• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬氧化物(Fe2O3,CuO,NiO)改性對(duì)TiO2納米管陣列光電催化活性的增強(qiáng)效應(yīng)

    2012-12-11 09:11:42叢燕青伏芳霞
    物理化學(xué)學(xué)報(bào) 2012年6期
    關(guān)鍵詞:工商大學(xué)納米管苯酚

    叢燕青 李 哲 王 齊 張 軼 徐 謙 伏芳霞

    (浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州310012)

    金屬氧化物(Fe2O3,CuO,NiO)改性對(duì)TiO2納米管陣列光電催化活性的增強(qiáng)效應(yīng)

    叢燕青*李 哲 王 齊 張 軼 徐 謙 伏芳霞

    (浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州310012)

    采用陽極氧化法和陰極電沉積法制備了Fe2O3,CuO和NiO納米粒子改性的高度有序的TiO2納米管(TiO2-NT)陣列.運(yùn)用場(chǎng)發(fā)射掃描電子顯微鏡(FE-SEM),透射電子顯微鏡(TEM),X射線衍射(XRD)和紫外-可見漫反射光譜等手段對(duì)Fe2O3/TiO2-NT、CuO/TiO2-NT和NiO/TiO2-NT復(fù)合電極進(jìn)行表征.以苯酚為模擬污染物,考察復(fù)合電極的光電性能.結(jié)果表明,金屬氧化物(Fe2O3,CuO,NiO)納米粒子成功沉積在TiO2-NTs的管口、內(nèi)壁和管底.金屬氧化物改性復(fù)合電極的光電催化活性比未改性的TiO2-NTs提高了2倍以上.Fe2O3/TiO2-NTs在可見光區(qū)顯示出最高的吸收強(qiáng)度.以Fe2O3/TiO2-NTs為陽極處理苯酚廢水,光照120 min后苯酚去除率達(dá)到96%,而未改性的TiO2-NTs的苯酚去除率只有41%.此外,Fe2O3/TiO2-NTs在生成低毒中間產(chǎn)物方面表現(xiàn)出良好的性能.較高的復(fù)合電極光電催化活性主要是由于TiO2納米管和過渡金屬氧化物納米粒子間構(gòu)筑的高界面面積異質(zhì)納米結(jié)構(gòu),有效地促進(jìn)了電子轉(zhuǎn)移,抑制了光生電子-空穴對(duì)的復(fù)合.

    TiO2納米管;Fe2O3;CuO;NiO;光電催化;可見光

    1 Introduction

    Abatement of environmental pollutants by green technologies is significantly attractive research topic.It is particularly interest in the treatment processes using the solar energy since sunlight is a renewable natural energy.Photoelectrochemical (PEC)process is recognized to be one of the most promising ways to clean our environment.1Semiconductor electrodes employed in PEC process can be excited by solar light to generate the electron-hole pairs to remove the pollutants.Assisted electrochemical process promotes the separation of electron-hole pairs and further improves the efficiency of pollutants degradation.An efficient photocatalyst should maximize the utilization of solar energy and minimize the recombination of photoexcited electron-hole pairs.Therefore,the properties of semiconductor materials are crucial for achieving high efficiency in PEC process.2

    Various semiconductors have been extensively investigated since Fujishima and Honda3firstly suggested the water splitting with TiO2under UV illumination in 1972.TiO2is one of the most studied semiconductors because of its high photocatalytic activity,chemical stability,low cost,and nontoxicity.4-7However,the widespread usage of TiO2is limited by its large band gap energy(3.0-3.2 eV),which can only utilize the ultraviolet region of the solar spectrum.To enhance the photocatalytic activity of TiO2under visible light,considerable efforts have been attempted to improve the absorption in the visible spectrum,including dye sensitization,8-10anion or cation doping,11-13noble metal deposition,14-16and incorporation with transition metal oxides.17,18Another main drawback of TiO2is the high recombination rate of photo-generated holes and electrons.19Faster recombination largely decreases the quantum efficiency of PEC processes.Therefore,it is essential to suppress the recombination of electron-hole pairs.Among various strategies aimed at improving the absorption in the visible region and separating the electron-hole pairs,the incorporation of transition metal oxides with TiO2has been approved to be an effective method.20-23Zhang and co-workers23have synthesized TiO2/ Cu2O composite film and obtained high degradation efficiency of methylene blue.Although some studies have reported the incorporation of transition metal oxides with TiO2,there was little information about the molecular-scale architecture control and systematical study on various metal oxides.

    In this work,highly ordered vertically oriented TiO2nanotube(TiO2-NT)arrays were fabricated by electrochemical anodization of Ti foil.The self-organized oriented NT structure could provide large surface areas and facilitate vectorial charge transfer from the solution to the substrate,which were expected to accelerate the separation of electron-hole pairs and harvest sunlight more efficiently.Simple transition metal oxides (Fe2O3,CuO,NiO)nanoparticles were uniformly incorporated with TiO2-NTs by a novel electrochemical deposition method. The photocatalytic activity of the NT electrodes under visible light irradiation could be enhanced by modifying the surface structure and composition with the special metal oxides.Field emission scanning electron microscopy(FE-SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and UV-visible diffuse reflectance spectroscopy were used to characterize the structure and optical properties of composite electrodes.The PEC activities of composite electrodes were evaluated by phenol removal.

    2 Experimental

    2.1 Preparation of TiO2-NT electrodes modified by metal oxides

    TiO2-NT electrodes were prepared by the electrochemical anodization method on a Ti foil(0.25 mm thick,99.7%purity). Prior to anodization,the Ti foil was polished with sandpaper, and then ultrasonically cleaned with acetone,ethanol,and distilled water.Anodization was performed in a two-electrode system with the pretreated Ti foil as the working electrode and Pt sheet as the counter electrode under constant voltage at room temperature.The anodizing voltage varied from 0 to 20 V with an increasing certain rate and was kept at 20 V for 120 min. The electrolyte was a mixed solution of 0.5%(w)NaF and 0.5 mol·L-1Na2SO4.All reagents were analytical grade.After anodic oxidation,the samples were rinsed with deionized water and dried in air.The as-formed TiO2-NTs were annealed in a muffle furnace with 2°C·min-1heating rate and kept at 773 K for 2 h to convert the amorphous phase to the crystalline one.

