• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    紫外-可見(jiàn)吸收光譜結(jié)合高斯多峰擬合技術(shù)測(cè)定甲基紅酸離解常數(shù)

    2012-12-12 02:42:34張建華陳玉苗劉兆清徐常威
    物理化學(xué)學(xué)報(bào) 2012年5期
    關(guān)鍵詞:張建華化工學(xué)院物理化學(xué)

    張建華 劉 瓊 陳玉苗 劉兆清 徐常威

    (廣州大學(xué)化學(xué)化工學(xué)院,廣州510006)

    1 Introduction

    The acid-base ionization equilibrium exists in aqueous solution of many organic dyes.Acid dissociation constant is a very important parameter to indicate degree of ionization at the different pH values in acidic organic dye solutions.1-3The acidbase ionization equilibrium of organic dyes and the determination of acid dissociation constant in aqueous solution are of great significance for many practical applications and scientific research areas such as acid-base titration,complex formation, solvent extractions,capillary electrophoresis,4chromatographic retention characteristics,5,6potentiometric titration,fabric dyeing and finishing,7environmental monitoring and protection,8-12drug research and development.In particular,drug synthesis, production,purification,formulation,dissolution,absorption, distribution and metabolism processes are closely related with the pKa.13,14Many determination methods for acid dissociation constants of organic dyes have been developed.3,15-17The most commonly used methods are potentiometric titration,5,18-21conductivity,22,23capillary electrophoresis,15capillary electrophoresis mass spectrometry,24nuclear magnetic resonance spectroscopy,25-28liquid chromatography,6,16,29infrared spectroscopy,30,31Raman scattering,32fluorescence spectroscopy,33,34UV-visible spectrophotometry,35-37theoretical calculation38and so on.Among them,spectrophotometric method has high precision and accuracy.The linear relationship between absorbance and concentration of color solution with a certain thickness is determined by Lambert-Beer?s law,which gives a theoretical foundation of the spectrophotometric determination of the pKaof an acidbase indicator.

    In 1958,Tobey39determined the pKaof methyl red using singlewavelength spectrophotometry and the pKais 5.02 at 300.35 K.Since then,a lot of work to determine the pKaof organic dyes using single-wavelength spectrophotometry has been reported.3,35-37Single-wavelength spectrophotometry is very suitable to determine the position of absorption peaks of acid and base species which are separated.However,in most cases,the maximum absorption peaks of acid and base species are association with each other in organic dye aqueous solutions.This situation leads to difficulties in data processing and determination of the pKa.3The multi-wavelengths spectrophotometric method has been adopted to determine the value of pKa.4,40,41Target factor analysis,4rank annihilation factor analysis42,43and other methods6,44have been developed to deduce the pKavalues from the multi-wavelengths spectrophotometric data obtained at different pH values.

    UV-visible absorption spectra of methyl red were measured at different pH values regulated by a series of acetic acid (HAc)-sodium acetate(NaAc)buffer solutions with different concentrations and characterized by an overlap of a principal peak of acidic specie of methyl red(HMR)at 520-550 nm and a shoulder peak of basic specie of methyl red(MR-)at 425-460 nm.A multi-peaks Gaussian fitting method based on Origin from Microcal Company was used to interpret the spectra in this study.The multi-peaks Gaussian fitting calculation45-47on the overlap peaks gave the integrated absorbance ratioA1/A2,then the pKaof methyl red was obtained.

    The studies on organic dye-surfactant interactions in aqueous buffered systems are of great importance in analytical chemistry,pesticide efficiency,pharmaceutical development, fabric dyeing and so on.Therefore,a new procedure based on multi-peaks Gaussian fitting method was firstly performed in dye-surfactant interactions of methyl red with sodium dodecyl sulfate(SDS),cetylammonium bromide(CTAB),which will enrich research methods in this research area.

    2 Experimental

    2.1 Reagents

    Methyl red,anhydrous NaAc,CTAB,SDS were of analytical grade and purchased from Sigma-Aldrich.Ethanol,HAc, HCl were of analytical grade and purchased from Guangzhou chemical reagent factory.All solutions were prepared with distilled water.

    (1)All the solutions of methyl red were prepared according to the literature37and the pH values were achieved using a certain concentration of NaAc-HAc buffer solution.

    (2)A series of methyl red solutions with SDS were prepared by a concentration range of SDS from 0.001 to 0.018 mol·L-1and the concentration of methyl red was fixed.

    (3)Instead of SDS,a series of methyl red solutions with CTAB were prepared by the concentration of CTAB at 0.0001 mol·L-1(below the critical micelle concentration(CMC)of CTAB)and 0.001 mol·L-1(above the CMC of CTAB)and the concentration of methyl red was fixed.

    2.2 Apparatus

    UV-visible absorption spectra were recorded on Shimadzu UV2550-UV-visible spectrophotometer(Japan)equipped with 10 mm path length quartz cell.Distilled water was used as reference solution.All the spectra were obtained between 320 and 750 nm and the sampling interval was 0.5 nm.The pH values of the solutions were measured by PHSJ-4A-type PH meter furnished with a combined glass electrode(Shanghai Precision Division-Shanghai Lei magnetic)which was pre-calibrated with at least two buffer solutions at pH 4.00 and 10.00.Each pH value was obtained from the average of three measurements.All pH values and spectra were measured at a constant temperature which was controlled by a super-heated water circulating thermostat bath.The measurement data were imported into PC with Microcal Origin 7.0 for data processing.

