• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬氧化物(Fe2O3,CuO,NiO)改性對(duì)TiO2納米管陣列光電催化活性的增強(qiáng)效應(yīng)

    2012-12-11 09:11:42叢燕青伏芳霞
    物理化學(xué)學(xué)報(bào) 2012年6期
    關(guān)鍵詞:工商大學(xué)納米管苯酚

    叢燕青 李 哲 王 齊 張 軼 徐 謙 伏芳霞

    (浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州310012)

    金屬氧化物(Fe2O3,CuO,NiO)改性對(duì)TiO2納米管陣列光電催化活性的增強(qiáng)效應(yīng)

    叢燕青*李 哲 王 齊 張 軼 徐 謙 伏芳霞

    (浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州310012)

    采用陽極氧化法和陰極電沉積法制備了Fe2O3,CuO和NiO納米粒子改性的高度有序的TiO2納米管(TiO2-NT)陣列.運(yùn)用場(chǎng)發(fā)射掃描電子顯微鏡(FE-SEM),透射電子顯微鏡(TEM),X射線衍射(XRD)和紫外-可見漫反射光譜等手段對(duì)Fe2O3/TiO2-NT、CuO/TiO2-NT和NiO/TiO2-NT復(fù)合電極進(jìn)行表征.以苯酚為模擬污染物,考察復(fù)合電極的光電性能.結(jié)果表明,金屬氧化物(Fe2O3,CuO,NiO)納米粒子成功沉積在TiO2-NTs的管口、內(nèi)壁和管底.金屬氧化物改性復(fù)合電極的光電催化活性比未改性的TiO2-NTs提高了2倍以上.Fe2O3/TiO2-NTs在可見光區(qū)顯示出最高的吸收強(qiáng)度.以Fe2O3/TiO2-NTs為陽極處理苯酚廢水,光照120 min后苯酚去除率達(dá)到96%,而未改性的TiO2-NTs的苯酚去除率只有41%.此外,Fe2O3/TiO2-NTs在生成低毒中間產(chǎn)物方面表現(xiàn)出良好的性能.較高的復(fù)合電極光電催化活性主要是由于TiO2納米管和過渡金屬氧化物納米粒子間構(gòu)筑的高界面面積異質(zhì)納米結(jié)構(gòu),有效地促進(jìn)了電子轉(zhuǎn)移,抑制了光生電子-空穴對(duì)的復(fù)合.

    TiO2納米管;Fe2O3;CuO;NiO;光電催化;可見光

    1 Introduction

    Abatement of environmental pollutants by green technologies is significantly attractive research topic.It is particularly interest in the treatment processes using the solar energy since sunlight is a renewable natural energy.Photoelectrochemical (PEC)process is recognized to be one of the most promising ways to clean our environment.1Semiconductor electrodes employed in PEC process can be excited by solar light to generate the electron-hole pairs to remove the pollutants.Assisted electrochemical process promotes the separation of electron-hole pairs and further improves the efficiency of pollutants degradation.An efficient photocatalyst should maximize the utilization of solar energy and minimize the recombination of photoexcited electron-hole pairs.Therefore,the properties of semiconductor materials are crucial for achieving high efficiency in PEC process.2

    Various semiconductors have been extensively investigated since Fujishima and Honda3firstly suggested the water splitting with TiO2under UV illumination in 1972.TiO2is one of the most studied semiconductors because of its high photocatalytic activity,chemical stability,low cost,and nontoxicity.4-7However,the widespread usage of TiO2is limited by its large band gap energy(3.0-3.2 eV),which can only utilize the ultraviolet region of the solar spectrum.To enhance the photocatalytic activity of TiO2under visible light,considerable efforts have been attempted to improve the absorption in the visible spectrum,including dye sensitization,8-10anion or cation doping,11-13noble metal deposition,14-16and incorporation with transition metal oxides.17,18Another main drawback of TiO2is the high recombination rate of photo-generated holes and electrons.19Faster recombination largely decreases the quantum efficiency of PEC processes.Therefore,it is essential to suppress the recombination of electron-hole pairs.Among various strategies aimed at improving the absorption in the visible region and separating the electron-hole pairs,the incorporation of transition metal oxides with TiO2has been approved to be an effective method.20-23Zhang and co-workers23have synthesized TiO2/ Cu2O composite film and obtained high degradation efficiency of methylene blue.Although some studies have reported the incorporation of transition metal oxides with TiO2,there was little information about the molecular-scale architecture control and systematical study on various metal oxides.

