• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬氧化物(Fe2O3,CuO,NiO)改性對(duì)TiO2納米管陣列光電催化活性的增強(qiáng)效應(yīng)

    2012-12-11 09:11:42叢燕青伏芳霞
    物理化學(xué)學(xué)報(bào) 2012年6期
    關(guān)鍵詞:工商大學(xué)納米管苯酚

    叢燕青 李 哲 王 齊 張 軼 徐 謙 伏芳霞

    (浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州310012)

    金屬氧化物(Fe2O3,CuO,NiO)改性對(duì)TiO2納米管陣列光電催化活性的增強(qiáng)效應(yīng)

    叢燕青*李 哲 王 齊 張 軼 徐 謙 伏芳霞

    (浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州310012)

    采用陽極氧化法和陰極電沉積法制備了Fe2O3,CuO和NiO納米粒子改性的高度有序的TiO2納米管(TiO2-NT)陣列.運(yùn)用場(chǎng)發(fā)射掃描電子顯微鏡(FE-SEM),透射電子顯微鏡(TEM),X射線衍射(XRD)和紫外-可見漫反射光譜等手段對(duì)Fe2O3/TiO2-NT、CuO/TiO2-NT和NiO/TiO2-NT復(fù)合電極進(jìn)行表征.以苯酚為模擬污染物,考察復(fù)合電極的光電性能.結(jié)果表明,金屬氧化物(Fe2O3,CuO,NiO)納米粒子成功沉積在TiO2-NTs的管口、內(nèi)壁和管底.金屬氧化物改性復(fù)合電極的光電催化活性比未改性的TiO2-NTs提高了2倍以上.Fe2O3/TiO2-NTs在可見光區(qū)顯示出最高的吸收強(qiáng)度.以Fe2O3/TiO2-NTs為陽極處理苯酚廢水,光照120 min后苯酚去除率達(dá)到96%,而未改性的TiO2-NTs的苯酚去除率只有41%.此外,Fe2O3/TiO2-NTs在生成低毒中間產(chǎn)物方面表現(xiàn)出良好的性能.較高的復(fù)合電極光電催化活性主要是由于TiO2納米管和過渡金屬氧化物納米粒子間構(gòu)筑的高界面面積異質(zhì)納米結(jié)構(gòu),有效地促進(jìn)了電子轉(zhuǎn)移,抑制了光生電子-空穴對(duì)的復(fù)合.

    TiO2納米管;Fe2O3;CuO;NiO;光電催化;可見光

    1 Introduction

    Abatement of environmental pollutants by green technologies is significantly attractive research topic.It is particularly interest in the treatment processes using the solar energy since sunlight is a renewable natural energy.Photoelectrochemical (PEC)process is recognized to be one of the most promising ways to clean our environment.1Semiconductor electrodes employed in PEC process can be excited by solar light to generate the electron-hole pairs to remove the pollutants.Assisted electrochemical process promotes the separation of electron-hole pairs and further improves the efficiency of pollutants degradation.An efficient photocatalyst should maximize the utilization of solar energy and minimize the recombination of photoexcited electron-hole pairs.Therefore,the properties of semiconductor materials are crucial for achieving high efficiency in PEC process.2

    Various semiconductors have been extensively investigated since Fujishima and Honda3firstly suggested the water splitting with TiO2under UV illumination in 1972.TiO2is one of the most studied semiconductors because of its high photocatalytic activity,chemical stability,low cost,and nontoxicity.4-7However,the widespread usage of TiO2is limited by its large band gap energy(3.0-3.2 eV),which can only utilize the ultraviolet region of the solar spectrum.To enhance the photocatalytic activity of TiO2under visible light,considerable efforts have been attempted to improve the absorption in the visible spectrum,including dye sensitization,8-10anion or cation doping,11-13noble metal deposition,14-16and incorporation with transition metal oxides.17,18Another main drawback of TiO2is the high recombination rate of photo-generated holes and electrons.19Faster recombination largely decreases the quantum efficiency of PEC processes.Therefore,it is essential to suppress the recombination of electron-hole pairs.Among various strategies aimed at improving the absorption in the visible region and separating the electron-hole pairs,the incorporation of transition metal oxides with TiO2has been approved to be an effective method.20-23Zhang and co-workers23have synthesized TiO2/ Cu2O composite film and obtained high degradation efficiency of methylene blue.Although some studies have reported the incorporation of transition metal oxides with TiO2,there was little information about the molecular-scale architecture control and systematical study on various metal oxides.

    In this work,highly ordered vertically oriented TiO2nanotube(TiO2-NT)arrays were fabricated by electrochemical anodization of Ti foil.The self-organized oriented NT structure could provide large surface areas and facilitate vectorial charge transfer from the solution to the substrate,which were expected to accelerate the separation of electron-hole pairs and harvest sunlight more efficiently.Simple transition metal oxides (Fe2O3,CuO,NiO)nanoparticles were uniformly incorporated with TiO2-NTs by a novel electrochemical deposition method. The photocatalytic activity of the NT electrodes under visible light irradiation could be enhanced by modifying the surface structure and composition with the special metal oxides.Field emission scanning electron microscopy(FE-SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and UV-visible diffuse reflectance spectroscopy were used to characterize the structure and optical properties of composite electrodes.The PEC activities of composite electrodes were evaluated by phenol removal.

    2 Experimental

    2.1 Preparation of TiO2-NT electrodes modified by metal oxides

    TiO2-NT electrodes were prepared by the electrochemical anodization method on a Ti foil(0.25 mm thick,99.7%purity). Prior to anodization,the Ti foil was polished with sandpaper, and then ultrasonically cleaned with acetone,ethanol,and distilled water.Anodization was performed in a two-electrode system with the pretreated Ti foil as the working electrode and Pt sheet as the counter electrode under constant voltage at room temperature.The anodizing voltage varied from 0 to 20 V with an increasing certain rate and was kept at 20 V for 120 min. The electrolyte was a mixed solution of 0.5%(w)NaF and 0.5 mol·L-1Na2SO4.All reagents were analytical grade.After anodic oxidation,the samples were rinsed with deionized water and dried in air.The as-formed TiO2-NTs were annealed in a muffle furnace with 2°C·min-1heating rate and kept at 773 K for 2 h to convert the amorphous phase to the crystalline one.