    Fe2O3nanoparticles were deposited into the crystallized TiO2-NTs using an electrodeposition method.A two-electrode system was used with TiO2-NTs as the cathode and a Pt sheet as the anode.First,the TiO2-NT electrodes were soaked in a 0.1 mol·L-1Fe(NO3)3aqueous solution for 10 min,always subjected to ultrasound sonication before soaking.Then the TiO2-NT electrodes were transferred into a new medium that only contained an inert supporting electrolyte(0.1 mol·L-1Na2SO4).The potentiostatic DC electrodeposition was carried out at a constant voltage of 8 V for 20 min and the temperature of the electrolyte was maintained at 85°C.After the electrodeposition in this medium,Fe nanoparticles were deposited into the interior tubes of TiO2-NT electrodes(denoted as Fe/ TiO2-NTs).About 1.0%(w)deposition amount of Fe in the NTs was obtained after several repetitions.Then the Fe/ TiO2-NT electrodes were connected as the anode and the Pt sheet as the cathode.The material was electrochemically oxi-dized in 1 mol·L-1KOH aqueous solution at a voltage of 8 V for 2 min at room temperature.After this electrochemical oxidization,Fe/TiO2-NTs were converted into the corresponding oxides Fe2O3/TiO2-NTs.The resulting Fe2O3/TiO2-NT samples were rinsed with distilled water and dried at a low temperature.

    The preparation processes of CuO/TiO2-NTs and NiO/TiO2-NTs were the same as that of Fe2O3/TiO2-NTs,except that the deposition solution was 0.1 mol·L-1Cu(NO3)2and 0.1 mol·L-1Ni(NO3)2aqueous solutions,respectively.

    2.2 Characterization

    The morphologies and the cross-section views of TiO2-NT electrodes modified by metal oxides were characterized using a field emission scanning electron microscope(FE-SEM;Hitachi S-4700 II)and a transmission electron microscope(TEM; Philips-FEI Tecnai G2 F30 S-Twin),equipped with energy-dispersive X-ray spectroscopy(EDX;EDAX Analyzer DPP-II). The crystal properties of the prepared samples were determined from X-ray diffraction(XRD)using a diffractometer with Cu Kαradiation(Netherlands PNAlytical X?Pert PRO). The accelerating voltage and applied current were 40 kV and 40 mA,respectively.Light absorption properties were measured using UV-Vis diffuse reflectance spectra(Shimadzu, UV-3150)with a wavelength range of 220-600 nm.Electrochemical impedance spectroscopy(EIS)was performed using a CHI 660D instrument(Chenhua,Shanghai)in a three-electrode system,with a saturated Ag/AgCl electrode and a Pt sheet as reference and counter electrodes,respectively.

    2.3 Photoelectrochemical activity test

    The PEC activity of the composite electrodes was evaluated using phenol as a model pollutant.All the experiments were carried out in a two-electrode glass cell(100 mL)with constant magnetic stirring,using 0.2 mol·L-1Na2SO4as the electrolyte.The initial concentration of the phenol aqueous solution was 10 mg·L-1.The composite electrode was used as anode and Cu sheet was cathode.Applied voltage was provided by the DC Constant Current Power(WYL603 type,Hangzhou Yuhang Siling Electronic Equipment Co.,Ltd.).The anode was irradiated using a tungsten-halogen lamp(500 W),which generates a continuous light distribution across the visible spectrum and relatively weak emission in the ultraviolet portion of the spectrum.A UV cut-off filter(λ>420 nm)was used for visible light irradiation.The light intensity on the photoanode was~80 mW·cm-2.All experiments were carried out under ambient conditions.The determination of phenol and its degradation intermediates were carried out using high performance liquid chromatography(HPLC,Agilent 1200)by comparing the retention time of the standard compounds.The separation was performed using a Diamonsil C18 reversed phase column(150 mm×4.6 mm×5 mm)at the flow rate of 1.0 mL·min-1and the column temperature of 25°C.The eluent consisted of methanol/purified water(30:70(volume ratio)).The analyses were performed with a UV detector at a wavelength of 254 nm.

    3 Results and discussion

    3.1 Characterization of photocatalysts

    Fig.1 shows the SEM morphologies of the as-synthesized TiO2-NTs,Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs. The hollow TiO2-NTs are almost uniform and have a highly ordered tubularstructure.The averageinnerdiameterof TiO2-NTs is~80 nm,and their average outer diameter is~110 nm(Fig.1(a)).Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs have the similar tubular structure.The corresponding metal oxide nanoparticles were distinctly deposited on TiO2tubular substrates.The surface of TiO2-NT substrates was not blocked by nanoparticles.To identify the distribution of nanoparticles in TiO2-NTs,the cross-section views of the composite electrodes were analyzed by TEM images.According to Fig.2,the length of TiO2-NTs is around 1.2 μm.Fe2O3nanoparticles are deposited on the mouth,the tube wall,and the base of TiO2-NTs.The average diameter of Fe2O3nanoparticles is about 35 nm.Note that the deposition process has not destroyed the structure of the ordered TiO2-NT arrays,and Fe2O3nanoparticles can be fabricated into the bottom of TiO2-NTs. The EDX spectrum in Fig.2 confirms the existence of Fe,Ti, and O,whereas the Cu signal originates from the Cu substrate used in the imaging process.The measured atomic ratio of Fe/ Ti was 1.21%.The existence of NiO in NiO/TiO2-NTs was also confirmed(figure not shown).The measured atomic ratio of Ni/ Ti was 1.35%.The atomic ratio of Cu/Ti could not be determined due to the interference of Cu substrate used in EDX measurement.Fig.3 shows the XRD patterns of different composite electrodes annealed at 773 K.TiO2is converted from amorphous state to anatase state with a fine preferential growth of the self-organized highly oriented TiO2-NT arrays in the(101)direction.The peak of the(101)crystal(2θ=26.2°) can be seen from all the patterns.The characteristic peaks cor-responding to CuO,NiO,and Fe2O3are also identified in Fig.3. It indicates that TiO2-NTs,Fe2O3/TiO2-NTs,CuO/TiO2-NTs, and NiO/TiO2-NTs have been successfully synthesized.