    In this work,highly ordered vertically oriented TiO2nanotube(TiO2-NT)arrays were fabricated by electrochemical anodization of Ti foil.The self-organized oriented NT structure could provide large surface areas and facilitate vectorial charge transfer from the solution to the substrate,which were expected to accelerate the separation of electron-hole pairs and harvest sunlight more efficiently.Simple transition metal oxides (Fe2O3,CuO,NiO)nanoparticles were uniformly incorporated with TiO2-NTs by a novel electrochemical deposition method. The photocatalytic activity of the NT electrodes under visible light irradiation could be enhanced by modifying the surface structure and composition with the special metal oxides.Field emission scanning electron microscopy(FE-SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and UV-visible diffuse reflectance spectroscopy were used to characterize the structure and optical properties of composite electrodes.The PEC activities of composite electrodes were evaluated by phenol removal.

    2 Experimental

    2.1 Preparation of TiO2-NT electrodes modified by metal oxides

    TiO2-NT electrodes were prepared by the electrochemical anodization method on a Ti foil(0.25 mm thick,99.7%purity). Prior to anodization,the Ti foil was polished with sandpaper, and then ultrasonically cleaned with acetone,ethanol,and distilled water.Anodization was performed in a two-electrode system with the pretreated Ti foil as the working electrode and Pt sheet as the counter electrode under constant voltage at room temperature.The anodizing voltage varied from 0 to 20 V with an increasing certain rate and was kept at 20 V for 120 min. The electrolyte was a mixed solution of 0.5%(w)NaF and 0.5 mol·L-1Na2SO4.All reagents were analytical grade.After anodic oxidation,the samples were rinsed with deionized water and dried in air.The as-formed TiO2-NTs were annealed in a muffle furnace with 2°C·min-1heating rate and kept at 773 K for 2 h to convert the amorphous phase to the crystalline one.

    Fe2O3nanoparticles were deposited into the crystallized TiO2-NTs using an electrodeposition method.A two-electrode system was used with TiO2-NTs as the cathode and a Pt sheet as the anode.First,the TiO2-NT electrodes were soaked in a 0.1 mol·L-1Fe(NO3)3aqueous solution for 10 min,always subjected to ultrasound sonication before soaking.Then the TiO2-NT electrodes were transferred into a new medium that only contained an inert supporting electrolyte(0.1 mol·L-1Na2SO4).The potentiostatic DC electrodeposition was carried out at a constant voltage of 8 V for 20 min and the temperature of the electrolyte was maintained at 85°C.After the electrodeposition in this medium,Fe nanoparticles were deposited into the interior tubes of TiO2-NT electrodes(denoted as Fe/ TiO2-NTs).About 1.0%(w)deposition amount of Fe in the NTs was obtained after several repetitions.Then the Fe/ TiO2-NT electrodes were connected as the anode and the Pt sheet as the cathode.The material was electrochemically oxi-dized in 1 mol·L-1KOH aqueous solution at a voltage of 8 V for 2 min at room temperature.After this electrochemical oxidization,Fe/TiO2-NTs were converted into the corresponding oxides Fe2O3/TiO2-NTs.The resulting Fe2O3/TiO2-NT samples were rinsed with distilled water and dried at a low temperature.

    The preparation processes of CuO/TiO2-NTs and NiO/TiO2-NTs were the same as that of Fe2O3/TiO2-NTs,except that the deposition solution was 0.1 mol·L-1Cu(NO3)2and 0.1 mol·L-1Ni(NO3)2aqueous solutions,respectively.