    2.3 Multi-peaks Gaussian fitting method

    The UV-visible spectrum data were imported and plotted with Origin 7.5 software.When menu command of Analysis/ Fit Multi-Peaks/Gaussian was selected,a dialog box with the number and the initial half-width estimated default values of the peaks appeared in the current graphics window.After doubleclicking the mouse at 425 and 520 nm of the spectra respectively,Origin 7.5 automatically completed a multi-peaks Gaussian fitting procedure on certain spectra and gave the line-shape parameters of the UV-visible spectra in the result window.

    3 Results and discussion

    3.1 Principle of multi-peaks Gaussian fitting method

    Ionization equilibrium of methyl red in aqueous solution is given as the following equation

    The pH value range of color change of methyl red in aqueous solution is well known as 4.4-6.2.When pH values are 4.63, 4.93,5.39,5.68,the UV-visible absorption spectra and their multi-peaks Gaussian fitting results are shown in Fig.1.It is shown that integrated absorbanceA1of base MR-peaks increases and integrated absorbance A2of acid HMR peaks decreases with the increase of pH value.The increase and decrease of the integrated absorbance of the MR-and HMR are objectively due to the change of the relative concentrations of MR-and HMR.

    Existence simultaneously of HMR and MR-in methyl red solution results in spectra with two peaks at a certain pH value. Multi-peaks Gaussian fitting on the spectra with two peaks satisfies following equation

    where,y0is baseline,λmax1and λmax2are the maximum absorption wavelengths,w1and w2are half peak widths,A1and A2are the integrated absorbances of the two peaks for MR-and HMR.

    Multi-peaks Gaussian fitting method based on the spectragives the λmax1,λmax2,w1,w2,A1,A2and these data are listed in Table 1.

    Table 1 Results of the multi-peaks Gaussian fitting method on the spectra of methyl red solution at different pH values and 298.15 K

    3.2 Relationship between pKaand the relative integrated absorbance

    Acid dissociation constant of methyl red is given as following equation

    where,ε1and ε2are the molar absorption coefficients of MR-and HMR,respectively.Then,the methyl red absorption spectra(Fig.2)were measured in base(pH=9)and acid(pH=2)conditions respectively.

    When the value of pH is 9,there is only MR-in methyl red solution and the[MR-]=C,then

    When the value of pH is 2,there is only HMR in methyl red so-lution and[HMR]=C,then

    Fig.2 UV-visible absorption spectra of methyl red solution measured in basic(pH=9)and acid(pH=2)solutions

    Setting ε=ε1/ε2and A1or A2are obtained with the same concentration of methyl red,then

    The value of ε is obtained as 0.56.

    From Eqs.(4)-(8),pKacan be calculated from Eq.(10)

    The value of pKais obtained from Eq.(10)at different pH values.The Multi-peaks Gaussian Fitting results are shown in Table 2.

    3.3 Error analysis for determination of pKa

    It is very clear that the values of pKalisted in Table 2 are slightly lower than the values(4.90±0.20)in literature.39,42,48However,the results are within the error range for the values of pKaand prove the reliability of multi-peaks Gaussian fittingmethod for determination of pKa.The concentrations of MR-and HMR in solutions are determined by the curves for absorbance of maximum absorption wavelength at 425 nm for MR-and that at 520 nm for HMR.However the concentrations of MR-and HMR are determined by the methyl red color range which are unreliable because of blue shift of MR-and red shift of HMR absorption peak.18The absorption peak of MR-bluely shifts from 456 to 436 nm and the absorption peak of HMR redly shifts from 531 to 546 nm when the pH value increases from 4.63 to 5.68 in Table 1.The shifts of absorption peaks make the relationship of the concentration and absorbance diverge obviously from the standard curve and cause about ±(3%-5%)systematic error for pKameasurement which is higher than true value.

    Table 2 Relationship between Kaand temperature

    A multi-peaks Gaussian fitting based on the absorption spectra of methyl red within the color change interval has been made and gives the relative integrated absorbance of MR-and HMR absorption peaks which is used to determine the relative concentration of MR-and HMR instead of using the unreliable standard curves obtained from the acid and base conditions in this study.So the pKameasurement results are more reliable and repeatable.

    3.4 Thermodynamics on ionization equilibrium of methyl red

    The pKavalues of methyl red were determined by UV-visible absorption spectroscopy with multi-peaks Gaussian fitting method at different temperatures and shown in Table 2.The values of pKadecrease considerably with increase of temperature,which is consistent with the literature.49Generally it is believed that the increase of temperature promotes ionization of organic dyes and leads to decrease of pKa.

    A few of thermodynamic models have been developed for acid dissociation equilibrium of oganic dyes.49Here,the‘density’model has been selected.49The standard Gibbs free energy of reaction(ΔrG?)for the ionization equilibrium of methyl red satisfies the following Eq.(12)

    where pKa=-lgKa,ρwis water density(kg·m-3),T is the thermodynamic temperature(K),and a-g are model parameters.The relationship between the lgKaand 1/T is shown in Fig.3.The ΔrG?obtained from Eq.(12)with parameters which were obtained from non-linear curve fitting on data of Fig.3 with change of temperature is shown in Fig.4.The ΔrG?increases with increase of temperature and is consistent with the literature.49