    Fe2O3nanoparticles were deposited into the crystallized TiO2-NTs using an electrodeposition method.A two-electrode system was used with TiO2-NTs as the cathode and a Pt sheet as the anode.First,the TiO2-NT electrodes were soaked in a 0.1 mol·L-1Fe(NO3)3aqueous solution for 10 min,always subjected to ultrasound sonication before soaking.Then the TiO2-NT electrodes were transferred into a new medium that only contained an inert supporting electrolyte(0.1 mol·L-1Na2SO4).The potentiostatic DC electrodeposition was carried out at a constant voltage of 8 V for 20 min and the temperature of the electrolyte was maintained at 85°C.After the electrodeposition in this medium,Fe nanoparticles were deposited into the interior tubes of TiO2-NT electrodes(denoted as Fe/ TiO2-NTs).About 1.0%(w)deposition amount of Fe in the NTs was obtained after several repetitions.Then the Fe/ TiO2-NT electrodes were connected as the anode and the Pt sheet as the cathode.The material was electrochemically oxi-dized in 1 mol·L-1KOH aqueous solution at a voltage of 8 V for 2 min at room temperature.After this electrochemical oxidization,Fe/TiO2-NTs were converted into the corresponding oxides Fe2O3/TiO2-NTs.The resulting Fe2O3/TiO2-NT samples were rinsed with distilled water and dried at a low temperature.

    The preparation processes of CuO/TiO2-NTs and NiO/TiO2-NTs were the same as that of Fe2O3/TiO2-NTs,except that the deposition solution was 0.1 mol·L-1Cu(NO3)2and 0.1 mol·L-1Ni(NO3)2aqueous solutions,respectively.

    2.2 Characterization

    The morphologies and the cross-section views of TiO2-NT electrodes modified by metal oxides were characterized using a field emission scanning electron microscope(FE-SEM;Hitachi S-4700 II)and a transmission electron microscope(TEM; Philips-FEI Tecnai G2 F30 S-Twin),equipped with energy-dispersive X-ray spectroscopy(EDX;EDAX Analyzer DPP-II). The crystal properties of the prepared samples were determined from X-ray diffraction(XRD)using a diffractometer with Cu Kαradiation(Netherlands PNAlytical X?Pert PRO). The accelerating voltage and applied current were 40 kV and 40 mA,respectively.Light absorption properties were measured using UV-Vis diffuse reflectance spectra(Shimadzu, UV-3150)with a wavelength range of 220-600 nm.Electrochemical impedance spectroscopy(EIS)was performed using a CHI 660D instrument(Chenhua,Shanghai)in a three-electrode system,with a saturated Ag/AgCl electrode and a Pt sheet as reference and counter electrodes,respectively.

    2.3 Photoelectrochemical activity test

    The PEC activity of the composite electrodes was evaluated using phenol as a model pollutant.All the experiments were carried out in a two-electrode glass cell(100 mL)with constant magnetic stirring,using 0.2 mol·L-1Na2SO4as the electrolyte.The initial concentration of the phenol aqueous solution was 10 mg·L-1.The composite electrode was used as anode and Cu sheet was cathode.Applied voltage was provided by the DC Constant Current Power(WYL603 type,Hangzhou Yuhang Siling Electronic Equipment Co.,Ltd.).The anode was irradiated using a tungsten-halogen lamp(500 W),which generates a continuous light distribution across the visible spectrum and relatively weak emission in the ultraviolet portion of the spectrum.A UV cut-off filter(λ>420 nm)was used for visible light irradiation.The light intensity on the photoanode was~80 mW·cm-2.All experiments were carried out under ambient conditions.The determination of phenol and its degradation intermediates were carried out using high performance liquid chromatography(HPLC,Agilent 1200)by comparing the retention time of the standard compounds.The separation was performed using a Diamonsil C18 reversed phase column(150 mm×4.6 mm×5 mm)at the flow rate of 1.0 mL·min-1and the column temperature of 25°C.The eluent consisted of methanol/purified water(30:70(volume ratio)).The analyses were performed with a UV detector at a wavelength of 254 nm.

    3 Results and discussion

    3.1 Characterization of photocatalysts

    Fig.1 shows the SEM morphologies of the as-synthesized TiO2-NTs,Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs. The hollow TiO2-NTs are almost uniform and have a highly ordered tubularstructure.The averageinnerdiameterof TiO2-NTs is~80 nm,and their average outer diameter is~110 nm(Fig.1(a)).Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs have the similar tubular structure.The corresponding metal oxide nanoparticles were distinctly deposited on TiO2tubular substrates.The surface of TiO2-NT substrates was not blocked by nanoparticles.To identify the distribution of nanoparticles in TiO2-NTs,the cross-section views of the composite electrodes were analyzed by TEM images.According to Fig.2,the length of TiO2-NTs is around 1.2 μm.Fe2O3nanoparticles are deposited on the mouth,the tube wall,and the base of TiO2-NTs.The average diameter of Fe2O3nanoparticles is about 35 nm.Note that the deposition process has not destroyed the structure of the ordered TiO2-NT arrays,and Fe2O3nanoparticles can be fabricated into the bottom of TiO2-NTs. The EDX spectrum in Fig.2 confirms the existence of Fe,Ti, and O,whereas the Cu signal originates from the Cu substrate used in the imaging process.The measured atomic ratio of Fe/ Ti was 1.21%.The existence of NiO in NiO/TiO2-NTs was also confirmed(figure not shown).The measured atomic ratio of Ni/ Ti was 1.35%.The atomic ratio of Cu/Ti could not be determined due to the interference of Cu substrate used in EDX measurement.Fig.3 shows the XRD patterns of different composite electrodes annealed at 773 K.TiO2is converted from amorphous state to anatase state with a fine preferential growth of the self-organized highly oriented TiO2-NT arrays in the(101)direction.The peak of the(101)crystal(2θ=26.2°) can be seen from all the patterns.The characteristic peaks cor-responding to CuO,NiO,and Fe2O3are also identified in Fig.3. It indicates that TiO2-NTs,Fe2O3/TiO2-NTs,CuO/TiO2-NTs, and NiO/TiO2-NTs have been successfully synthesized.