    2.2 Characterization

    The morphologies and the cross-section views of TiO2-NT electrodes modified by metal oxides were characterized using a field emission scanning electron microscope(FE-SEM;Hitachi S-4700 II)and a transmission electron microscope(TEM; Philips-FEI Tecnai G2 F30 S-Twin),equipped with energy-dispersive X-ray spectroscopy(EDX;EDAX Analyzer DPP-II). The crystal properties of the prepared samples were determined from X-ray diffraction(XRD)using a diffractometer with Cu Kαradiation(Netherlands PNAlytical X?Pert PRO). The accelerating voltage and applied current were 40 kV and 40 mA,respectively.Light absorption properties were measured using UV-Vis diffuse reflectance spectra(Shimadzu, UV-3150)with a wavelength range of 220-600 nm.Electrochemical impedance spectroscopy(EIS)was performed using a CHI 660D instrument(Chenhua,Shanghai)in a three-electrode system,with a saturated Ag/AgCl electrode and a Pt sheet as reference and counter electrodes,respectively.

    2.3 Photoelectrochemical activity test

    The PEC activity of the composite electrodes was evaluated using phenol as a model pollutant.All the experiments were carried out in a two-electrode glass cell(100 mL)with constant magnetic stirring,using 0.2 mol·L-1Na2SO4as the electrolyte.The initial concentration of the phenol aqueous solution was 10 mg·L-1.The composite electrode was used as anode and Cu sheet was cathode.Applied voltage was provided by the DC Constant Current Power(WYL603 type,Hangzhou Yuhang Siling Electronic Equipment Co.,Ltd.).The anode was irradiated using a tungsten-halogen lamp(500 W),which generates a continuous light distribution across the visible spectrum and relatively weak emission in the ultraviolet portion of the spectrum.A UV cut-off filter(λ>420 nm)was used for visible light irradiation.The light intensity on the photoanode was~80 mW·cm-2.All experiments were carried out under ambient conditions.The determination of phenol and its degradation intermediates were carried out using high performance liquid chromatography(HPLC,Agilent 1200)by comparing the retention time of the standard compounds.The separation was performed using a Diamonsil C18 reversed phase column(150 mm×4.6 mm×5 mm)at the flow rate of 1.0 mL·min-1and the column temperature of 25°C.The eluent consisted of methanol/purified water(30:70(volume ratio)).The analyses were performed with a UV detector at a wavelength of 254 nm.

    3 Results and discussion

    3.1 Characterization of photocatalysts

    Fig.1 shows the SEM morphologies of the as-synthesized TiO2-NTs,Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs. The hollow TiO2-NTs are almost uniform and have a highly ordered tubularstructure.The averageinnerdiameterof TiO2-NTs is~80 nm,and their average outer diameter is~110 nm(Fig.1(a)).Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs have the similar tubular structure.The corresponding metal oxide nanoparticles were distinctly deposited on TiO2tubular substrates.The surface of TiO2-NT substrates was not blocked by nanoparticles.To identify the distribution of nanoparticles in TiO2-NTs,the cross-section views of the composite electrodes were analyzed by TEM images.According to Fig.2,the length of TiO2-NTs is around 1.2 μm.Fe2O3nanoparticles are deposited on the mouth,the tube wall,and the base of TiO2-NTs.The average diameter of Fe2O3nanoparticles is about 35 nm.Note that the deposition process has not destroyed the structure of the ordered TiO2-NT arrays,and Fe2O3nanoparticles can be fabricated into the bottom of TiO2-NTs. The EDX spectrum in Fig.2 confirms the existence of Fe,Ti, and O,whereas the Cu signal originates from the Cu substrate used in the imaging process.The measured atomic ratio of Fe/ Ti was 1.21%.The existence of NiO in NiO/TiO2-NTs was also confirmed(figure not shown).The measured atomic ratio of Ni/ Ti was 1.35%.The atomic ratio of Cu/Ti could not be determined due to the interference of Cu substrate used in EDX measurement.Fig.3 shows the XRD patterns of different composite electrodes annealed at 773 K.TiO2is converted from amorphous state to anatase state with a fine preferential growth of the self-organized highly oriented TiO2-NT arrays in the(101)direction.The peak of the(101)crystal(2θ=26.2°) can be seen from all the patterns.The characteristic peaks cor-responding to CuO,NiO,and Fe2O3are also identified in Fig.3. It indicates that TiO2-NTs,Fe2O3/TiO2-NTs,CuO/TiO2-NTs, and NiO/TiO2-NTs have been successfully synthesized.