    3.5 Effect of surfactants on pKa

    3.5.1 SDS-methyl red system

    The variety of CMC of surfactants can be measured accurately by UV-visible absorption spectrum combined with multipeaks Gaussian fitting method in order to study their aggregation behavior.45To study the effects of aggregation behavior of surfactant on pKa,SDS-methyl red and CTAB-methyl red aque-ous solution systems were selected.Fig.5 shows the relationships between pKaof methyl red and the SDS concentration at different temperatures.The values of pKadecrease considerably with the increase of temperature,indicating that the ionization equilibrium of methyl red moves to the right in the existence of anionic surfactant SDS.When the SDS concentration is lower than the CMC,no significant change of pKavalues is observed.When the SDS concentration is higher than the CMC,pKavalues increase with the increase of SDS concentration.It is undoubted that the pKais sensitive to the CMC and used for determination of the CMC of SDS,for example the CMC of SDS are 8.54×10-3,8.68×10-3,8.82×10-3,9.66×10-3mol·L-1at 303.15,308.15,313.15,318.15 K,respectively, which are consistent with the literature.50

    Fig.3 Relationship between lgKaand 1/T

    Fig.4 Relationship between ΔrG?and temperature

    Fig.5 Relationships between pKaof methyl red and the SDS concentration at different temperatures

    Table 3 Spectrum line-shape parameters of methyl red with different concentrations of SDS at 298.15 K and pH=5.40

    In order to investigate further effect of SDS on ionization equilibrium of methyl red in solution,a multi-peaks Gaussian fitting method on UV-visible spectra of the series of solutions (pH=5.40)containing different concentrations of SDS from 0.001 to 0.018 mol·L-1gives spectral line-shape parameters such as A1and A2,λmax1and λmax2,w1and w2of MR-and HMR at 298.15 K in Table 3.

    The spectral line-shape parameters listed in Table 3 are sensitive to the SDS concentration and changes suddenly at CMC of SDS which are shown in Fig.6 and Fig.7.The red shift of λmax1and blue shift of λmax2with the increase of the SDS concentration are observed and more obvious after formation of the SDS micelle.There is a sudden change at 0.0083 mol·L-1in Fig.6 and Fig.7.At first,the λmax1of MR-absorption peak increases slowly and then increases quickly with the increase of SDS concentration.Sudden change occurs at the CMC of SDS.The change of λmax2is exactly the opposite with λmax1.The w1of MR-absorption peak increases then decreases quickly with the increase of SDS concentration.Sudden change occurs at the CMC of SDS.The change of w2is exactly the opposite with w1.Generally,relationship between spectral line-shape parameters such as A1,A2,λmax1,λmax2,w1,w2and concentration of surfac-tant has been used by us for CMC determination.45

    Fig.6 Dependence of the maximum absorption wavelengths of MR-and HMR on the concentration of SDS at 298.15 K

    Table 4 Spectrum line-shape parameters and effect of aggregation behavior of CTAB on pKaof methyl red with different concentra

    3.5.2 CTAB-methyl red system

    CTAB with methyl red system is much more complicated than SDS with methyl red system.The UV-visible absorption spectrum of CTAB with methyl red solution is shown in Fig.8 when CTAB concentration is bellow and above the CMC.Table 4 gives the spectrum line-shape parameters and the effect of aggregation behavior of CTAB on the pKaof methyl red solutions at 303.15 K.

    When the CTAB concentration is 0.0001 mol·L-1which is bellow the CMC of CTAB,the UV-visible absorption spectrum of CTAB with methyl red solution is similar with that of methyl red solution.However,the pKavalue of methyl red with 0.0001 mol·L-1CTAB obtained by multi-peaks Gaussian fitting method is 4.67 which is 0.09 lower than that of the methyl red(4.76)at the same temperature.Furthermore,pKavalue decreases slowly with the increase of CTAB concentration.When the CTAB concentration is 0.001 mol·L-1,the pKavalue decreases rapidly to below 3.32 and the color of solution system changes completely from red to yellow at the same time,which indicates that there is mainly MR-species in the solution. These results illustrate that formation of the CTAB micelle can changes the range of changed color of methyl red from 4.4-6.2 to 3.0-5.0 and makes the pKavalue of methyl red decrease remarkably.Generally the significant decrease of pKavalue is attributed to electrical double layer of CTAB micelle which absorbs selectively MR-and makes the ionization equilibrium of methyl red move obviously to the right.

    Fig.7 Dependence of the half-widths of MR-and HMR on the concentration of SDS at 298.15 K

    Fig.8 UV-visible absorption spectra of methyl red solution with different concentrations of CTAB at 303.15 K

    4 Conclusions

    In this study,a multi-peaks Gaussian fitting method based on the UV-visible absorption spectra is firstly used to determine the pKavalue of organic dyes such as methyl red.The reliability of the method is adequately proved by an excellent agreement of the measurement results with literature.There are several advantages,such as the easy operational procedure,explicit physical meaning,and the accurate measurement results for the method.

    The relative concentration of the MR-and HMR in solution has been determined by the relative integrated absorbance calculated from multi-peaks Gaussian fitting method based on the UV-visible spectra.This method avoids successfully the systematic error of 3%-5%of pKameasurement from the standard curves which is established from the absorbance of MR-maximum absorption wavelength at 425 nm and HMR maximum absorption wavelength at 520 nm versus concentration of MR-and HMR at the methyl red color range,respectively. Moreover,the effect of SDS and CTAB on ionization equilibrium of methyl red also has been studied and some reliable results with the method have been obtained.The spectral lineshape parameters such as A1,A2,λmax1,λmax2,w1and w2of MR-and HMR that obtained from multi-peaks Gaussian fitting method on the UV-visible spectra of SDS-methyl red and CTAB-methyl red solutions have been firstly discovered to be sensitive to aggregation behavior of surfactants SDS and CTAB.The CMC values can be determined by the dependence of the three sets of parameters on the surfactant concentration which should support each other.

    (1) Kara,D.;Alkan,M.Spectrochim.Acta A 2000,56,2753.