    Fig.1 SEM images of TiO2-NTs and the metal oxide modified TiO2-NTs(a)TiO2-NTs,(b)CuO/TiO2-NTs,(c)NiO/TiO2-NTs,(d)Fe2O3/TiO2-NTs

    Fig.2 TEM images with different magnifications(a,b)and energy-dispersive X-ray(EDX)spectroscopy(c)of Fe2O3/TiO2-NT electrode

    Fig.3 XRD patterns of(a)TiO2-NTs,(b)NiO/TiO2-NTs, (c)Fe2O3/TiO2-NTs,and(d)CuO/TiO2-NTs

    Fig.4 UV-Vis diffuse reflectance spectra of the composite TiO2-NT electrodes modified by different metal oxides

    UV-Vis diffuse reflectance spectra of the composite TiO2-NT electrodes modified by different metal oxides are shown in Fig.4.In the wavelength range from 220 to 325 nm,Fe2O3/ TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs have lower absorbance intensity than the unmodified TiO2-NTs.When the wavelength is longer than 325 nm,however,the absorbance intensities of Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs are higher than that of TiO2-NTs.Especially for Fe2O3/ TiO2-NTs,its absorbance intensity is significantly higher than other electrodes in the visible light region.Considering the large proportion(47%)of visible light in solar spectrum,the composite TiO2-NT electrodes modified by Fe2O3,CuO,and NiO are superior to the unmodified TiO2-NTs.

    3.2 Photoelectrocatalytic degradation of phenol

    To investigate the PEC activity of composite electrodes,phenol degradation experiments were carried out using the composite electrodes as the photoanodes.Fig.5 shows the comparison of phenol removal efficiency under irradiation.The removal rates of phenol using the three composite electrodes have been significantly improved relative to the unmodified TiO2-NT electrodes.After 120 min treatment,phenol removal efficiencies of Fe2O3/TiO2-NT,NiO/TiO2-NT,and CuO/TiO2-NT anodes were 96%,93%,and 90%,respectively,while it was only 41%for the unmodified TiO2-NT anode.The PEC activity of the composite NT electrodes was over twice that of the unmodified TiO2-NT electrode.The improved PEC performance was apparently attributed to the modification of metal oxides.

    3.3 Comparison of different processes

    Fig.5 Comparison of phenol removal efficiency under irradiation using different electrodes

    The electrocatalytic,photocatalytic,and photoelectrocatalytic processes were performed to investigate the role of different processes on phenol degradation using Fe2O3/TiO2-NTs as the anode since it has the best PEC activity.In electrocatalytic process,applied potential was performed and the experiments were carried out in the dark.In photocatalytic process,light irradiation was performed at open circuit(without applied potential).In photoelectrocatalytic process,applied potential and light irradiation were simultaneously used.All other operating conditions were the same.Fig.6 shows the comparison of different processes on phenol degradation.After 120 min treatment,phenol removal efficiency could reach 96%in the photoelectrocatalytic process,while it was only 15%for photocatalytic process and 4%for electrocatalytic process.It was evident that the photoelectrocatalytic process has synergetic effects in enhancing the removal efficiency of phenol in comparison with the individual photocatalytic or electrocatalytic process.

    Comparison of Fe2O3/TiO2-NTs and TiO2-NTs on phenol degradation under UV-Vis light and visible light irradiation is shown in Fig.7.Phenol removal efficiency of Fe2O3/TiO2-NTs is ca 2.3 times higher under UV-visible light irradiation and 8 times higher under visible light irradiation than that of TiO2-NTs.It is obvious that the modification of Fe2O3on TiO2-NTs significantly improves the PEC activity under visible light irradiation.

    Fig.6 Comparison of different processes on phenol degradation using Fe2O3/TiO2-NTs as the anode

    Fig.7 Comparison of Fe2O3/TiO2-NTs and TiO2-NTs on phenol degradation under UV-Vis light and visible light irradiation

    3.4 Determination of phenol degradation intermediates

    Fig.8 shows the HPLC chromatograms of phenol degradation at different treatment time.The main intermediates were identified to be benzoquinone,hydroquinone,and maleic acid by comparing the retention time of the standard compounds (Table 1).It can be seen that phenol was continuously degraded with time.Benzoquinone is an important intermediate of phenol degradation.Fig.9 shows that the yields of benzoquinone under irradiation using TiO2-NT,Fe2O3/TiO2-NT,CuO/ TiO2-NT,and NiO/TiO2-NT electrodes.Benzoquinone yields on the composite NT anodes first increased and then decreased with time.This was quite beneficial to the detoxification of wastewater because benzoquinone was regarded as one of the most toxic intermediates.24Benzoquinone yields of Fe2O3/ TiO2-NT,NiO/TiO2-NT,CuO/TiO2-NT,and TiO2-NT anodes were 1%,4%,7%,and 9%at 120 min,respectively.Fe2O3/ TiO2-NTs showed good performance to generate the low toxic intermediates.A possible reason was that some benzoquinone intermediate was simultaneously degraded when phenol was converted to benzoquinone.Fe2O3/TiO2-NTs had the highest PEC activity among these composite electrodes and could generate the most oxidizing reagents to degrade the pollutants(see Fig.5).Therefore,sufficient oxidants could further degrade the benzoquinone to achieve the lower yields of benzoquinone.

    Fig.8 HPLC chromatograms of phenol degradation at different treatment time under UV-Vis light irradiation

    Table 1 HPLC retention time of phenol and its intermediates

    Fig.9 Yields of benzoquinone under irradiation using different electrodes

    3.5 EIS analysis

    TiO2-NT electrodes modified by simple transition metal oxides were analyzed by electrochemical impedance spectroscopy(EIS).Experiments were carried out in 0.1 mol·L-1NaOH solution under dark condition.Fig.10 shows the Nynquist plots of TiO2-NT electrodes and TiO2-NTs modified by various metal oxides.For each electrode,only one arc could be observed in the complex plane,which was related to the porous nature of the electrodes.The radius of the arc reflects the charge transfer resistance at the surface of the electrode.25It is obvious that the arc radius on TiO2-NTs modified by various metal oxides is smaller than that on unmodified TiO2-NTs.This indicates that the modification of transition metal oxides improves the interfacial charge transfer of TiO2-NTs.