    Fig.1 SEM images of TiO2-NTs and the metal oxide modified TiO2-NTs(a)TiO2-NTs,(b)CuO/TiO2-NTs,(c)NiO/TiO2-NTs,(d)Fe2O3/TiO2-NTs

    Fig.2 TEM images with different magnifications(a,b)and energy-dispersive X-ray(EDX)spectroscopy(c)of Fe2O3/TiO2-NT electrode

    Fig.3 XRD patterns of(a)TiO2-NTs,(b)NiO/TiO2-NTs, (c)Fe2O3/TiO2-NTs,and(d)CuO/TiO2-NTs

    Fig.4 UV-Vis diffuse reflectance spectra of the composite TiO2-NT electrodes modified by different metal oxides

    UV-Vis diffuse reflectance spectra of the composite TiO2-NT electrodes modified by different metal oxides are shown in Fig.4.In the wavelength range from 220 to 325 nm,Fe2O3/ TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs have lower absorbance intensity than the unmodified TiO2-NTs.When the wavelength is longer than 325 nm,however,the absorbance intensities of Fe2O3/TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs are higher than that of TiO2-NTs.Especially for Fe2O3/ TiO2-NTs,its absorbance intensity is significantly higher than other electrodes in the visible light region.Considering the large proportion(47%)of visible light in solar spectrum,the composite TiO2-NT electrodes modified by Fe2O3,CuO,and NiO are superior to the unmodified TiO2-NTs.

    3.2 Photoelectrocatalytic degradation of phenol

    To investigate the PEC activity of composite electrodes,phenol degradation experiments were carried out using the composite electrodes as the photoanodes.Fig.5 shows the comparison of phenol removal efficiency under irradiation.The removal rates of phenol using the three composite electrodes have been significantly improved relative to the unmodified TiO2-NT electrodes.After 120 min treatment,phenol removal efficiencies of Fe2O3/TiO2-NT,NiO/TiO2-NT,and CuO/TiO2-NT anodes were 96%,93%,and 90%,respectively,while it was only 41%for the unmodified TiO2-NT anode.The PEC activity of the composite NT electrodes was over twice that of the unmodified TiO2-NT electrode.The improved PEC performance was apparently attributed to the modification of metal oxides.

    3.3 Comparison of different processes

    Fig.5 Comparison of phenol removal efficiency under irradiation using different electrodes

    The electrocatalytic,photocatalytic,and photoelectrocatalytic processes were performed to investigate the role of different processes on phenol degradation using Fe2O3/TiO2-NTs as the anode since it has the best PEC activity.In electrocatalytic process,applied potential was performed and the experiments were carried out in the dark.In photocatalytic process,light irradiation was performed at open circuit(without applied potential).In photoelectrocatalytic process,applied potential and light irradiation were simultaneously used.All other operating conditions were the same.Fig.6 shows the comparison of different processes on phenol degradation.After 120 min treatment,phenol removal efficiency could reach 96%in the photoelectrocatalytic process,while it was only 15%for photocatalytic process and 4%for electrocatalytic process.It was evident that the photoelectrocatalytic process has synergetic effects in enhancing the removal efficiency of phenol in comparison with the individual photocatalytic or electrocatalytic process.

    Comparison of Fe2O3/TiO2-NTs and TiO2-NTs on phenol degradation under UV-Vis light and visible light irradiation is shown in Fig.7.Phenol removal efficiency of Fe2O3/TiO2-NTs is ca 2.3 times higher under UV-visible light irradiation and 8 times higher under visible light irradiation than that of TiO2-NTs.It is obvious that the modification of Fe2O3on TiO2-NTs significantly improves the PEC activity under visible light irradiation.