    (2) Niyazi,A.;Yazdanipour,A.;Ramezani,M.Chin.Chem.Lett. 2007,18,989.

    (3) Babi?,S.;Horvat,A.J.M.;Pavlovi?,D.M.;Ka?telan-Macan, M.Trends Anal.Chem.2007,26,1043.

    (4)Allen,R.I.;Box,K.J.;Comer,J.E.A.;Peake,C.;Tam,K.Y. J.Pharmaceut.Biomed.Anal.1998,17,699.

    (5) Beltran,J.L.;Sanli,N.;Fonrodona,G.;Barron,D.;Ozkanb,G.; Barbosa,J.Anal.Chim.Acta 2003,484,253.

    (6) Erdemgil,F.Z.;Sanli,S.;Sanli,N.;Ozkan,G.;Barbosa,J.; Guiteras,J.;Beltran,J.L.Talanta 2007,72,489.

    (7)Tang,R.C.;Tang,H.;Yang,C.Ind.Eng.Chem.Res.2010,49, 8894.

    (8) Simon,E.W.;Beevers,H.New Phytol.1952,51,163.

    (9) Adam,R.S.,Jr.Res.Rev.1973,47,1.

    (10) Weber,J.B.Adv.Chem.Ser.1972,111,55.

    (11) Halling-S?rensen,B.;Nielsen,S.N.;Lanzky,P.F.;Ingerslev,F.; Lutzhoft,H.C.H.;J?rgensen,S.E.Chemosphere 1998,36, 357.

    (12) Burns,D.C.;Ellis,D.A.;Li,H.X.;McMurdo,C.J.;Webster, E.Environ.Sci.Technol.2008,42,9283.

    (13) Lin,J.H.;Lu,A.Y.Pharmacol.Rev.1997,49,403.

    (14) Frey,P.A.;Kokesh,F.O.;Westheimer,F.H.J.Am.Chem.Soc. 1971,93,7266.

    (15) Poole,S.K.;Patel,S.;Dehring,K.;Workman,H.;Poole,C.F. J.Chromatogr.A 2004,1037,445.

    (16) Hardcastle,J.E.;Jano,I.J.Chromatogr.B 1998,717,39.

    (17) Ye,L.;Zhu,Q.Q.;Wu,S.K.Acta Phys.-Chim.Sin.1987,3, 272. [葉 玲,朱琴琴,吳世康.物理化學(xué)學(xué)報(bào),1987,3,272.]

    (18) Qiang,Z.;Adams,C.Water Res.2004,38,2874.

    (19) Zhang,W.M.;Yang,Z.D.;Liu,J.;Sun,Z.X.Acta Phys.-Chim. Sin.2010,26,2109.[張衛(wèi)民,楊振東,劉 嘉,孫中溪.物理化學(xué)學(xué)報(bào),2010,26,2109.]

    (20) Li,L.F.;Hou,W.G.;Jiao,Y.N.;Liu,C.X.Acta Phys.-Chim. Sin.,2004,20,459.[李麗芳,侯萬(wàn)國(guó),焦燕妮,劉春霞.物理化學(xué)學(xué)報(bào),2004,20,459.]

    (21) Zhang,X.D.;Liu,Y.;Sun,J.Y.;Liu,Q.T.Acta Phys.-Chim. Sin.2000,16,351.[張向東,劉 巖,孫錦玉,劉祁濤.物理化學(xué)學(xué)報(bào),2000,16,351.]

    (22) Kolthoff,I.M.;Chantooni,M.K.J.Phys.Chem.1966,70,856.

    (23) Nag,S.;Datta,D.Indian J.Chem.2007,46A,1263.

    (24)Wan,H.;Holmen,A.G.;Wang,Y.;Lindberg,W.;Englund,M.; Nagard,M.B.;Thompson,R.A.Rapid Commun.Mass Sp. 2003,17,2639.

    (25) Szakacs,Z.;Hagele,G.Talanta 2004,62,819.

    (26) Rabenstein,D.L.;Hari,S.P.;Kaerner,A.Anal.Chem.1997,69, 4310.

    (27) Rabenstein,D.L.;Sayer,T.L.Anal.Chem.1976,48,1141.

    (28) Wang,J.;Rabenstein,D.L.Anal.Chem.2007,79,6799.

    (29) Oumada,F.Z.;Rafols,C.;Roses,M.;Bosch,E.J.Pharm.Sci. 2002,91,991.

    (30) Lebrón-Paler,A.;Pemberton,J.E.Anal.Chem.2006,78,7649.

    (31) Lachenwitzer,A.;Li,N.;Lipkowski,J.J.Electroanal.Chem. 2002,532,85.

    (32) Edwards,H.G.M.Spectrochim.Acta A 1989,45,715.

    (33) Cagigal,E.;Gonzalez,L.;Alonso,R.M.;Jimenez,R.M. J.Pharmaceut.Biomed.Anal.2001,26,477.

    (34) Ferrari,V.;Cutler,D.J.J.Pharmaceut.Sci.1987,76,554.

    (35) Cessna,A.J.;Grover,R.J.Agric.Food Chem.1978,26,289.

    (36) Foulon,C.;Duhal,N.;Lacroix-Callens,B.;Vaccher,C.;Bonte, J.P.;Goossens,J.F.Eur.J.Pharm.Sci.2007,31,165.

    (37) Barbosa,J.;Barron,D.;Jimenez-Lozano,E.;Sanz-Nebot,V. Anal.Chim.Acta 2001,437,309.