    Fig.1 SEM images of TiO2-NTs and the metal oxide modified TiO2-NTs(a)TiO2-NTs,(b)CuO/TiO2-NTs,(c)NiO/TiO2-NTs,(d)Fe2O3/TiO2-NTs

    Fig.2 TEM images with different magnifications(a,b)and energy-dispersive X-ray(EDX)spectroscopy(c)of Fe2O3/TiO2-NT electrode

    Fig.3 XRD patterns of(a)TiO2-NTs,(b)NiO/TiO2-NTs, (c)Fe2O3/TiO2-NTs,and(d)CuO/TiO2-NTs

    Fig.4 UV-Vis diffuse reflectance spectra of the composite TiO2-NT electrodes modified by different metal oxides

    UV-Vis diffuse reflectance spectra of the composite TiO2-NT electrodes modified by different metal oxides are shown in Fig.4.In the wavelength range from 220 to 325 nm,Fe2O3/ TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs have lower absorbance intensity than the unmodified TiO2-NTs.When the wavelength is longer than 325 nm,however,the absorbance intensities of Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs are higher than that of TiO2-NTs.Especially for Fe2O3/ TiO2-NTs,its absorbance intensity is significantly higher than other electrodes in the visible light region.Considering the large proportion(47%)of visible light in solar spectrum,the composite TiO2-NT electrodes modified by Fe2O3,CuO,and NiO are superior to the unmodified TiO2-NTs.

    3.2 Photoelectrocatalytic degradation of phenol

    To investigate the PEC activity of composite electrodes,phenol degradation experiments were carried out using the composite electrodes as the photoanodes.Fig.5 shows the comparison of phenol removal efficiency under irradiation.The removal rates of phenol using the three composite electrodes have been significantly improved relative to the unmodified TiO2-NT electrodes.After 120 min treatment,phenol removal efficiencies of Fe2O3/TiO2-NT,NiO/TiO2-NT,and CuO/TiO2-NT anodes were 96%,93%,and 90%,respectively,while it was only 41%for the unmodified TiO2-NT anode.The PEC activity of the composite NT electrodes was over twice that of the unmodified TiO2-NT electrode.The improved PEC performance was apparently attributed to the modification of metal oxides.

    3.3 Comparison of different processes

    Fig.5 Comparison of phenol removal efficiency under irradiation using different electrodes

    The electrocatalytic,photocatalytic,and photoelectrocatalytic processes were performed to investigate the role of different processes on phenol degradation using Fe2O3/TiO2-NTs as the anode since it has the best PEC activity.In electrocatalytic process,applied potential was performed and the experiments were carried out in the dark.In photocatalytic process,light irradiation was performed at open circuit(without applied potential).In photoelectrocatalytic process,applied potential and light irradiation were simultaneously used.All other operating conditions were the same.Fig.6 shows the comparison of different processes on phenol degradation.After 120 min treatment,phenol removal efficiency could reach 96%in the photoelectrocatalytic process,while it was only 15%for photocatalytic process and 4%for electrocatalytic process.It was evident that the photoelectrocatalytic process has synergetic effects in enhancing the removal efficiency of phenol in comparison with the individual photocatalytic or electrocatalytic process.

    Comparison of Fe2O3/TiO2-NTs and TiO2-NTs on phenol degradation under UV-Vis light and visible light irradiation is shown in Fig.7.Phenol removal efficiency of Fe2O3/TiO2-NTs is ca 2.3 times higher under UV-visible light irradiation and 8 times higher under visible light irradiation than that of TiO2-NTs.It is obvious that the modification of Fe2O3on TiO2-NTs significantly improves the PEC activity under visible light irradiation.

    Fig.6 Comparison of different processes on phenol degradation using Fe2O3/TiO2-NTs as the anode

    Fig.7 Comparison of Fe2O3/TiO2-NTs and TiO2-NTs on phenol degradation under UV-Vis light and visible light irradiation

    3.4 Determination of phenol degradation intermediates

    Fig.8 shows the HPLC chromatograms of phenol degradation at different treatment time.The main intermediates were identified to be benzoquinone,hydroquinone,and maleic acid by comparing the retention time of the standard compounds (Table 1).It can be seen that phenol was continuously degraded with time.Benzoquinone is an important intermediate of phenol degradation.Fig.9 shows that the yields of benzoquinone under irradiation using TiO2-NT,Fe2O3/TiO2-NT,CuO/ TiO2-NT,and NiO/TiO2-NT electrodes.Benzoquinone yields on the composite NT anodes first increased and then decreased with time.This was quite beneficial to the detoxification of wastewater because benzoquinone was regarded as one of the most toxic intermediates.24Benzoquinone yields of Fe2O3/ TiO2-NT,NiO/TiO2-NT,CuO/TiO2-NT,and TiO2-NT anodes were 1%,4%,7%,and 9%at 120 min,respectively.Fe2O3/ TiO2-NTs showed good performance to generate the low toxic intermediates.A possible reason was that some benzoquinone intermediate was simultaneously degraded when phenol was converted to benzoquinone.Fe2O3/TiO2-NTs had the highest PEC activity among these composite electrodes and could generate the most oxidizing reagents to degrade the pollutants(see Fig.5).Therefore,sufficient oxidants could further degrade the benzoquinone to achieve the lower yields of benzoquinone.

    Fig.8 HPLC chromatograms of phenol degradation at different treatment time under UV-Vis light irradiation

    Table 1 HPLC retention time of phenol and its intermediates

    Fig.9 Yields of benzoquinone under irradiation using different electrodes

    3.5 EIS analysis

    TiO2-NT electrodes modified by simple transition metal oxides were analyzed by electrochemical impedance spectroscopy(EIS).Experiments were carried out in 0.1 mol·L-1NaOH solution under dark condition.Fig.10 shows the Nynquist plots of TiO2-NT electrodes and TiO2-NTs modified by various metal oxides.For each electrode,only one arc could be observed in the complex plane,which was related to the porous nature of the electrodes.The radius of the arc reflects the charge transfer resistance at the surface of the electrode.25It is obvious that the arc radius on TiO2-NTs modified by various metal oxides is smaller than that on unmodified TiO2-NTs.This indicates that the modification of transition metal oxides improves the interfacial charge transfer of TiO2-NTs.