    3.6 Possible mechanism

    Fig.10 EIS Nynquist plots of TiO2-NT electrode and TiO2-NT electrodes modified by various metal oxides under dark condition

    Fig.11 Current density-potential curves of different electrodes under chopped visible light irradiation(a)TiO2-NTs,(b)Fe2O3/TiO2-NTs,(c)CuO/TiO2-NTs,(d)NiO/TiO2-NTs

    Current density-potential curves of various electrodes were tested in 0.1 mol·L-1NaOH solution using a three-electrode system(Fig.11).The photocurrent density of various electrodes increased as the applied voltage rose.Composite electrodes showed a better photoresponse under visible light irradiation than TiO2-NT electrode.The photocurrent of Fe2O3/TiO2-NTs (or NiO/TiO2-NTs)was ca 3 times higher than that of TiO2-NTs at 0.4 V(vs Ag/AgCl).CuO/TiO2-NTs had a lower photocurrent relative to Fe2O3/TiO2-NTs(or NiO/TiO2-NTs),but its photocurrent was still over 2 times higher than that of TiO2-NTs. The recombination peaks of photogenerated electron-hole pairs were found at lower applied voltage,however,they could decrease as the applied voltage bias increased.In addition,Fe2O3/ TiO2-NT and CuO/TiO2-NT electrodes showed higher dark current density than TiO2-NTs and NiO/TiO2-NTs,which indicated that Fe2O3and CuO nanoparticles had higher conductivity and reduced the charge transfer resistance of the Fe2O3/TiO2-NT and CuO/TiO2-NT electrodes.These results were consistent with EIS analysis in Fig.10.We tentatively put forward that Fe2O3and CuO nanoparticles may perform as the channel for electron migration and improve the separation of photogenerated electron-hole pairs since they have higher conductivity than TiO2.

    The differences in PEC activity among these composite electrodes were probably associated with their band structure and surface chemical nature.Table 2 lists the valence band(VB) and conduction band(CB)positions of TiO2,Fe2O3,NiO,and CuO.26Fe2O3and CuO have the low band gap,which would favor the absorption of the solar energy in visible light region. Since the CB position of Fe2O3(or CuO)is more positive than that of TiO2,some photogenerated electrons in Fe2O3/TiO2-NTs (or CuO/TiO2-NTs)may transfer from TiO2to Fe2O3(or CuO), leaving more holes to carry out the oxidation reaction.However,it might also serve as a recombination center since the photogenerated holes may move from TiO2to Fe2O3(or CuO).Therefore,the deposition amount of Fe2O3(or CuO)should be appropriately controlled.A schematic diagram of the photogenerated charge separation and electron transport on Fe2O3/ TiO2-NT or CuO/TiO2-NT electrode is shown in Fig.12(a).The low band gap of Fe2O3(or CuO)played an important role in the enhanced PEC activity of Fe2O3/TiO2-NTs(or CuO/ TiO2-NTs).NiO/TiO2-NTs also showed a higher PEC activity compared to the TiO2-NTs,but the band gap of NiO was larger than that of TiO2.Therefore,the possible mechanism of enhanced PEC performance on NiO/TiO2-NTs was different from Fe2O3/TiO2-NTs(or CuO/TiO2-NTs).Since NiO is a p-type semiconductor and TiO2is an n-type semiconductor,a number of p-n junctions would be formed when NiO was deposited on TiO2.As shown in Fig.12(b),the inner electric field was formed at the equilibrium,which made p-type NiO region had the negative charge and n-type TiO2region had the positive charge.Thus,the photogenerated holes moved to the negative field,while the electrons transferred to the positive field under the inner electric field.As a result,electron-hole pairs were effectively separated and the PEC activity of NiO/TiO2-NTs was significantly improved compared with the unmodified TiO2-NTs.

    Table 2 Valence band(VB)and conduction band(CB)positions of TiO2,Fe2O3,NiO,and CuO

    Fig.12 Schematic diagrams of pollutants degradation on MO/TiO2-NT electrodes under irradiation(a)possible pathway of the photogenerated charge separation and electron transport on Fe2O3/TiO2-NT or CuO/TiO2-NT electrode; (b)p-n junction formation model on NiO/TiO2-NT electrode

    When the phenol molecules were adsorbed on the surface of electrodes,some photogenerated holes directly reacted with phenol molecules to produce phenol+?radicals.Further,the reactive phenol+?radicals were transformed into degradation intermediates.And other holes reacted with H2O to produce hydroxyl radicals(HO·),which further oxidized organic compounds into H2O and CO2.18The possible reactions on the heteronanostructures comprised of TiO2-NTs and transition metal oxide(MO)nanoparticles could be expressed as follows:

    Note that Fig.12 shows just a tentative mechanism and the differences in PEC activity among various composite electrodes have not been completely clarified.The PEC activity is also sensitive to the interface,which is more complicated.The crystal-face exposed to the electrolyte at the interface may cause a different structure of the electric double layer.Thus this study illustrates the enhanced PEC activity of TiO2-NTs modified by simple transition metal oxides,and more work will be done to further clarify the mechanism.

    4 Conclusions

    The present study has demonstrated that TiO2-NTs,Fe2O3/ TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs could be successfully synthesized by a simple electrochemical anodization and electrodeposition method.The obtained TiO2and composite NT electrodes had a uniform and highly oriented tubular structure.The characteristic peaks corresponding to Fe2O3,CuO, and NiO were identified by XRD and the main phase of TiO2-NTs was anatase.Nanostructured composite electrodes showed a PEC activity more than 2 times higher than the pure TiO2-NTs.After 120 min treatment,phenol removal efficiency using Fe2O3/TiO2-NT,NiO/TiO2-NT,and CuO/TiO2-NT electrodes could reach 96%,93%,and 90%,respectively,while it was only 41%for the unmodified TiO2-NT anode.Moreover, Fe2O3/TiO2-NTs showed good performance to generate the low toxic intermediates.The low band gap of Fe2O3(or CuO) played an important role in the enhanced PEC activity of Fe2O3/ TiO2-NTs(or CuO/TiO2-NTs).The enhanced performance of NiO/TiO2-NTs was attributed to the formation of p-n junctions. The results indicate that TiO2-NTs modified by simple transition metal oxides(Fe2O3,CuO,NiO)are promising candidates for environmental applications.

    (1) Shannon,M.A.;Bohn,P.W.;Elimelech,M.;Georgiadis,J.G.; Marinas,B.J.;Mayes,A.M.Nature 2008,452,301.

    (2) Batzill,M.Energy Environ.Sci.2011,4,3275.

    (3) Fujishima,A.;Honda,K.Nature 1972,238,37.

    (4) Khan,S.U.M.;Al-Shahry,M.;Ingler,W.B.Science 2002,297, 2243.

    (5) Yang,H.G.;Sun,C.H.;Qiao,S.Z.;Zou,J.;Liu,G.;Smith,S. C.;Cheng,H.M.;Lu,G.Q.Nature 2008,453,638.