    (38) Jang,Y.H.;Hwang,S.G.;Chang,S.B.;Ku,J.;Chung,D.S. J.Phys.Chem.A 2009,113,13036.

    (39) Tobey,S.W.J.Chem.Educ.1958,35,514.

    (40) Tam,K.Y.;Takacs-Novak,T.Anal.Chim.Acta 2001,434,157.

    (41) Tam,K.Y.;Hadley,M.;Patterson,W.Talanta 1999,49,539.

    (42) Khalafi,L.;Rohani,M.;Afkhami,A.J.Chem.Eng.Data 2008, 53,2389.

    (43) Zarei,K.;Atabati,M.;Abdinasab,E.E.J.Anal.Chem.2009,4, 314.

    (44) Jimenez-Lozano,E.;Marques,I.;Barron,D.;Beltran,J.L.; Barbosa,J.Anal.Chim.Acta 2002,464,37.

    (45) Li,X.G.;Zhang,J.H.;Liu,Z.Q.;Chen,S.;Su,Y.Z.;Xu,C. W.Global J.Phys.Chem.2011,2,34.

    (46) Zhang,J.H.;Kong,K.Q.;He,Z.L.;Liu,Z.L.Spectroscopy and Spectral Analysis 2007,27,1412. [張建華,孔凱清,何爭(zhēng)玲,劉自立.光譜學(xué)與光譜分析,2007,27,1412.]

    (47) Feng,W.S.;Fang,Y.;Xu,J.X.;Fang,C.H.;Jia,Q.J.;Wang, H.H.;Jiang,X.M.Acta Phys.-Chim.Sin.2008,24,497.[馮望生,房 艷,徐繼香,房春暉,賈全杰,王煥華,姜曉明.物理化學(xué)學(xué)報(bào),2008,24,497.]

    (48) Patterson,G.S.J.Chem.Educ.1999,76,395.

    (49) Ehlerova,J.;Trevani,L.;Sedlbauer,J.J.Sol.Chem.2008,37, 857.

    (50) Mukerjee,P.;Mysels,K.National Standards Reference,Data Series;National Bureau of Standards.US.Government Printing Office:Washington,D.C.,U.S.,1971;Vo1.36,pp 8-71.