    3.6 Possible mechanism

    Fig.10 EIS Nynquist plots of TiO2-NT electrode and TiO2-NT electrodes modified by various metal oxides under dark condition

    Fig.11 Current density-potential curves of different electrodes under chopped visible light irradiation(a)TiO2-NTs,(b)Fe2O3/TiO2-NTs,(c)CuO/TiO2-NTs,(d)NiO/TiO2-NTs

    Current density-potential curves of various electrodes were tested in 0.1 mol·L-1NaOH solution using a three-electrode system(Fig.11).The photocurrent density of various electrodes increased as the applied voltage rose.Composite electrodes showed a better photoresponse under visible light irradiation than TiO2-NT electrode.The photocurrent of Fe2O3/TiO2-NTs (or NiO/TiO2-NTs)was ca 3 times higher than that of TiO2-NTs at 0.4 V(vs Ag/AgCl).CuO/TiO2-NTs had a lower photocurrent relative to Fe2O3/TiO2-NTs(or NiO/TiO2-NTs),but its photocurrent was still over 2 times higher than that of TiO2-NTs. The recombination peaks of photogenerated electron-hole pairs were found at lower applied voltage,however,they could decrease as the applied voltage bias increased.In addition,Fe2O3/ TiO2-NT and CuO/TiO2-NT electrodes showed higher dark current density than TiO2-NTs and NiO/TiO2-NTs,which indicated that Fe2O3and CuO nanoparticles had higher conductivity and reduced the charge transfer resistance of the Fe2O3/TiO2-NT and CuO/TiO2-NT electrodes.These results were consistent with EIS analysis in Fig.10.We tentatively put forward that Fe2O3and CuO nanoparticles may perform as the channel for electron migration and improve the separation of photogenerated electron-hole pairs since they have higher conductivity than TiO2.

    The differences in PEC activity among these composite electrodes were probably associated with their band structure and surface chemical nature.Table 2 lists the valence band(VB) and conduction band(CB)positions of TiO2,Fe2O3,NiO,and CuO.26Fe2O3and CuO have the low band gap,which would favor the absorption of the solar energy in visible light region. Since the CB position of Fe2O3(or CuO)is more positive than that of TiO2,some photogenerated electrons in Fe2O3/TiO2-NTs (or CuO/TiO2-NTs)may transfer from TiO2to Fe2O3(or CuO), leaving more holes to carry out the oxidation reaction.However,it might also serve as a recombination center since the photogenerated holes may move from TiO2to Fe2O3(or CuO).Therefore,the deposition amount of Fe2O3(or CuO)should be appropriately controlled.A schematic diagram of the photogenerated charge separation and electron transport on Fe2O3/ TiO2-NT or CuO/TiO2-NT electrode is shown in Fig.12(a).The low band gap of Fe2O3(or CuO)played an important role in the enhanced PEC activity of Fe2O3/TiO2-NTs(or CuO/ TiO2-NTs).NiO/TiO2-NTs also showed a higher PEC activity compared to the TiO2-NTs,but the band gap of NiO was larger than that of TiO2.Therefore,the possible mechanism of enhanced PEC performance on NiO/TiO2-NTs was different from Fe2O3/TiO2-NTs(or CuO/TiO2-NTs).Since NiO is a p-type semiconductor and TiO2is an n-type semiconductor,a number of p-n junctions would be formed when NiO was deposited on TiO2.As shown in Fig.12(b),the inner electric field was formed at the equilibrium,which made p-type NiO region had the negative charge and n-type TiO2region had the positive charge.Thus,the photogenerated holes moved to the negative field,while the electrons transferred to the positive field under the inner electric field.As a result,electron-hole pairs were effectively separated and the PEC activity of NiO/TiO2-NTs was significantly improved compared with the unmodified TiO2-NTs.

    Table 2 Valence band(VB)and conduction band(CB)positions of TiO2,Fe2O3,NiO,and CuO

    Fig.12 Schematic diagrams of pollutants degradation on MO/TiO2-NT electrodes under irradiation(a)possible pathway of the photogenerated charge separation and electron transport on Fe2O3/TiO2-NT or CuO/TiO2-NT electrode; (b)p-n junction formation model on NiO/TiO2-NT electrode

    When the phenol molecules were adsorbed on the surface of electrodes,some photogenerated holes directly reacted with phenol molecules to produce phenol+?radicals.Further,the reactive phenol+?radicals were transformed into degradation intermediates.And other holes reacted with H2O to produce hydroxyl radicals(HO·),which further oxidized organic compounds into H2O and CO2.18The possible reactions on the heteronanostructures comprised of TiO2-NTs and transition metal oxide(MO)nanoparticles could be expressed as follows:

    Note that Fig.12 shows just a tentative mechanism and the differences in PEC activity among various composite electrodes have not been completely clarified.The PEC activity is also sensitive to the interface,which is more complicated.The crystal-face exposed to the electrolyte at the interface may cause a different structure of the electric double layer.Thus this study illustrates the enhanced PEC activity of TiO2-NTs modified by simple transition metal oxides,and more work will be done to further clarify the mechanism.

    4 Conclusions

    The present study has demonstrated that TiO2-NTs,Fe2O3/ TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs could be successfully synthesized by a simple electrochemical anodization and electrodeposition method.The obtained TiO2and composite NT electrodes had a uniform and highly oriented tubular structure.The characteristic peaks corresponding to Fe2O3,CuO, and NiO were identified by XRD and the main phase of TiO2-NTs was anatase.Nanostructured composite electrodes showed a PEC activity more than 2 times higher than the pure TiO2-NTs.After 120 min treatment,phenol removal efficiency using Fe2O3/TiO2-NT,NiO/TiO2-NT,and CuO/TiO2-NT electrodes could reach 96%,93%,and 90%,respectively,while it was only 41%for the unmodified TiO2-NT anode.Moreover, Fe2O3/TiO2-NTs showed good performance to generate the low toxic intermediates.The low band gap of Fe2O3(or CuO) played an important role in the enhanced PEC activity of Fe2O3/ TiO2-NTs(or CuO/TiO2-NTs).The enhanced performance of NiO/TiO2-NTs was attributed to the formation of p-n junctions. The results indicate that TiO2-NTs modified by simple transition metal oxides(Fe2O3,CuO,NiO)are promising candidates for environmental applications.

    (1) Shannon,M.A.;Bohn,P.W.;Elimelech,M.;Georgiadis,J.G.; Marinas,B.J.;Mayes,A.M.Nature 2008,452,301.

    (2) Batzill,M.Energy Environ.Sci.2011,4,3275.

    (3) Fujishima,A.;Honda,K.Nature 1972,238,37.

    (4) Khan,S.U.M.;Al-Shahry,M.;Ingler,W.B.Science 2002,297, 2243.

    (5) Yang,H.G.;Sun,C.H.;Qiao,S.Z.;Zou,J.;Liu,G.;Smith,S. C.;Cheng,H.M.;Lu,G.Q.Nature 2008,453,638.