    Fig.6 Comparison of different processes on phenol degradation using Fe2O3/TiO2-NTs as the anode

    Fig.7 Comparison of Fe2O3/TiO2-NTs and TiO2-NTs on phenol degradation under UV-Vis light and visible light irradiation

    3.4 Determination of phenol degradation intermediates

    Fig.8 shows the HPLC chromatograms of phenol degradation at different treatment time.The main intermediates were identified to be benzoquinone,hydroquinone,and maleic acid by comparing the retention time of the standard compounds (Table 1).It can be seen that phenol was continuously degraded with time.Benzoquinone is an important intermediate of phenol degradation.Fig.9 shows that the yields of benzoquinone under irradiation using TiO2-NT,Fe2O3/TiO2-NT,CuO/ TiO2-NT,and NiO/TiO2-NT electrodes.Benzoquinone yields on the composite NT anodes first increased and then decreased with time.This was quite beneficial to the detoxification of wastewater because benzoquinone was regarded as one of the most toxic intermediates.24Benzoquinone yields of Fe2O3/ TiO2-NT,NiO/TiO2-NT,CuO/TiO2-NT,and TiO2-NT anodes were 1%,4%,7%,and 9%at 120 min,respectively.Fe2O3/ TiO2-NTs showed good performance to generate the low toxic intermediates.A possible reason was that some benzoquinone intermediate was simultaneously degraded when phenol was converted to benzoquinone.Fe2O3/TiO2-NTs had the highest PEC activity among these composite electrodes and could generate the most oxidizing reagents to degrade the pollutants(see Fig.5).Therefore,sufficient oxidants could further degrade the benzoquinone to achieve the lower yields of benzoquinone.

    Fig.8 HPLC chromatograms of phenol degradation at different treatment time under UV-Vis light irradiation

    Table 1 HPLC retention time of phenol and its intermediates

    Fig.9 Yields of benzoquinone under irradiation using different electrodes

    3.5 EIS analysis

    TiO2-NT electrodes modified by simple transition metal oxides were analyzed by electrochemical impedance spectroscopy(EIS).Experiments were carried out in 0.1 mol·L-1NaOH solution under dark condition.Fig.10 shows the Nynquist plots of TiO2-NT electrodes and TiO2-NTs modified by various metal oxides.For each electrode,only one arc could be observed in the complex plane,which was related to the porous nature of the electrodes.The radius of the arc reflects the charge transfer resistance at the surface of the electrode.25It is obvious that the arc radius on TiO2-NTs modified by various metal oxides is smaller than that on unmodified TiO2-NTs.This indicates that the modification of transition metal oxides improves the interfacial charge transfer of TiO2-NTs.

    3.6 Possible mechanism

    Fig.10 EIS Nynquist plots of TiO2-NT electrode and TiO2-NT electrodes modified by various metal oxides under dark condition

    Fig.11 Current density-potential curves of different electrodes under chopped visible light irradiation(a)TiO2-NTs,(b)Fe2O3/TiO2-NTs,(c)CuO/TiO2-NTs,(d)NiO/TiO2-NTs

    Current density-potential curves of various electrodes were tested in 0.1 mol·L-1NaOH solution using a three-electrode system(Fig.11).The photocurrent density of various electrodes increased as the applied voltage rose.Composite electrodes showed a better photoresponse under visible light irradiation than TiO2-NT electrode.The photocurrent of Fe2O3/TiO2-NTs (or NiO/TiO2-NTs)was ca 3 times higher than that of TiO2-NTs at 0.4 V(vs Ag/AgCl).CuO/TiO2-NTs had a lower photocurrent relative to Fe2O3/TiO2-NTs(or NiO/TiO2-NTs),but its photocurrent was still over 2 times higher than that of TiO2-NTs. The recombination peaks of photogenerated electron-hole pairs were found at lower applied voltage,however,they could decrease as the applied voltage bias increased.In addition,Fe2O3/ TiO2-NT and CuO/TiO2-NT electrodes showed higher dark current density than TiO2-NTs and NiO/TiO2-NTs,which indicated that Fe2O3and CuO nanoparticles had higher conductivity and reduced the charge transfer resistance of the Fe2O3/TiO2-NT and CuO/TiO2-NT electrodes.These results were consistent with EIS analysis in Fig.10.We tentatively put forward that Fe2O3and CuO nanoparticles may perform as the channel for electron migration and improve the separation of photogenerated electron-hole pairs since they have higher conductivity than TiO2.