    猜你喜歡
    張建華化工學(xué)院物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    張建華靜物素描作品選
    Square grid pattern with direction-selective surface discharges in dielectric barrier discharge
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    張建華·書(shū)法篆刻作品欣賞
    Chemical Concepts from Density Functional Theory
    張建華:打造健康產(chǎn)業(yè)新模式
    商周刊(2017年6期)2017-08-22 03:42:47
    欧美+日韩+精品| 男女之事视频高清在线观看| 可以在线观看的亚洲视频| 内地一区二区视频在线| 一个人看的www免费观看视频| 成人三级黄色视频| 免费大片18禁| 18禁黄网站禁片午夜丰满| 最近最新中文字幕大全电影3| 国产探花极品一区二区| 搡老岳熟女国产| 俄罗斯特黄特色一大片| 熟女人妻精品中文字幕| 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 88av欧美| 午夜精品久久久久久毛片777| 又黄又爽又刺激的免费视频.| 又黄又爽又免费观看的视频| 国产主播在线观看一区二区| 99久久无色码亚洲精品果冻| 久久久久精品国产欧美久久久| 色综合色国产| 一a级毛片在线观看| 校园人妻丝袜中文字幕| 成人亚洲精品av一区二区| 国产免费男女视频| 少妇被粗大猛烈的视频| 亚洲精品影视一区二区三区av| 欧美成人免费av一区二区三区| 国产亚洲精品av在线| 日韩精品青青久久久久久| 精品久久国产蜜桃| 可以在线观看的亚洲视频| 免费在线观看日本一区| 嫩草影视91久久| 国产一区二区亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 欧美最黄视频在线播放免费| 人妻夜夜爽99麻豆av| 亚洲av免费在线观看| 亚洲欧美清纯卡通| 免费人成在线观看视频色| 国产一区二区三区视频了| 国产免费男女视频| 国产黄片美女视频| 97超视频在线观看视频| 乱系列少妇在线播放| 亚洲三级黄色毛片| 婷婷精品国产亚洲av在线| 欧美一区二区国产精品久久精品| 狂野欧美白嫩少妇大欣赏| 波多野结衣巨乳人妻| 中文字幕av成人在线电影| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 欧美绝顶高潮抽搐喷水| 午夜福利欧美成人| 久久亚洲真实| 国产在线精品亚洲第一网站| 国产精品一区二区性色av| 国产高清视频在线观看网站| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 久久人人精品亚洲av| 99九九线精品视频在线观看视频| 美女高潮的动态| 国产精品亚洲美女久久久| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清| 桃色一区二区三区在线观看| 少妇高潮的动态图| 亚洲av免费在线观看| 在现免费观看毛片| 欧美高清成人免费视频www| 日日啪夜夜撸| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 天天一区二区日本电影三级| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 国产激情偷乱视频一区二区| 午夜福利高清视频| a级毛片免费高清观看在线播放| 午夜激情欧美在线| 亚洲国产精品合色在线| 国产精品国产三级国产av玫瑰| 禁无遮挡网站| 亚洲国产日韩欧美精品在线观看| 国产高清激情床上av| 99久久无色码亚洲精品果冻| 尤物成人国产欧美一区二区三区| 一进一出抽搐gif免费好疼| 国产精品三级大全| 成年女人毛片免费观看观看9| 亚洲最大成人中文| 99久久中文字幕三级久久日本| 给我免费播放毛片高清在线观看| 99久久精品一区二区三区| 国产三级中文精品| а√天堂www在线а√下载| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人免费电影在线观看| 91久久精品国产一区二区三区| xxxwww97欧美| 成人高潮视频无遮挡免费网站| 日韩精品有码人妻一区| 99riav亚洲国产免费| 日本一本二区三区精品| 又粗又爽又猛毛片免费看| 亚洲性夜色夜夜综合| 天堂影院成人在线观看| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 成人鲁丝片一二三区免费| 久久久久国产精品人妻aⅴ院| 黄色女人牲交| 18禁黄网站禁片午夜丰满| 色5月婷婷丁香| 一级a爱片免费观看的视频| 亚洲黑人精品在线| 欧美最黄视频在线播放免费| 亚洲欧美日韩无卡精品| 俺也久久电影网| 欧美最黄视频在线播放免费| 午夜福利在线在线| 色播亚洲综合网| 精品人妻一区二区三区麻豆 | 神马国产精品三级电影在线观看| 男女视频在线观看网站免费| 一本精品99久久精品77| 午夜免费成人在线视频| 久久天躁狠狠躁夜夜2o2o| 国产高清三级在线| 日本与韩国留学比较| 91在线精品国自产拍蜜月| 直男gayav资源| 国产午夜福利久久久久久| 99热只有精品国产| 成年女人毛片免费观看观看9| 国产精品1区2区在线观看.| 88av欧美| 99久国产av精品| 在线a可以看的网站| 国产精品一及| 可以在线观看的亚洲视频| 特级一级黄色大片| 久久亚洲精品不卡| 91在线精品国自产拍蜜月| 日本 av在线| av.在线天堂| 2021天堂中文幕一二区在线观| 美女黄网站色视频| 亚洲av第一区精品v没综合| 高清毛片免费观看视频网站| 麻豆国产av国片精品| 蜜桃久久精品国产亚洲av| a级一级毛片免费在线观看| 国产毛片a区久久久久| 国产91精品成人一区二区三区| 人妻少妇偷人精品九色| 亚洲色图av天堂| 国产成年人精品一区二区| 少妇人妻精品综合一区二区 | 亚洲欧美日韩高清专用| 成人高潮视频无遮挡免费网站| 国产精品免费一区二区三区在线| 又爽又黄无遮挡网站| 国产老妇女一区| 色哟哟·www| 成人二区视频| 22中文网久久字幕| 精品免费久久久久久久清纯| 中文字幕人妻熟人妻熟丝袜美| 久久热精品热| 亚洲五月天丁香| 联通29元200g的流量卡| 最新中文字幕久久久久| 韩国av在线不卡| 国产精品1区2区在线观看.