    (6) Chen,X.B.;Liu,L.;Yu,P.Y.;Mao,S.S.Science 2011,331, 746.

    (7) Park,J.H.;Kim,S.;Bard,A.J.Nano Lett.2006,6,24.

    (8) Ozcan,O.;Yukruk,F.;Akkaya,E.U.;Uner,D.Appl.Catal.B: Environ.2007,71,291.

    (9)Zhao,W.;Sun,Y.L.;Castellano,F.N.J.Am.Chem.Soc.2008, 130,12566.

    (10) Shang,J.;Chai,M.;Zhu,Y.F.Environ.Sci.Technol.2003,37, 4494.

    (11)Asahi,R.;Morikawa,T.;Ohwaki,T.;Aoki,K.;Taga,Y.Science 2001,293,269.

    (12) Chen,X.;Burda,C.J.Phys.Chem.B 2004,108,15446.

    (13) Parida,K.M.;Sahu,N.;Tripathi,A.K.;Kamble,V.S.Environ. Sci.Technol.2010,44,4155.

    (14) Sangpour,P.;Hashemi,F.;Moshfegh,A.Z.J.Phys.Chem.C 2010,114,13955.

    (15) Zielinska-Jurek,A.;Kowalska,E.;Sobczak,J.W.;Lisowski, W.;Ohtani,B.;Zaleska,A.Appl.Catal.B:Environ.2011,101, 504.

    (16) Mogyorosi,K.;Kmetyko,A.;Czirbus,N.;Vereb,G.;Sipos,P.; Dombi,A.React.Kinet.Catal.Lett.2009,98,215.

    (17) Martin,C.;Martin,I.;Rives,V.;Palmisano,L.;Schiavello,M. J.Catal.1992,134,434.

    (18) Hou,Y.;Li,X.Y.;Zou,X.J.;Quan,X.;Chen,G.H.Environ. Sci.Technol.2009,43,858.

    (19)Dlamini,L.N.;Krause,R.W.;Kulkarni,G.U.;Durbach,S.H. Mater.Chem.Phys.2011,129,406.

    (20)Wang,N.;Li,X.Y.;Wang,Y.X.;Hou,Y.;Zou,X.J.;Chen,G. H.Mater.Lett.2008,62,3691.

    (21) Yasomanee,J.P.;Bandara,J.Sol.Energy Mater.Sol.Cells 2008,92,348.

    (22)Chen,C.J.;Liao,C.H.;Hsu,K.C.;Wu,Y.T.;Wu,J.C.S. Catal.Commun.2011,12,1307.

    (23) Zhang,Y.G.;Ma,J.L.;Yu,Y.Environ.Sci.Technol.2007,41, 6264.

    (24) Tahar,N.B.;Savall,A.J.J.Electrochem.Soc.1998,145,3427.

    (25) Bard,A.J.;Faulker,L.R.Electrochemical Methods: Fundamentals and Applications,2nd ed.;John Wiley&Sons: New York,2001;p 386.

    (26)Xu,Y.;Schoonen,M.A.A.Am.Miner.2000,85,543.

    January 9,2012;Revised:March 21,2012;Published on Web:March 22,2012.

    Enhanced Photoeletrocatalytic Activity of TiO2Nanotube Arrays Modified with Simple Transition Metal Oxides(Fe2O3,CuO,NiO)

    CONG Yan-Qing*LI Zhe WANG Qi ZHANG Yi XU Qian FU Fang-Xia
    (College of Environmental Science and Engineering,Zhejiang Gongshang University,Hangzhou 310012,P.R.China)

    Composite electrodes consisting of highly ordered,vertically oriented TiO2nanotube(TiO2-NT) arrays modified with Fe2O3,CuO,and NiO nanoparticles were successfully fabricated by a simple electrochemical anodization and electrodeposition method.Field emission scanning electron microscopy (FE-SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and UV-Vis diffuse reflectance spectroscopy were used to characterize the structure and optical properties of the resulting Fe2O3/TiO2-NT,CuO/TiO2-NT,and NiO/TiO2-NT composite electrodes.The photoelectrochemical(PEC) activities of the composite electrodes were evaluated using phenol as a model pollutant.Results indicated that transition metal oxide nanoparticles were deposited on the mouth,tube wall,and base of the TiO2-NTs. The PEC activity of the composite electrodes was over twice that of an unmodified TiO2-NT electrode.The Fe2O3/TiO2-NT electrode showed the highest absorption intensity in the visible light region.After treatment for 120 min,the phenol removal efficiency using the Fe2O3/TiO2-NT anode could reach 96%,while it was only 41%for the unmodified TiO2-NT anode.Moreover,the Fe2O3/TiO2-NT electrode tended to generate intermediates of low toxicity.The higher PEC activity of the composite electrodes was attributed to the presence of hetero-nanostructures with high interfacial area comprised of TiO2-NTs and transition metal oxide nanoparticles,which efficiently facilitated electron transfer and inhibited the recombination of photogenerated electron-hole pairs.

    TiO2nanotube;Fe2O3;CuO;NiO;Photoelectrocatalysis;Visible light

    10.3866/PKU.WHXB201203221

    ?Corresponding author.Email:yqcong@yahoo.cn;Tel:+86-571-88071024-7018.

    The project was supported by the National Natural Science Foundation of China(20976162,21103149,20906079),Natural Science Foundation of Zhejiang Province,China(R5100266),and Significant Science and Technology Project of Zhejiang Province,China(2010C13001).

    國家自然科學(xué)基金(20976162,21103149,20906079),浙江省自然科學(xué)基金(R5100266)及浙江省科技廳重大專項(xiàng)(2010C13001)資助項(xiàng)目