    (6) Chen,X.B.;Liu,L.;Yu,P.Y.;Mao,S.S.Science 2011,331, 746.

    (7) Park,J.H.;Kim,S.;Bard,A.J.Nano Lett.2006,6,24.

    (8) Ozcan,O.;Yukruk,F.;Akkaya,E.U.;Uner,D.Appl.Catal.B: Environ.2007,71,291.

    (9)Zhao,W.;Sun,Y.L.;Castellano,F.N.J.Am.Chem.Soc.2008, 130,12566.

    (10) Shang,J.;Chai,M.;Zhu,Y.F.Environ.Sci.Technol.2003,37, 4494.

    (11)Asahi,R.;Morikawa,T.;Ohwaki,T.;Aoki,K.;Taga,Y.Science 2001,293,269.

    (12) Chen,X.;Burda,C.J.Phys.Chem.B 2004,108,15446.

    (13) Parida,K.M.;Sahu,N.;Tripathi,A.K.;Kamble,V.S.Environ. Sci.Technol.2010,44,4155.

    (14) Sangpour,P.;Hashemi,F.;Moshfegh,A.Z.J.Phys.Chem.C 2010,114,13955.

    (15) Zielinska-Jurek,A.;Kowalska,E.;Sobczak,J.W.;Lisowski, W.;Ohtani,B.;Zaleska,A.Appl.Catal.B:Environ.2011,101, 504.

    (16) Mogyorosi,K.;Kmetyko,A.;Czirbus,N.;Vereb,G.;Sipos,P.; Dombi,A.React.Kinet.Catal.Lett.2009,98,215.

    (17) Martin,C.;Martin,I.;Rives,V.;Palmisano,L.;Schiavello,M. J.Catal.1992,134,434.

    (18) Hou,Y.;Li,X.Y.;Zou,X.J.;Quan,X.;Chen,G.H.Environ. Sci.Technol.2009,43,858.

    (19)Dlamini,L.N.;Krause,R.W.;Kulkarni,G.U.;Durbach,S.H. Mater.Chem.Phys.2011,129,406.

    (20)Wang,N.;Li,X.Y.;Wang,Y.X.;Hou,Y.;Zou,X.J.;Chen,G. H.Mater.Lett.2008,62,3691.

    (21) Yasomanee,J.P.;Bandara,J.Sol.Energy Mater.Sol.Cells 2008,92,348.

    (22)Chen,C.J.;Liao,C.H.;Hsu,K.C.;Wu,Y.T.;Wu,J.C.S. Catal.Commun.2011,12,1307.

    (23) Zhang,Y.G.;Ma,J.L.;Yu,Y.Environ.Sci.Technol.2007,41, 6264.

    (24) Tahar,N.B.;Savall,A.J.J.Electrochem.Soc.1998,145,3427.

    (25) Bard,A.J.;Faulker,L.R.Electrochemical Methods: Fundamentals and Applications,2nd ed.;John Wiley&Sons: New York,2001;p 386.

    (26)Xu,Y.;Schoonen,M.A.A.Am.Miner.2000,85,543.

    January 9,2012;Revised:March 21,2012;Published on Web:March 22,2012.

    Enhanced Photoeletrocatalytic Activity of TiO2Nanotube Arrays Modified with Simple Transition Metal Oxides(Fe2O3,CuO,NiO)

    CONG Yan-Qing*LI Zhe WANG Qi ZHANG Yi XU Qian FU Fang-Xia
    (College of Environmental Science and Engineering,Zhejiang Gongshang University,Hangzhou 310012,P.R.China)

    Composite electrodes consisting of highly ordered,vertically oriented TiO2nanotube(TiO2-NT) arrays modified with Fe2O3,CuO,and NiO nanoparticles were successfully fabricated by a simple electrochemical anodization and electrodeposition method.Field emission scanning electron microscopy (FE-SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and UV-Vis diffuse reflectance spectroscopy were used to characterize the structure and optical properties of the resulting Fe2O3/TiO2-NT,CuO/TiO2-NT,and NiO/TiO2-NT composite electrodes.The photoelectrochemical(PEC) activities of the composite electrodes were evaluated using phenol as a model pollutant.Results indicated that transition metal oxide nanoparticles were deposited on the mouth,tube wall,and base of the TiO2-NTs. The PEC activity of the composite electrodes was over twice that of an unmodified TiO2-NT electrode.The Fe2O3/TiO2-NT electrode showed the highest absorption intensity in the visible light region.After treatment for 120 min,the phenol removal efficiency using the Fe2O3/TiO2-NT anode could reach 96%,while it was only 41%for the unmodified TiO2-NT anode.Moreover,the Fe2O3/TiO2-NT electrode tended to generate intermediates of low toxicity.The higher PEC activity of the composite electrodes was attributed to the presence of hetero-nanostructures with high interfacial area comprised of TiO2-NTs and transition metal oxide nanoparticles,which efficiently facilitated electron transfer and inhibited the recombination of photogenerated electron-hole pairs.

    TiO2nanotube;Fe2O3;CuO;NiO;Photoelectrocatalysis;Visible light

    10.3866/PKU.WHXB201203221

    ?Corresponding author.Email:yqcong@yahoo.cn;Tel:+86-571-88071024-7018.

    The project was supported by the National Natural Science Foundation of China(20976162,21103149,20906079),Natural Science Foundation of Zhejiang Province,China(R5100266),and Significant Science and Technology Project of Zhejiang Province,China(2010C13001).

