合| 久久久精品区二区三区| 一区二区av电影网| 巨乳人妻的诱惑在线观看| 男女国产视频网站| 看免费成人av毛片| 婷婷色综合www| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 日韩精品有码人妻一区| 国产又爽黄色视频| 久久影院123| 国产欧美亚洲国产| 日韩成人av中文字幕在线观看| 精品一品国产午夜福利视频| xxx大片免费视频| 丝袜在线中文字幕| 免费高清在线观看视频在线观看| 2021少妇久久久久久久久久久| 国产又色又爽无遮挡免| 免费不卡黄色视频| 久久久久久免费高清国产稀缺| 国产女主播在线喷水免费视频网站| 午夜日韩欧美国产| 在线精品无人区一区二区三| 一边亲一边摸免费视频| 成年av动漫网址| 成人手机av| 最近手机中文字幕大全| 欧美老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 777久久人妻少妇嫩草av网站| 性高湖久久久久久久久免费观看| 伦理电影免费视频| 日韩视频在线欧美| 精品一区二区三区四区五区乱码 | 亚洲欧美中文字幕日韩二区| 美女主播在线视频| 亚洲国产毛片av蜜桃av| 久久久久精品国产欧美久久久 | 国产精品熟女久久久久浪| 免费高清在线观看日韩| 久久久久人妻精品一区果冻| 久久精品国产a三级三级三级| 亚洲精品日韩在线中文字幕| 国产精品熟女久久久久浪| 黑丝袜美女国产一区| 久久人人爽av亚洲精品天堂| avwww免费| 精品久久久久久电影网| 另类精品久久| 1024视频免费在线观看| 在线 av 中文字幕| 亚洲国产日韩一区二区| 精品第一国产精品| 午夜福利乱码中文字幕| 最近最新中文字幕免费大全7| 午夜精品国产一区二区电影| av福利片在线| 搡老岳熟女国产| 国产一区二区 视频在线| 国产男女超爽视频在线观看| 久久久久国产精品人妻一区二区| 免费在线观看黄色视频的| 国产淫语在线视频| 国产99久久九九免费精品| 在线看a的网站| 激情视频va一区二区三区| 99热网站在线观看| 亚洲国产精品999| av国产久精品久网站免费入址| 天天躁夜夜躁狠狠久久av| 免费黄网站久久成人精品| 熟女少妇亚洲综合色aaa.| 精品人妻熟女毛片av久久网站| 最近手机中文字幕大全| 91aial.com中文字幕在线观看| 日本91视频免费播放| 久久久久久久久免费视频了| 中文字幕人妻丝袜制服| 久久久久久免费高清国产稀缺| 各种免费的搞黄视频| 亚洲国产精品999| 中文字幕精品免费在线观看视频| 成人手机av| 天天影视国产精品| 日韩成人av中文字幕在线观看| 国产成人精品久久久久久| 免费看av在线观看网站| 18禁裸乳无遮挡动漫免费视频| 久久亚洲国产成人精品v| 精品久久久精品久久久| 成人手机av| 欧美在线黄色| 91精品国产国语对白视频| 电影成人av| 久久久久久久大尺度免费视频| 在线观看三级黄色| 黄色视频不卡| 国产精品一区二区精品视频观看| 日韩不卡一区二区三区视频在线| 久久精品aⅴ一区二区三区四区| 欧美日韩视频高清一区二区三区二| 亚洲欧美精品自产自拍| 老司机靠b影院| 一级片'在线观看视频| 成年人免费黄色播放视频| 欧美国产精品va在线观看不卡| 日本色播在线视频| 精品视频人人做人人爽| 久久韩国三级中文字幕| 亚洲激情五月婷婷啪啪| 十八禁高潮呻吟视频| 久久人人爽av亚洲精品天堂| 高清黄色对白视频在线免费看| 纯流量卡能插随身wifi吗| 国产激情久久老熟女| 国产男女超爽视频在线观看| 性色av一级| 久久久国产一区二区| 国产一区二区激情短视频 | 女性被躁到高潮视频| 日韩伦理黄色片| 久热这里只有精品99| 色播在线永久视频| 街头女战士在线观看网站| 搡老岳熟女国产| 少妇猛男粗大的猛烈进出视频| 麻豆av在线久日| 欧美变态另类bdsm刘玥| 99九九在线精品视频| 菩萨蛮人人尽说江南好唐韦庄| 久久精品aⅴ一区二区三区四区| 国产免费一区二区三区四区乱码| 国产极品天堂在线| 国产又爽黄色视频| 嫩草影院入口| 欧美精品一区二区免费开放| 男女无遮挡免费网站观看| 久久韩国三级中文字幕| 国产精品偷伦视频观看了| 丁香六月天网| 日日爽夜夜爽网站| 亚洲av国产av综合av卡| 天天躁狠狠躁夜夜躁狠狠躁| 国产99久久九九免费精品| 亚洲av中文av极速乱| av在线老鸭窝| 美女福利国产在线| 免费高清在线观看视频在线观看| 美女午夜性视频免费| 大片免费播放器 马上看| 日本av免费视频播放|