    The differences in PEC activity among these composite electrodes were probably associated with their band structure and surface chemical nature.Table 2 lists the valence band(VB) and conduction band(CB)positions of TiO2,Fe2O3,NiO,and CuO.26Fe2O3and CuO have the low band gap,which would favor the absorption of the solar energy in visible light region. Since the CB position of Fe2O3(or CuO)is more positive than that of TiO2,some photogenerated electrons in Fe2O3/TiO2-NTs (or CuO/TiO2-NTs)may transfer from TiO2to Fe2O3(or CuO), leaving more holes to carry out the oxidation reaction.However,it might also serve as a recombination center since the photogenerated holes may move from TiO2to Fe2O3(or CuO).Therefore,the deposition amount of Fe2O3(or CuO)should be appropriately controlled.A schematic diagram of the photogenerated charge separation and electron transport on Fe2O3/ TiO2-NT or CuO/TiO2-NT electrode is shown in Fig.12(a).The low band gap of Fe2O3(or CuO)played an important role in the enhanced PEC activity of Fe2O3/TiO2-NTs(or CuO/ TiO2-NTs).NiO/TiO2-NTs also showed a higher PEC activity compared to the TiO2-NTs,but the band gap of NiO was larger than that of TiO2.Therefore,the possible mechanism of enhanced PEC performance on NiO/TiO2-NTs was different from Fe2O3/TiO2-NTs(or CuO/TiO2-NTs).Since NiO is a p-type semiconductor and TiO2is an n-type semiconductor,a number of p-n junctions would be formed when NiO was deposited on TiO2.As shown in Fig.12(b),the inner electric field was formed at the equilibrium,which made p-type NiO region had the negative charge and n-type TiO2region had the positive charge.Thus,the photogenerated holes moved to the negative field,while the electrons transferred to the positive field under the inner electric field.As a result,electron-hole pairs were effectively separated and the PEC activity of NiO/TiO2-NTs was significantly improved compared with the unmodified TiO2-NTs.

    Table 2 Valence band(VB)and conduction band(CB)positions of TiO2,Fe2O3,NiO,and CuO

    Fig.12 Schematic diagrams of pollutants degradation on MO/TiO2-NT electrodes under irradiation(a)possible pathway of the photogenerated charge separation and electron transport on Fe2O3/TiO2-NT or CuO/TiO2-NT electrode; (b)p-n junction formation model on NiO/TiO2-NT electrode

    When the phenol molecules were adsorbed on the surface of electrodes,some photogenerated holes directly reacted with phenol molecules to produce phenol+?radicals.Further,the reactive phenol+?radicals were transformed into degradation intermediates.And other holes reacted with H2O to produce hydroxyl radicals(HO·),which further oxidized organic compounds into H2O and CO2.18The possible reactions on the heteronanostructures comprised of TiO2-NTs and transition metal oxide(MO)nanoparticles could be expressed as follows:

    Note that Fig.12 shows just a tentative mechanism and the differences in PEC activity among various composite electrodes have not been completely clarified.The PEC activity is also sensitive to the interface,which is more complicated.The crystal-face exposed to the electrolyte at the interface may cause a different structure of the electric double layer.Thus this study illustrates the enhanced PEC activity of TiO2-NTs modified by simple transition metal oxides,and more work will be done to further clarify the mechanism.

    4 Conclusions

    The present study has demonstrated that TiO2-NTs,Fe2O3/ TiO2-NTs,CuO/TiO2-NTs,and NiO/TiO2-NTs could be successfully synthesized by a simple electrochemical anodization and electrodeposition method.The obtained TiO2and composite NT electrodes had a uniform and highly oriented tubular structure.The characteristic peaks corresponding to Fe2O3,CuO, and NiO were identified by XRD and the main phase of TiO2-NTs was anatase.Nanostructured composite electrodes showed a PEC activity more than 2 times higher than the pure TiO2-NTs.After 120 min treatment,phenol removal efficiency using Fe2O3/TiO2-NT,NiO/TiO2-NT,and CuO/TiO2-NT electrodes could reach 96%,93%,and 90%,respectively,while it was only 41%for the unmodified TiO2-NT anode.Moreover, Fe2O3/TiO2-NTs showed good performance to generate the low toxic intermediates.The low band gap of Fe2O3(or CuO) played an important role in the enhanced PEC activity of Fe2O3/ TiO2-NTs(or CuO/TiO2-NTs).The enhanced performance of NiO/TiO2-NTs was attributed to the formation of p-n junctions. The results indicate that TiO2-NTs modified by simple transition metal oxides(Fe2O3,CuO,NiO)are promising candidates for environmental applications.