    國家自然科學(xué)基金(20976162,21103149,20906079),浙江省自然科學(xué)基金(R5100266)及浙江省科技廳重大專項(xiàng)(2010C13001)資助項(xiàng)目

    O643

    猜你喜歡
    工商大學(xué)納米管苯酚
    重慶工商大學(xué)作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    重慶工商大學(xué)學(xué)科簡(jiǎn)介
    重慶工商大學(xué)
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    毛細(xì)管氣相色譜法測(cè)定3-氟-4-溴苯酚
    云南化工(2020年11期)2021-01-14 00:50:54
    重慶工商大學(xué)
    負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    4-(2,4-二氟苯基)苯酚的合成新工藝
    大型av网站在线播放| 日韩中文字幕视频在线看片| 黄频高清免费视频| 五月开心婷婷网| 女性生殖器流出的白浆| 成年人免费黄色播放视频| 国产精品久久久人人做人人爽| 两个人免费观看高清视频| 青春草视频在线免费观看| 国产精品麻豆人妻色哟哟久久| 午夜影院在线不卡| 精品亚洲成国产av| 精品亚洲成国产av| 午夜福利视频在线观看免费| 久久久久久久国产电影| 好男人电影高清在线观看| 不卡一级毛片| 亚洲熟女毛片儿| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产av蜜桃| 飞空精品影院首页| 亚洲精品成人av观看孕妇| 下体分泌物呈黄色| 97人妻天天添夜夜摸| 亚洲精品成人av观看孕妇| 国产高清视频在线播放一区 | 久久精品aⅴ一区二区三区四区| 精品视频人人做人人爽| 1024香蕉在线观看| 视频区欧美日本亚洲| 国产有黄有色有爽视频| 啪啪无遮挡十八禁网站| 中国美女看黄片| 成人黄色视频免费在线看| 色婷婷av一区二区三区视频| 操美女的视频在线观看| 国产男女内射视频| 伦理电影免费视频| 亚洲色图综合在线观看| 国产免费一区二区三区四区乱码| 国产精品熟女久久久久浪| 久久人人爽人人片av| 国产深夜福利视频在线观看| av在线老鸭窝| 十八禁网站免费在线| 一二三四社区在线视频社区8| 久久国产精品大桥未久av| 亚洲七黄色美女视频| 男女边摸边吃奶| 亚洲天堂av无毛| 亚洲免费av在线视频| 亚洲精品国产一区二区精华液| 丰满人妻熟妇乱又伦精品不卡| 日本av手机在线免费观看| 午夜日韩欧美国产| 老司机在亚洲福利影院| 超碰97精品在线观看| 十八禁高潮呻吟视频| h视频一区二区三区| 亚洲av美国av| 一个人免费在线观看的高清视频 | 国产区一区二久久| 国产男女内射视频| 亚洲欧美日韩高清在线视频 | 久久精品亚洲熟妇少妇任你| 九色亚洲精品在线播放| 国产成人欧美| 国产在线一区二区三区精| 欧美变态另类bdsm刘玥| 高清视频免费观看一区二区| 高清视频免费观看一区二区| 99精国产麻豆久久婷婷| 亚洲激情五月婷婷啪啪| 最黄视频免费看| 国产精品秋霞免费鲁丝片| 欧美另类亚洲清纯唯美| 一区二区三区四区激情视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久精品人妻al黑| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费观看性视频| 亚洲精品粉嫩美女一区| 狠狠婷婷综合久久久久久88av| a级毛片在线看网站| 国产欧美日韩综合在线一区二区| 狂野欧美激情性xxxx| 成人18禁高潮啪啪吃奶动态图| 国产黄色免费在线视频| 一本—道久久a久久精品蜜桃钙片| 亚洲伊人久久精品综合| 国产真人三级小视频在线观看| 国产av一区二区精品久久| 成年av动漫网址| 午夜福利视频在线观看免费| kizo精华| 国产三级黄色录像| 国产成人精品久久二区二区91| 在线观看免费日韩欧美大片| 午夜老司机福利片| 国产精品免费大片| 国产成人a∨麻豆精品| 亚洲精品成人av观看孕妇| 99国产极品粉嫩在线观看| 精品一品国产午夜福利视频| 99精品欧美一区二区三区四区| 久久国产精品大桥未久av| 永久免费av网站大全| 黄片大片在线免费观看| 亚洲免费av在线视频| 青春草亚洲视频在线观看| 一本久久精品| 曰老女人黄片| 午夜精品国产一区二区电影| 精品一区二区三卡| 免费在线观看完整版高清| 天天添夜夜摸| 免费看十八禁软件| 99久久精品国产亚洲精品| 2018国产大陆天天弄谢| 看免费av毛片| 不卡av一区二区三区| 国产成人欧美| 亚洲第一av免费看| 捣出白浆h1v1| 纵有疾风起免费观看全集完整版| 制服诱惑二区| av又黄又爽大尺度在线免费看| 国产人伦9x9x在线观看| 啦啦啦在线免费观看视频4| 亚洲va日本ⅴa欧美va伊人久久 | 欧美黑人精品巨大| 国产一区二区三区综合在线观看| 日韩欧美免费精品| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| 日日摸夜夜添夜夜添小说| 欧美精品亚洲一区二区| 黄色 视频免费看| 午夜福利一区二区在线看| 久久女婷五月综合色啪小说| 亚洲人成电影观看| 色婷婷av一区二区三区视频| 天堂8中文在线网| 欧美国产精品va在线观看不卡| 不卡一级毛片| 国产在线观看jvid| 国产欧美亚洲国产| 亚洲精品自拍成人| 夜夜夜夜夜久久久久| 亚洲欧美日韩高清在线视频 | 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 欧美精品高潮呻吟av久久| 成年人免费黄色播放视频| 久久久久国内视频| 高潮久久久久久久久久久不卡| 精品少妇内射三级| 国产视频一区二区在线看| 欧美在线黄色| 久久久国产精品麻豆| 91国产中文字幕| 777米奇影视久久| 中文字幕高清在线视频| 又紧又爽又黄一区二区| www.