    O643

    猜你喜歡
    工商大學(xué)納米管苯酚
    重慶工商大學(xué)作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    重慶工商大學(xué)學(xué)科簡(jiǎn)介
    重慶工商大學(xué)
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    毛細(xì)管氣相色譜法測(cè)定3-氟-4-溴苯酚
    云南化工(2020年11期)2021-01-14 00:50:54
    重慶工商大學(xué)
    負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    4-(2,4-二氟苯基)苯酚的合成新工藝
    国产熟女午夜一区二区三区| 中文字幕av电影在线播放| 女性被躁到高潮视频| 亚洲伊人色综图| 日韩欧美三级三区| 最新的欧美精品一区二区| 国产精品久久电影中文字幕 | 黄色 视频免费看| 精品视频人人做人人爽| 精品国产乱码久久久久久男人| 国产精品美女特级片免费视频播放器 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产欧美日韩在线播放| 国产欧美日韩精品亚洲av| 久久久久久久精品吃奶| 亚洲精品国产一区二区精华液| 中文字幕精品免费在线观看视频| 国产成人系列免费观看| 大型av网站在线播放| 国产成人免费观看mmmm| 欧美人与性动交α欧美软件| 免费少妇av软件| 俄罗斯特黄特色一大片| 国产区一区二久久| netflix在线观看网站| 老汉色∧v一级毛片| 亚洲,欧美精品.| 天天操日日干夜夜撸| 亚洲免费av在线视频| 美女福利国产在线| av线在线观看网站| 日韩欧美免费精品| av网站在线播放免费| 老司机深夜福利视频在线观看| 精品人妻1区二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人免费av在线播放| 久久久国产精品麻豆| 一级作爱视频免费观看| 久久青草综合色| 不卡一级毛片| 国产三级黄色录像| 亚洲人成伊人成综合网2020| 在线国产一区二区在线| 精品久久久久久,| 叶爱在线成人免费视频播放| 久久久国产成人精品二区 | 亚洲国产毛片av蜜桃av| 亚洲九九香蕉| 亚洲一区高清亚洲精品| a级毛片黄视频| 巨乳人妻的诱惑在线观看| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 国产精品一区二区精品视频观看| 亚洲,欧美精品.| 十八禁人妻一区二区| 搡老乐熟女国产| 黑人巨大精品欧美一区二区mp4| 国产免费av片在线观看野外av| 电影成人av| 国产男女内射视频| 成人特级黄色片久久久久久久| 一进一出好大好爽视频| 99riav亚洲国产免费| 制服人妻中文乱码| 不卡一级毛片| 久久国产精品大桥未久av| 99久久国产精品久久久| 中文字幕精品免费在线观看视频| 两个人免费观看高清视频| 老鸭窝网址在线观看| 国产精品久久电影中文字幕 | 欧美日韩乱码在线| 国内久久婷婷六月综合欲色啪| 一级黄色大片毛片| 另类亚洲欧美激情| 国产精华一区二区三区| 少妇猛男粗大的猛烈进出视频| 天天躁夜夜躁狠狠躁躁| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 精品国产国语对白av| 午夜免费成人在线视频| 交换朋友夫妻互换小说| 国产精品一区二区免费欧美| 男人舔女人的私密视频| 亚洲精品中文字幕一二三四区| 人妻久久中文字幕网| 成年版毛片免费区| 精品一品国产午夜福利视频| 高清毛片免费观看视频网站 | 黑人操中国人逼视频| 男女午夜视频在线观看| 性色av乱码一区二区三区2| 久久精品国产99精品国产亚洲性色 | 18在线观看网站| 黑人欧美特级aaaaaa片| 国产深夜福利视频在线观看| 天天操日日干夜夜撸| 国产激情久久老熟女| 国产精品99久久99久久久不卡| 久久婷婷成人综合色麻豆| 黄片小视频在线播放| 狠狠婷婷综合久久久久久88av| 黄片大片在线免费观看| 热re99久久国产66热| 色在线成人网| 国产精品久久视频播放| 久久久精品区二区三区| 午夜福利乱码中文字幕| www.999成人在线观看| 免费观看人在逋| 在线观看午夜福利视频| aaaaa片日本免费| 国产片内射在线| netflix在线观看网站| 欧美成人午夜精品| 亚洲专区国产一区二区| 欧美日韩亚洲高清精品| 国产野战对白在线观看| 日本精品一区二区三区蜜桃| 精品免费久久久久久久清纯 | 丝袜美腿诱惑在线| av一本久久久久| 亚洲熟女毛片儿| 日本黄色日本黄色录像| 老司机午夜十八禁免费视频| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 99热国产这里只有精品6| 黑人操中国人逼视频| 成人av一区二区三区在线看| 日韩精品免费视频一区二区三区| 黄频高清免费视频| 女人被狂操c到高潮| 亚洲欧美日韩高清在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品成人免费网站| 女人被狂操c到高潮| 久久国产亚洲av麻豆专区| 国产99白浆流出| 大型黄色视频在线免费观看| 欧美人与性动交α欧美软件| videos熟女内射| 亚洲性夜色夜夜综合| 国产成人免费观看mmmm| 免费日韩欧美在线观看| 国产在线观看jvid| 亚洲性夜色夜夜综合| 一进一出抽搐动态| 久久久久久久久免费视频了| 99国产精品一区二区三区| 亚洲av成人不卡在线观看播放网| 亚洲成人国产一区在线观看| 亚洲av日韩在线播放| 日本撒尿小便嘘嘘汇集6| av天堂久久9| 一边摸一边抽搐一进一出视频| 国产精品影院久久| 99在线人妻在线中文字幕 | 亚洲av片天天在线观看| 黄色 视频免费看| 18禁国产床啪视频网站| 国产成人精品无人区| 亚洲免费av在线视频| 91精品国产国语对白视频| 国产高清视频在线播放一区| 精品乱码久久久久久99久播| 久久久久国产一级毛片高清牌| 变态另类成人亚洲欧美熟女 | 18禁国产床啪视频网站| 久久久久久亚洲精品国产蜜桃av| 妹子高潮喷水视频| 亚洲一码二码三码区别大吗| 亚洲精品av麻豆狂野| 亚洲美女黄片视频| 麻豆av在线久日| 国精品久久久久久国模美| 亚洲第一av免费看| 三级毛片av免费| 手机成人av网站| 国产欧美日韩精品亚洲av| 十分钟在线观看高清视频www| 国产精品98久久久久久宅男小说| 成年人免费黄色播放视频| 亚洲成国产人片在线观看| 国产亚洲av高清不卡| 国产免费现黄频在线看| 午夜久久久在线观看| 丝袜在线中文字幕| 