    (1) Shannon,M.A.;Bohn,P.W.;Elimelech,M.;Georgiadis,J.G.; Marinas,B.J.;Mayes,A.M.Nature 2008,452,301.

    (2) Batzill,M.Energy Environ.Sci.2011,4,3275.

    (3) Fujishima,A.;Honda,K.Nature 1972,238,37.

    (4) Khan,S.U.M.;Al-Shahry,M.;Ingler,W.B.Science 2002,297, 2243.

    (5) Yang,H.G.;Sun,C.H.;Qiao,S.Z.;Zou,J.;Liu,G.;Smith,S. C.;Cheng,H.M.;Lu,G.Q.Nature 2008,453,638.

    (6) Chen,X.B.;Liu,L.;Yu,P.Y.;Mao,S.S.Science 2011,331, 746.

    (7) Park,J.H.;Kim,S.;Bard,A.J.Nano Lett.2006,6,24.

    (8) Ozcan,O.;Yukruk,F.;Akkaya,E.U.;Uner,D.Appl.Catal.B: Environ.2007,71,291.

    (9)Zhao,W.;Sun,Y.L.;Castellano,F.N.J.Am.Chem.Soc.2008, 130,12566.

    (10) Shang,J.;Chai,M.;Zhu,Y.F.Environ.Sci.Technol.2003,37, 4494.

    (11)Asahi,R.;Morikawa,T.;Ohwaki,T.;Aoki,K.;Taga,Y.Science 2001,293,269.

    (12) Chen,X.;Burda,C.J.Phys.Chem.B 2004,108,15446.

    (13) Parida,K.M.;Sahu,N.;Tripathi,A.K.;Kamble,V.S.Environ. Sci.Technol.2010,44,4155.

    (14) Sangpour,P.;Hashemi,F.;Moshfegh,A.Z.J.Phys.Chem.C 2010,114,13955.

    (15) Zielinska-Jurek,A.;Kowalska,E.;Sobczak,J.W.;Lisowski, W.;Ohtani,B.;Zaleska,A.Appl.Catal.B:Environ.2011,101, 504.

    (16) Mogyorosi,K.;Kmetyko,A.;Czirbus,N.;Vereb,G.;Sipos,P.; Dombi,A.React.Kinet.Catal.Lett.2009,98,215.

    (17) Martin,C.;Martin,I.;Rives,V.;Palmisano,L.;Schiavello,M. J.Catal.1992,134,434.

    (18) Hou,Y.;Li,X.Y.;Zou,X.J.;Quan,X.;Chen,G.H.Environ. Sci.Technol.2009,43,858.

    (19)Dlamini,L.N.;Krause,R.W.;Kulkarni,G.U.;Durbach,S.H. Mater.Chem.Phys.2011,129,406.

    (20)Wang,N.;Li,X.Y.;Wang,Y.X.;Hou,Y.;Zou,X.J.;Chen,G. H.Mater.Lett.2008,62,3691.

    (21) Yasomanee,J.P.;Bandara,J.Sol.Energy Mater.Sol.Cells 2008,92,348.

    (22)Chen,C.J.;Liao,C.H.;Hsu,K.C.;Wu,Y.T.;Wu,J.C.S. Catal.Commun.2011,12,1307.

    (23) Zhang,Y.G.;Ma,J.L.;Yu,Y.Environ.Sci.Technol.2007,41, 6264.

    (24) Tahar,N.B.;Savall,A.J.J.Electrochem.Soc.1998,145,3427.

    (25) Bard,A.J.;Faulker,L.R.Electrochemical Methods: Fundamentals and Applications,2nd ed.;John Wiley&Sons: New York,2001;p 386.