| 国产精品三级大全| 天堂影院成人在线观看| 美女免费视频网站| 一进一出抽搐动态| 一区二区三区激情视频| 亚洲欧美日韩卡通动漫| 人人妻人人看人人澡| 午夜a级毛片| 午夜爱爱视频在线播放| 国产熟女欧美一区二区| 日韩欧美免费精品| 可以在线观看毛片的网站| 欧美日本亚洲视频在线播放| 91久久精品国产一区二区成人| 97超级碰碰碰精品色视频在线观看| 赤兔流量卡办理| 欧美日韩综合久久久久久 | 丰满乱子伦码专区| 欧美色视频一区免费| 又黄又爽又刺激的免费视频.| 女同久久另类99精品国产91| 国产精品av视频在线免费观看| 两个人视频免费观看高清| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 国产精品福利在线免费观看| 我要看日韩黄色一级片| 99热6这里只有精品| 18+在线观看网站| 97碰自拍视频| a级毛片a级免费在线| 亚洲欧美激情综合另类| 色5月婷婷丁香| 亚洲精品一区av在线观看| 亚洲精华国产精华精| 日韩一区二区视频免费看| 午夜福利欧美成人| 两人在一起打扑克的视频| 久久香蕉精品热| 欧美性感艳星| av专区在线播放| 最新中文字幕久久久久| 99热6这里只有精品| 欧美日韩综合久久久久久 | 国产av麻豆久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 成人性生交大片免费视频hd| 亚洲成人免费电影在线观看| 免费人成视频x8x8入口观看| 亚洲无线观看免费| 琪琪午夜伦伦电影理论片6080| 免费黄网站久久成人精品| 中文字幕av成人在线电影| 欧美黑人巨大hd| 亚洲av中文字字幕乱码综合| 亚洲熟妇中文字幕五十中出| 蜜桃亚洲精品一区二区三区| 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线| 在线天堂最新版资源| 男女之事视频高清在线观看| 国产亚洲精品综合一区在线观看| 精品久久久久久久久av| 直男gayav资源| 免费看a级黄色片| 久久国内精品自在自线图片| h日本视频在线播放| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 亚洲国产高清在线一区二区三| 日本爱情动作片www.在线观看 | 亚洲精品亚洲一区二区| 久久久国产成人免费| 一个人看的www免费观看视频| 天堂√8在线中文| 亚洲av不卡在线观看| 一进一出抽搐gif免费好疼| 嫩草影院入口| 国内精品一区二区在线观看| 欧美一区二区亚洲| 亚洲av中文字字幕乱码综合| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 男人舔女人下体高潮全视频| 亚洲精品456在线播放app | 人妻久久中文字幕网| 亚洲 国产 在线| 春色校园在线视频观看| 国产高清不卡午夜福利| 性插视频无遮挡在线免费观看| 免费av观看视频| 欧美精品国产亚洲| 亚洲第一电影网av| 国产精品av视频在线免费观看| 桃色一区二区三区在线观看| 午夜福利在线在线| 在线免费观看不下载黄p国产 | 97超级碰碰碰精品色视频在线观看| 一边摸一边抽搐一进一小说| 国产精品一区二区三区四区免费观看 | 男人舔女人下体高潮全视频| 欧美丝袜亚洲另类 | 在线免费观看不下载黄p国产 | 国产中年淑女户外野战色| 国产精品人妻久久久久久| 神马国产精品三级电影在线观看| 亚洲最大成人av| 亚洲欧美激情综合另类| 99久久久亚洲精品蜜臀av| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| 露出奶头的视频| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| 欧美另类亚洲清纯唯美| 最新中文字幕久久久久| 一卡2卡三卡四卡精品乱码亚洲| 国产男靠女视频免费网站| 乱系列少妇在线播放| 亚洲电影在线观看av| 国产精品久久久久久av不卡| 老熟妇乱子伦视频在线观看| 岛国在线免费视频观看| 看免费成人av毛片| 最近中文字幕高清免费大全6 | 哪里可以看免费的av片| 中文字幕久久专区| 欧美精品国产亚洲| 免费在线观看日本一区| 少妇的逼好多水| 国产综合懂色| 精品乱码久久久久久99久播| 国产综合懂色| 亚洲av美国av| 精品久久久久久久久久免费视频| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 亚洲自偷自拍三级| 人妻丰满熟妇av一区二区三区| 香蕉av资源在线| 蜜桃久久精品国产亚洲av| 美女大奶头视频| 桃色一区二区三区在线观看| 久久人人精品亚洲av| 美女 人体艺术 gogo| 国产精品一区二区性色av| 男插女下体视频免费在线播放| 欧美最新免费一区二区三区| 亚洲精品久久国产高清桃花| 熟女电影av网| 高清毛片免费观看视频网站| 亚洲第一区二区三区不卡| 亚洲va在线va天堂va国产| 亚洲经典国产精华液单| 亚洲精华国产精华精| 欧美不卡视频在线免费观看| 男女视频在线观看网站免费| 黄色一级大片看看| 嫩草影院入口| 国产视频一区二区在线看| 嫩草影院入口| 国产亚洲精品久久久久久毛片| 99久久无色码亚洲精品果冻| 亚洲专区国产一区二区| 亚洲精品久久国产高清桃花| 成人特级黄色片久久久久久久| 午夜老司机福利剧场| 国产精品1区2区在线观看.| 啪啪无遮挡十八禁网站| 亚洲精品一卡2卡三卡4卡5卡| 日韩av在线大香蕉| 又黄又爽又免费观看的视频| 夜夜爽天天搞| 小说图片视频综合网站| 日韩欧美精品免费久久| 日本黄色视频三级网站网址| 午夜精品在线福利| 午夜福利在线观看免费完整高清在 | 搡老岳熟女国产| 久久久国产成人精品二区| 亚洲真实伦在线观看| 国产日本99.