自偷自拍.com| 亚洲av美国av| 丝袜人妻中文字幕| 国产成人欧美在线观看 | 日韩,欧美,国产一区二区三区| 天天操日日干夜夜撸| 国产成人免费观看mmmm| 精品少妇久久久久久888优播| 国产精品一区二区精品视频观看| 女人高潮潮喷娇喘18禁视频| 日本黄色日本黄色录像| 最近最新中文字幕大全免费视频| 久久久精品国产亚洲av高清涩受| 国产精品一区二区在线不卡| 欧美精品啪啪一区二区三区 | 久久这里只有精品19| 国产男女内射视频| 夜夜骑夜夜射夜夜干| 久久久久久久大尺度免费视频| 亚洲精品一二三| 国产精品自产拍在线观看55亚洲 | 亚洲 国产 在线| 国产一卡二卡三卡精品| 亚洲欧美一区二区三区黑人| 桃花免费在线播放| 啦啦啦在线免费观看视频4| 久久人人爽人人片av| 久久狼人影院| 性色av乱码一区二区三区2| 午夜老司机福利片| 亚洲欧美日韩高清在线视频 | 天堂俺去俺来也www色官网| 亚洲第一av免费看| 香蕉丝袜av| 日本撒尿小便嘘嘘汇集6| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 亚洲欧美色中文字幕在线| 久久女婷五月综合色啪小说| 免费观看a级毛片全部| 成人影院久久| a 毛片基地| 日本91视频免费播放| 日韩视频一区二区在线观看| 别揉我奶头~嗯~啊~动态视频 | 久久亚洲精品不卡| 最近中文字幕2019免费版| 国产成人av教育| 久久人人爽av亚洲精品天堂| 午夜福利影视在线免费观看| 妹子高潮喷水视频| 精品视频人人做人人爽| 成人免费观看视频高清| 久久九九热精品免费| www.精华液| 亚洲精品国产av成人精品| 成年av动漫网址| 精品人妻熟女毛片av久久网站| 男女边摸边吃奶| 国产精品免费大片| 欧美人与性动交α欧美软件| 丝瓜视频免费看黄片| 精品少妇黑人巨大在线播放| 亚洲激情五月婷婷啪啪| 少妇的丰满在线观看| 精品高清国产在线一区| 日韩一区二区三区影片| 国产成人系列免费观看| 99国产综合亚洲精品| 极品人妻少妇av视频| 黄色毛片三级朝国网站| 999久久久国产精品视频| 成年人免费黄色播放视频| 亚洲五月婷婷丁香| 久久影院123| 亚洲三区欧美一区| 亚洲国产精品999| 麻豆av在线久日| www.熟女人妻精品国产| 亚洲精品一卡2卡三卡4卡5卡 | 丝袜美腿诱惑在线| 国产成人一区二区三区免费视频网站| 91大片在线观看| 少妇 在线观看| 热99久久久久精品小说推荐| 国产精品 国内视频| 人妻久久中文字幕网| 夜夜骑夜夜射夜夜干| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩视频精品一区| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品电影小说| 国产日韩欧美在线精品| 欧美xxⅹ黑人| 可以免费在线观看a视频的电影网站| 搡老熟女国产l中国老女人| 亚洲精品一卡2卡三卡4卡5卡 | 交换朋友夫妻互换小说| 91麻豆av在线| 99国产精品一区二区三区| 巨乳人妻的诱惑在线观看| 满18在线观看网站| 各种免费的搞黄视频| 91精品国产国语对白视频| 啦啦啦啦在线视频资源| 久久中文看片网| 亚洲精品日韩在线中文字幕| 亚洲avbb在线观看| 五月天丁香电影| 搡老岳熟女国产| 亚洲av日韩在线播放| 欧美另类亚洲清纯唯美| 久久精品亚洲熟妇少妇任你| 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区mp4| 深夜精品福利| 中文字幕人妻熟女乱码| 国产成人免费观看mmmm| 一边摸一边抽搐一进一出视频| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 一级毛片精品| www.自偷自拍.com| 老汉色av国产亚洲站长工具| 视频区欧美日本亚洲| 纵有疾风起免费观看全集完整版| 久久九九热精品免费| 亚洲免费av在线视频| 制服人妻中文乱码| 中文字幕高清在线视频| 亚洲一区中文字幕在线| 激情视频va一区二区三区| av在线app专区| 日韩欧美国产一区二区入口| 日韩电影二区| 免费在线观看完整版高清| 精品久久久久久久毛片微露脸 | 亚洲人成电影观看| 别揉我奶头~嗯~啊~动态视频 | 午夜两性在线视频| 18禁观看日本| 久久亚洲精品不卡| www.av在线官网国产| 亚洲av日韩在线播放| 欧美精品一区二区免费开放| 国产精品亚洲av一区麻豆| 亚洲av电影在线观看一区二区三区| 欧美国产精品va在线观看不卡| av欧美777| 桃红色精品国产亚洲av| 亚洲精品av麻豆狂野| 日本五十路高清| 日本a在线网址| 国产高清videossex| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 国产一区二区三区av在线| 看免费av毛片| 黑人巨大精品欧美一区二区蜜桃| 国产福利在线免费观看视频| 免费久久久久久久精品成人欧美视频| 亚洲精品一卡2卡三卡4卡5卡 | 制服诱惑二区| 一区二区三区四区激情视频| 精品亚洲乱码少妇综合久久| 久久久欧美国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇内射三级| 一个人免费看片子| 久久精品成人免费网站| 欧美久久黑人一区二区| 老熟妇仑乱视频hdxx| 天天添夜夜摸| 亚洲avbb在线观看| 一区二区三区激情视频| 性高湖久久久久久久久免费观看| 久久精品久久久久久噜噜老黄| 夜夜骑夜夜射夜夜干| 亚洲第一av免费看| 久久久国产成人免费| 午夜福利影视在线免费观看| 久久精品熟女亚洲av麻豆精品| av超薄肉色丝袜交足视频| 国产成人啪精品午夜网站| 亚洲精品成人av观看孕妇| 日韩,欧美,国产一区二区三区| 老司机午夜十八禁免费视频| 老司机影院成人| 久久亚洲国产成人精品v| 精品一区二区三区四区五区乱码| 在线十欧美十亚洲十日本专区| 蜜桃在线观看..| 一进一出抽搐动态| 夜夜骑夜夜射夜夜干| 一区二区日韩欧美中文字幕| 波多野结衣一区麻豆| 高清欧美精品videossex| 男人添女人高潮全过程视频| av网站免费在线观看视频| 精品少妇久久久久久888优播| 91成人精品电影| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| 国产亚洲精品久久久久5区| 免费久久久久久久精品成人欧美视频| 国产亚洲av高清不卡| www.av在线官网国产| 欧美一级毛片孕妇| 另类精品久久| 免费观看人在逋| 伦理电影免费视频| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 黄片播放在线免费| 国产在线一区二区三区精| 亚洲精品自拍成人| 99久久综合免费| 久久毛片免费看一区二区三区| 操出白浆在线播放| 亚洲一区中文字幕在线| 人妻一区二区av| 操美女的视频在线观看| 亚洲专区国产一区二区| 国产精品九九99| 91麻豆av在线| 欧美成人午夜精品| 久久久国产精品麻豆| 亚洲avbb在线观看| 亚洲精品中文字幕在线视频| 叶爱在线成人免费视频播放| 