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲| 欧美黄色片欧美黄色片| 一级片'在线观看视频| 亚洲精品国产区一区二| 亚洲av欧美aⅴ国产| av国产精品久久久久影院| 91成人精品电影| 国产黄色免费在线视频| 免费在线观看视频国产中文字幕亚洲| 国产精品国产av在线观看| 母亲3免费完整高清在线观看| 十八禁高潮呻吟视频| 久久精品国产亚洲av香蕉五月 | √禁漫天堂资源中文www| 欧美日韩国产mv在线观看视频| 91字幕亚洲| 久久久水蜜桃国产精品网| 亚洲五月婷婷丁香| 成人影院久久| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 国产亚洲精品久久久久5区| 国产麻豆69| 咕卡用的链子| 亚洲伊人色综图| 色94色欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 国产97色在线日韩免费| 精品国产国语对白av| 亚洲伊人色综图| 伊人久久大香线蕉亚洲五| 欧美黑人欧美精品刺激| 欧美日韩成人在线一区二区| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 日韩欧美一区视频在线观看| а√天堂www在线а√下载 | 在线观看一区二区三区激情| 亚洲性夜色夜夜综合| 亚洲一区高清亚洲精品| 在线国产一区二区在线| 免费少妇av软件| 欧美人与性动交α欧美精品济南到| 免费在线观看视频国产中文字幕亚洲| 露出奶头的视频| 在线播放国产精品三级| 国产一区在线观看成人免费| 欧美日韩一级在线毛片| 在线观看66精品国产| 黑丝袜美女国产一区| av天堂久久9| 在线视频色国产色| 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡| 视频区欧美日本亚洲| 久久ye,这里只有精品| 亚洲成人免费av在线播放| tocl精华| 国产精品亚洲一级av第二区| 交换朋友夫妻互换小说| 久久精品亚洲熟妇少妇任你| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 国产精品香港三级国产av潘金莲| 少妇的丰满在线观看| 少妇粗大呻吟视频| 成年人黄色毛片网站| 亚洲一区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 9色porny在线观看| 国产精品国产av在线观看| 国产成人欧美在线观看 | 女人被狂操c到高潮| 一边摸一边抽搐一进一出视频| 美女高潮到喷水免费观看| 正在播放国产对白刺激| 国产主播在线观看一区二区| 中文字幕色久视频| 亚洲少妇的诱惑av| 欧美激情极品国产一区二区三区| 亚洲美女黄片视频| 久久国产精品大桥未久av| 精品一区二区三区四区五区乱码| 精品卡一卡二卡四卡免费| 国产精品一区二区精品视频观看| 午夜福利一区二区在线看| 欧美精品人与动牲交sv欧美| www.精华液| 香蕉久久夜色| 色在线成人网| 18禁美女被吸乳视频| 国产激情久久老熟女| 国产精品免费视频内射| 两个人免费观看高清视频| 色精品久久人妻99蜜桃| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 亚洲第一av免费看| av有码第一页| 久久久精品国产亚洲av高清涩受| 国产成人av激情在线播放| 亚洲中文日韩欧美视频| videos熟女内射| 亚洲aⅴ乱码一区二区在线播放 | 侵犯人妻中文字幕一二三四区| 欧美老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 窝窝影院91人妻| 黑人巨大精品欧美一区二区蜜桃| 黄色视频,在线免费观看| 亚洲综合色网址| 黄网站色视频无遮挡免费观看| 日韩三级视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| av电影中文网址| 国产主播在线观看一区二区| 成人黄色视频免费在线看| 色播在线永久视频| 国产淫语在线视频| 91国产中文字幕| 男男h啪啪无遮挡| 国产深夜福利视频在线观看| 久久人妻福利社区极品人妻图片| 亚洲精品国产一区二区精华液| 欧美激情久久久久久爽电影 | 色综合欧美亚洲国产小说| 超碰成人久久| 亚洲成人国产一区在线观看| 极品人妻少妇av视频| 一本综合久久免费| avwww免费| 成年人黄色毛片网站| netflix在线观看网站| 在线观看免费视频网站a站| 18禁美女被吸乳视频| 99热网站在线观看| 少妇猛男粗大的猛烈进出视频| 老熟女久久久| 国产精品久久久久久人妻精品电影| 成人影院久久| 99国产极品粉嫩在线观看| 69av精品久久久久久| 亚洲精品国产色婷婷电影| 久久久久久人人人人人| 亚洲精品美女久久av网站| 午夜精品久久久久久毛片777| 精品卡一卡二卡四卡免费| 精品国产一区二区三区四区第35| 中国美女看黄片| 国产精品电影一区二区三区 | 国产精品成人在线| 精品高清国产在线一区| 91成人精品电影| 最新的欧美精品一区二区| 国产1区2区3区精品| 亚洲成人免费av在线播放| 在线观看午夜福利视频| 真人做人爱边吃奶动态| 精品一区二区三卡| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 热99久久久久精品小说推荐| 99久久精品国产亚洲精品| 香蕉久久夜色| 久久中文字幕人妻熟女| av电影中文网址| 久久中文字幕人妻熟女| 欧美 亚洲 国产 日韩一| 免费观看人在逋| 91国产中文字幕| 亚洲三区欧美一区| 欧美精品一区二区免费开放| 亚洲精品国产区一区二| 日韩有码中文字幕| av线在线观看网站| 在线av久久热| 久久国产精品男人的天堂亚洲| 亚洲第一欧美日韩一区二区三区| 欧美精品高潮呻吟av久久| 亚洲一区高清亚洲精品| 国产一区在线观看成人免费| 国产精品欧美亚洲77777| 一区二区日韩欧美中文字幕| 在线播放国产精品三级| 黄片小视频在线播放| 两个人看的免费小视频| 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 国产av精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看 | 满18在线观看网站| 777久久人妻少妇嫩草av网站| 欧美精品人与动牲交sv欧美| 中文亚洲av片在线观看爽 | 亚洲伊人色综图| 日本撒尿小便嘘嘘汇集6| 精品亚洲成a人片在线观看| 十分钟在线观看高清视频www| 精品久久久久久,| 精品久久蜜臀av无| 久久精品aⅴ一区二区三区四区| 国产男女内射视频| 亚洲成人国产一区在线观看| 