免费观看| 午夜免费成人在线视频| 一级av片app| 亚洲欧美日韩无卡精品| 校园春色视频在线观看| 草草在线视频免费看| 日本三级黄在线观看| 热99在线观看视频| 一本精品99久久精品77| 亚洲熟妇中文字幕五十中出| 精品久久久久久久人妻蜜臀av| 麻豆国产97在线/欧美| 免费一级毛片在线播放高清视频| 日韩强制内射视频| 久久精品国产亚洲av涩爱 | 亚洲精品国产成人久久av| 少妇的逼水好多| 久久久久久久午夜电影| 日日摸夜夜添夜夜添av毛片 | 欧美区成人在线视频| 高清毛片免费观看视频网站| 1000部很黄的大片| 国产中年淑女户外野战色| 婷婷精品国产亚洲av在线| 99热这里只有是精品在线观看| 精品人妻1区二区| 最新在线观看一区二区三区| 欧美日韩精品成人综合77777| 精品日产1卡2卡| 一区福利在线观看| 国产在视频线在精品| 日日撸夜夜添| 免费人成在线观看视频色| 久久久久久久午夜电影| 欧美人与善性xxx| 两个人视频免费观看高清| 少妇高潮的动态图| 亚洲欧美清纯卡通| 久久热精品热| 性欧美人与动物交配| 黄片wwwwww| 欧洲精品卡2卡3卡4卡5卡区| 免费电影在线观看免费观看| 窝窝影院91人妻| 国产精品爽爽va在线观看网站| 亚洲无线观看免费| 少妇猛男粗大的猛烈进出视频 | 国产毛片a区久久久久| 毛片一级片免费看久久久久 | 亚洲欧美日韩卡通动漫| 欧美区成人在线视频| 午夜精品在线福利| 日本免费一区二区三区高清不卡| 很黄的视频免费| 村上凉子中文字幕在线| 人妻久久中文字幕网| 久久久成人免费电影| 国产大屁股一区二区在线视频| 97超视频在线观看视频| 中文字幕av在线有码专区| 免费大片18禁| 免费av不卡在线播放| 国产精华一区二区三区| 久久热精品热| 久久草成人影院| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 十八禁网站免费在线| 久久人人精品亚洲av| 亚洲人与动物交配视频| 精品人妻视频免费看| 人妻久久中文字幕网| 色综合亚洲欧美另类图片| 精品一区二区三区av网在线观看| or卡值多少钱| 亚洲色图av天堂| 久久久久九九精品影院| 午夜福利高清视频| 久久精品国产99精品国产亚洲性色| 久久精品久久久久久噜噜老黄 | 国产一区二区三区在线臀色熟女| 国内精品一区二区在线观看| 午夜福利视频1000在线观看| 成人国产一区最新在线观看| 老司机福利观看| 久久精品国产清高在天天线| 国产激情偷乱视频一区二区| 最近中文字幕高清免费大全6 | 岛国在线免费视频观看| 成人特级黄色片久久久久久久| 能在线免费观看的黄片| 美女大奶头视频| 久久久久精品国产欧美久久久| 长腿黑丝高跟| 91狼人影院| 精品免费久久久久久久清纯| 亚洲成人免费电影在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲精品成人久久久久久| 国产在视频线在精品| 亚洲精品粉嫩美女一区| 免费看光身美女| 国模一区二区三区四区视频| 午夜福利高清视频| 婷婷丁香在线五月| 日韩欧美三级三区| 亚洲国产日韩欧美精品在线观看| 最近最新免费中文字幕在线| 成人av一区二区三区在线看| 国产v大片淫在线免费观看| 丰满的人妻完整版| 赤兔流量卡办理| 女人十人毛片免费观看3o分钟| av.在线天堂| x7x7x7水蜜桃| 成人国产麻豆网| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 欧美激情久久久久久爽电影| 精品欧美国产一区二区三| 欧美又色又爽又黄视频| 日本在线视频免费播放| 久久久久久国产a免费观看| 伊人久久精品亚洲午夜| 给我免费播放毛片高清在线观看| 亚洲精品一区av在线观看| 久久精品国产亚洲av天美| 亚洲av成人av| 不卡视频在线观看欧美| 国产精华一区二区三区| 国产精品福利在线免费观看| 一本精品99久久精品77| 国产一区二区三区在线臀色熟女| 波野结衣二区三区在线| 51国产日韩欧美| 一a级毛片在线观看| 成人综合一区亚洲| 国产黄色小视频在线观看| 国产视频一区二区在线看| 午夜激情福利司机影院| 婷婷六月久久综合丁香| 免费在线观看日本一区| 岛国在线免费视频观看| 99久久久亚洲精品蜜臀av| 国产精品久久久久久久久免| 国产精品一区二区三区四区久久| 欧美+日韩+精品| 18禁裸乳无遮挡免费网站照片| 男人舔奶头视频| 日本在线视频免费播放| 久久久久久大精品| 变态另类成人亚洲欧美熟女| 一级黄片播放器| 久久婷婷人人爽人人干人人爱| 国产欧美日韩精品一区二区| 少妇猛男粗大的猛烈进出视频 | 国产极品精品免费视频能看的| 亚洲欧美激情综合另类| 久久久久久久久大av| 人人妻人人看人人澡| 亚洲精华国产精华精| 嫩草影视91久久| 日本在线视频免费播放| 亚洲最大成人av| 日本成人三级电影网站| 99热这里只有是精品在线观看| 久久精品国产清高在天天线| 亚洲无线观看免费| 久久国内精品自在自线图片| 美女大奶头视频| 成人综合一区亚洲| 女人十人毛片免费观看3o分钟| 1000部很黄的大片| 精品久久久久久成人av| 欧美精品国产亚洲| 不卡视频在线观看欧美| 麻豆成人午夜福利视频| 午夜a级毛片| 国产在线男女| 在线观看午夜福利视频| 午夜影院日韩av| 久久人妻av系列| 少妇裸体淫交视频免费看高清| 999久久久精品免费观看国产| 欧美中文日本在线观看视频| 免费高清视频大片| 欧美不卡视频在线免费观看| 国产成人av教育| 国产精品久久久久久精品电影| 欧美日本视频| 国产精华一区二区三区| av国产免费在线观看| 免费观看精品视频网站| 色播亚洲综合网| 国产三级中文精品| 国产综合懂色| 嫩草影院新地址| 欧美一区二区精品小视频在线| 内地一区二区视频在线| 国产一区二区三区在线臀色熟女| 日韩中文字幕欧美一区二区| 久久精品国产99精品国产亚洲性色| 亚洲av成人av| 特级一级黄色大片| 久久午夜福利片| 999久久久精品免费观看国产| 一进一出抽搐动态| av中文乱码字幕在线| 一级av片app| 久久亚洲精品不卡| 国产在线精品亚洲第一网站| 少妇的逼好多水| 在线播放无遮挡| 最近中文字幕高清免费大全6 | 色吧在线观看| 亚洲三级黄色毛片| 国产精品自产拍在线观看55亚洲| 老司机深夜福利视频在线观看| 天天躁日日操中文字幕| 国产一级毛片七仙女欲春2| 亚洲人与动物交配视频| 国产真实伦视频高清在线观看 | 丰满的人妻完整版| 精品国内亚洲2022精品成人| 欧美性猛交╳xxx乱大交人| 99久久九九国产精品国产免费| 美女cb高潮喷水在线观看| 午夜福利高清视频| 国产精品伦人一区二区| 一进一出好大好爽视频| 可以在线观看毛片的网站| 一级毛片久久久久久久久女| 亚洲经典国产精华液单| 色视频www国产| 亚洲熟妇中文字幕五十中出| 亚洲av二区三区四区| 欧美3d第一页| 国产精品三级大全| 全区人妻精品视频| 精品日产1卡2卡| 亚洲最大成人av| 国内精品美女久久久久久| 九九爱精品视频在线观看| 深爱激情五月婷婷| 三级国产精品欧美在线观看| 直男gayav资源| 天美传媒精品一区二区| 亚洲专区中文字幕在线| 男女那种视频在线观看| 免费搜索国产男女视频| 午夜福利18| 精品久久久久久久人妻蜜臀av|