国产片内射在线| 99国产极品粉嫩在线观看| 十八禁人妻一区二区| 国产在视频线精品| 一本一本久久a久久精品综合妖精| 热99re8久久精品国产| 9热在线视频观看99| 男人添女人高潮全过程视频| 日韩三级视频一区二区三区| 成年人黄色毛片网站| 欧美久久黑人一区二区| 亚洲专区国产一区二区| 啦啦啦免费观看视频1| 黄色视频,在线免费观看| 99精品久久久久人妻精品| 美女扒开内裤让男人捅视频| 亚洲自偷自拍图片 自拍| 乱人伦中国视频| www.999成人在线观看| 午夜福利,免费看| 纵有疾风起免费观看全集完整版| 国产成人免费观看mmmm| 9191精品国产免费久久| 成人国产一区最新在线观看| 女性生殖器流出的白浆| 欧美日韩福利视频一区二区| 日日爽夜夜爽网站| 一区二区三区激情视频| 日本精品一区二区三区蜜桃| 精品久久蜜臀av无| 999精品在线视频| 最近最新中文字幕大全免费视频| 国产成人免费无遮挡视频| 国产av一区二区精品久久| 国产一区二区在线观看av| 亚洲三区欧美一区| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 不卡一级毛片| 免费看十八禁软件| 亚洲专区字幕在线| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 国产色视频综合| 亚洲精品一卡2卡三卡4卡5卡 | 极品人妻少妇av视频| 天堂俺去俺来也www色官网| 欧美精品一区二区大全| 国产视频一区二区在线看| 国产精品一区二区精品视频观看| 91av网站免费观看| 国精品久久久久久国模美| 久久久欧美国产精品| 老司机福利观看| 男女午夜视频在线观看| 美女主播在线视频| 天堂俺去俺来也www色官网| 母亲3免费完整高清在线观看| 老司机深夜福利视频在线观看 | 一级毛片精品| 美女中出高潮动态图| 女警被强在线播放| 精品国产超薄肉色丝袜足j| 亚洲激情五月婷婷啪啪| 欧美国产精品va在线观看不卡| 色94色欧美一区二区| 一级毛片精品| 亚洲久久久国产精品| √禁漫天堂资源中文www| 亚洲精品国产av蜜桃| 免费人妻精品一区二区三区视频| 97人妻天天添夜夜摸| 国产有黄有色有爽视频| 91精品国产国语对白视频| h视频一区二区三区| 十分钟在线观看高清视频www| 亚洲精品在线美女| 男女下面插进去视频免费观看| 精品久久久精品久久久| 日韩熟女老妇一区二区性免费视频| 青青草视频在线视频观看| 亚洲精品久久成人aⅴ小说| 91麻豆av在线| 国产野战对白在线观看| 日韩有码中文字幕| 国产成人欧美| 国产色视频综合| 国产精品国产三级国产专区5o| 国产成人精品无人区| 在线观看舔阴道视频| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| 亚洲综合色网址| 天天影视国产精品| 在线av久久热| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 女人被躁到高潮嗷嗷叫费观| 欧美精品一区二区大全| 欧美性长视频在线观看| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 精品少妇黑人巨大在线播放| 色视频在线一区二区三区| 亚洲男人天堂网一区| 两个人看的免费小视频| 国产又色又爽无遮挡免| 男女高潮啪啪啪动态图| 久热这里只有精品99| 亚洲avbb在线观看| h视频一区二区三区| 国产亚洲欧美精品永久| 天天影视国产精品| 在线av久久热| 国产一区有黄有色的免费视频| e午夜精品久久久久久久| av天堂在线播放| av片东京热男人的天堂| 99久久人妻综合| 操美女的视频在线观看| 午夜福利视频在线观看免费| 国产一区二区在线观看av| 日韩欧美国产一区二区入口| 国产麻豆69| www.自偷自拍.com| 免费不卡黄色视频| 新久久久久国产一级毛片| 99久久精品国产亚洲精品| 精品亚洲成国产av| 亚洲国产av影院在线观看| av线在线观看网站| 国产成人免费观看mmmm| 亚洲国产毛片av蜜桃av| 久久久久久亚洲精品国产蜜桃av| 自线自在国产av| 国产成人免费观看mmmm| 国产亚洲av片在线观看秒播厂| 日韩中文字幕视频在线看片| 波多野结衣av一区二区av| 国产成人欧美在线观看 | 精品一区在线观看国产| 国产av一区二区精品久久| 中国国产av一级| 十八禁网站网址无遮挡| 国产99久久九九免费精品| 欧美激情极品国产一区二区三区| 精品国产乱子伦一区二区三区 | 50天的宝宝边吃奶边哭怎么回事| 中文字幕人妻丝袜一区二区| 高潮久久久久久久久久久不卡| 成年人免费黄色播放视频| 午夜福利视频精品| 叶爱在线成人免费视频播放| 亚洲专区字幕在线| 大型av网站在线播放| 下体分泌物呈黄色| a在线观看视频网站| 婷婷色av中文字幕| 日韩有码中文字幕| 久久久久久久大尺度免费视频| 在线观看免费午夜福利视频| 日韩欧美国产一区二区入口| 国产成人欧美在线观看 | 人成视频在线观看免费观看| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 午夜福利影视在线免费观看| 日韩,欧美,国产一区二区三区| 免费在线观看日本一区| 日韩,欧美,国产一区二区三区| 丁香六月欧美| 精品久久久久久久毛片微露脸 | 国产精品久久久久成人av| 69av精品久久久久久 | 久久ye,这里只有精品| 深夜精品福利| 午夜福利视频精品| 美女脱内裤让男人舔精品视频| 老司机影院成人| 日韩大码丰满熟妇| 美女视频免费永久观看网站| 大码成人一级视频| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码| 一个人免费看片子| 国产亚洲欧美精品永久| 蜜桃在线观看..| 精品国产乱子伦一区二区三区 | 国产免费视频播放在线视频| 视频区欧美日本亚洲| 国产成+人综合+亚洲专区| 亚洲精品中文字幕一二三四区 | 国产精品一二三区在线看| 国产熟女午夜一区二区三区| 嫩草影视91久久| 成年女人毛片免费观看观看9 | 亚洲av国产av综合av卡| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 日韩 欧美 亚洲 中文字幕| 高清在线国产一区| 久久久久精品人妻al黑| 色播在线永久视频| 亚洲欧美一区二区三区黑人| 少妇 在线观看| 欧美日韩一级在线毛片| 91成人精品电影| 午夜成年电影在线免费观看| a级片在线免费高清观看视频| av在线播放精品| 肉色欧美久久久久久久蜜桃| 国产精品99久久99久久久不卡| 日本av免费视频播放|