免费观看精品视频网站| 一二三四社区在线视频社区8| 看免费av毛片| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 天天添夜夜摸| 欧美激情久久久久久爽电影 | 男女之事视频高清在线观看| 岛国在线观看网站| 最新的欧美精品一区二区| 久久久精品区二区三区| 日本一区二区免费在线视频| 午夜福利视频在线观看免费| 国产精品免费大片| 午夜福利,免费看| 亚洲欧美日韩高清在线视频| 人人妻人人澡人人爽人人夜夜| 香蕉久久夜色| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 亚洲熟女精品中文字幕| 日韩欧美国产一区二区入口| 亚洲精品乱久久久久久| 午夜福利一区二区在线看| 国产日韩一区二区三区精品不卡| 久久香蕉国产精品| 国产成+人综合+亚洲专区| 亚洲一码二码三码区别大吗| 中文亚洲av片在线观看爽 | 国产在线观看jvid| 高清在线国产一区| 99在线人妻在线中文字幕 | 一级片免费观看大全| 欧美成人午夜精品| 在线观看免费午夜福利视频| 国产亚洲一区二区精品| 久久九九热精品免费| 一进一出抽搐gif免费好疼 | 一本综合久久免费| 国产精品 国内视频| 一区二区三区激情视频| 欧美日韩福利视频一区二区| 国产野战对白在线观看| 国产91精品成人一区二区三区| 亚洲人成伊人成综合网2020| 美女午夜性视频免费| 午夜久久久在线观看| 免费在线观看完整版高清| 国产精品电影一区二区三区 | 一级a爱视频在线免费观看| 高清毛片免费观看视频网站 | 精品一区二区三卡| 丰满迷人的少妇在线观看| 国产午夜精品久久久久久| 色播在线永久视频| 人成视频在线观看免费观看| 国产99白浆流出| 国产成人一区二区三区免费视频网站| 国产xxxxx性猛交| 国产片内射在线| 精品人妻熟女毛片av久久网站| 色综合婷婷激情| 亚洲国产精品一区二区三区在线| 一边摸一边做爽爽视频免费| 人人妻人人澡人人看| 国产在线观看jvid| 成人18禁高潮啪啪吃奶动态图| 久久香蕉国产精品| 国产精品乱码一区二三区的特点 | 精品免费久久久久久久清纯 | 美女 人体艺术 gogo| 国产精品久久久av美女十八| 中文字幕最新亚洲高清| videosex国产| 激情在线观看视频在线高清 | 国产亚洲精品第一综合不卡| 法律面前人人平等表现在哪些方面| a级片在线免费高清观看视频| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜制服| 亚洲欧美激情在线| bbb黄色大片| 久久国产精品男人的天堂亚洲| 中文字幕最新亚洲高清| 人人妻人人澡人人爽人人夜夜| 老司机亚洲免费影院| 最新的欧美精品一区二区| 18禁观看日本| 校园春色视频在线观看| 亚洲男人天堂网一区| 王馨瑶露胸无遮挡在线观看| 日韩人妻精品一区2区三区| 999精品在线视频| 操美女的视频在线观看| 他把我摸到了高潮在线观看| 一区二区三区国产精品乱码| 人成视频在线观看免费观看| 女人被躁到高潮嗷嗷叫费观| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲,欧美精品.| 亚洲国产欧美网| 69av精品久久久久久| 欧美日韩黄片免| 国产97色在线日韩免费| 宅男免费午夜| 99久久99久久久精品蜜桃| 一级片免费观看大全| 老熟妇仑乱视频hdxx| 亚洲第一欧美日韩一区二区三区| 亚洲男人天堂网一区| 91九色精品人成在线观看| av网站免费在线观看视频| 欧美日韩亚洲高清精品| 亚洲综合色网址| 亚洲熟妇中文字幕五十中出 | 亚洲美女黄片视频| 成人18禁高潮啪啪吃奶动态图| 亚洲av电影在线进入| 一本综合久久免费| 亚洲av第一区精品v没综合| 又黄又爽又免费观看的视频| 免费观看a级毛片全部| 免费看a级黄色片| 免费不卡黄色视频| 国产一区有黄有色的免费视频| 国产精品永久免费网站| 91成年电影在线观看| 午夜激情av网站| 18禁黄网站禁片午夜丰满| 一级a爱片免费观看的视频| 人人澡人人妻人| 免费观看人在逋| 激情视频va一区二区三区| 欧美黄色淫秽网站| 精品乱码久久久久久99久播| 国产亚洲精品一区二区www | 精品人妻1区二区| 国产片内射在线| 老司机影院毛片| 国产精品亚洲一级av第二区| 99久久精品国产亚洲精品| 1024香蕉在线观看| 搡老熟女国产l中国老女人| 国产成人影院久久av| 男女午夜视频在线观看| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜制服| 久久婷婷成人综合色麻豆| 少妇的丰满在线观看| 91精品三级在线观看| 欧美精品啪啪一区二区三区| 69精品国产乱码久久久| 在线观看免费视频网站a站| 亚洲国产欧美日韩在线播放| 亚洲精品国产一区二区精华液| 国产一区二区激情短视频| 777久久人妻少妇嫩草av网站| 国产成人av教育| 在线永久观看黄色视频| 咕卡用的链子| 欧美乱妇无乱码| 搡老岳熟女国产| 精品国产乱子伦一区二区三区| 黄频高清免费视频| 成人av一区二区三区在线看| 午夜久久久在线观看| 午夜福利免费观看在线| 午夜两性在线视频| 很黄的视频免费| 亚洲第一青青草原| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩一卡2卡3卡4卡2021年| 国产91精品成人一区二区三区| 日韩免费高清中文字幕av| 亚洲色图 男人天堂 中文字幕| 美女午夜性视频免费| 免费一级毛片在线播放高清视频 | 亚洲av日韩在线播放| 午夜精品国产一区二区电影| av一本久久久久| 日韩欧美免费精品| 免费在线观看影片大全网站| 日韩欧美在线二视频 | 在线观看66精品国产| av片东京热男人的天堂| 99精品欧美一区二区三区四区| 欧美日韩瑟瑟在线播放| bbb黄色大片| 国产91精品成人一区二区三区| 国产精品久久久久成人av| 中文字幕人妻熟女乱码| 日本欧美视频一区| 在线观看免费高清a一片| 日韩大码丰满熟妇| 丁香欧美五月| 黄色毛片三级朝国网站| 18禁裸乳无遮挡免费网站照片 | 日韩一卡2卡3卡4卡2021年| 深夜精品福利| 欧美日韩av久久| av片东京热男人的天堂| 国产欧美日韩精品亚洲av| 国产精品98久久久久久宅男小说| 两人在一起打扑克的视频| 久久久久精品人妻al黑| 国产精品免费视频内射| 最新在线观看一区二区三区| 99在线人妻在线中文字幕 | 人人妻人人澡人人看| 精品乱码久久久久久99久播| 亚洲国产精品合色在线| 午夜老司机福利片| 高清视频免费观看一区二区| 又黄又爽又免费观看的视频| 亚洲人成伊人成综合网2020| 91精品三级在线观看| 黄色成人免费大全| 少妇的丰满在线观看|