    (26)Xu,Y.;Schoonen,M.A.A.Am.Miner.2000,85,543.

    January 9,2012;Revised:March 21,2012;Published on Web:March 22,2012.

    Enhanced Photoeletrocatalytic Activity of TiO2Nanotube Arrays Modified with Simple Transition Metal Oxides(Fe2O3,CuO,NiO)

    CONG Yan-Qing*LI Zhe WANG Qi ZHANG Yi XU Qian FU Fang-Xia
    (College of Environmental Science and Engineering,Zhejiang Gongshang University,Hangzhou 310012,P.R.China)

    Composite electrodes consisting of highly ordered,vertically oriented TiO2nanotube(TiO2-NT) arrays modified with Fe2O3,CuO,and NiO nanoparticles were successfully fabricated by a simple electrochemical anodization and electrodeposition method.Field emission scanning electron microscopy (FE-SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and UV-Vis diffuse reflectance spectroscopy were used to characterize the structure and optical properties of the resulting Fe2O3/TiO2-NT,CuO/TiO2-NT,and NiO/TiO2-NT composite electrodes.The photoelectrochemical(PEC) activities of the composite electrodes were evaluated using phenol as a model pollutant.Results indicated that transition metal oxide nanoparticles were deposited on the mouth,tube wall,and base of the TiO2-NTs. The PEC activity of the composite electrodes was over twice that of an unmodified TiO2-NT electrode.The Fe2O3/TiO2-NT electrode showed the highest absorption intensity in the visible light region.After treatment for 120 min,the phenol removal efficiency using the Fe2O3/TiO2-NT anode could reach 96%,while it was only 41%for the unmodified TiO2-NT anode.Moreover,the Fe2O3/TiO2-NT electrode tended to generate intermediates of low toxicity.The higher PEC activity of the composite electrodes was attributed to the presence of hetero-nanostructures with high interfacial area comprised of TiO2-NTs and transition metal oxide nanoparticles,which efficiently facilitated electron transfer and inhibited the recombination of photogenerated electron-hole pairs.

    TiO2nanotube;Fe2O3;CuO;NiO;Photoelectrocatalysis;Visible light

    10.3866/PKU.WHXB201203221

    ?Corresponding author.Email:yqcong@yahoo.cn;Tel:+86-571-88071024-7018.

    The project was supported by the National Natural Science Foundation of China(20976162,21103149,20906079),Natural Science Foundation of Zhejiang Province,China(R5100266),and Significant Science and Technology Project of Zhejiang Province,China(2010C13001).

    國家自然科學(xué)基金(20976162,21103149,20906079),浙江省自然科學(xué)基金(R5100266)及浙江省科技廳重大專項(xiàng)(2010C13001)資助項(xiàng)目

    O643

    猜你喜歡
    工商大學(xué)納米管苯酚
    重慶工商大學(xué)作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    重慶工商大學(xué)學(xué)科簡(jiǎn)介
    重慶工商大學(xué)
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    毛細(xì)管氣相色譜法測(cè)定3-氟-4-溴苯酚
    云南化工(2020年11期)2021-01-14 00:50:54
    重慶工商大學(xué)
    負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    4-(2,4-二氟苯基)苯酚的合成新工藝
    久久久久久久久中文| 欧美一区二区国产精品久久精品| 91久久精品国产一区二区成人 | 亚洲第一电影网av| 亚洲一区二区三区不卡视频| 色哟哟哟哟哟哟| 国产91精品成人一区二区三区| 69av精品久久久久久| 日韩高清综合在线| 久久国产精品人妻蜜桃| 国产精品99久久99久久久不卡| 在线视频色国产色| 国产精品自产拍在线观看55亚洲| 亚洲人成伊人成综合网2020| 国产精品亚洲美女久久久| 一区二区三区高清视频在线| 国产亚洲欧美在线一区二区| av女优亚洲男人天堂| 一本精品99久久精品77| 999久久久精品免费观看国产| 国产欧美日韩一区二区三| 免费大片18禁| 精品午夜福利视频在线观看一区| 激情在线观看视频在线高清| 人人妻人人澡欧美一区二区| 午夜a级毛片| 深夜精品福利| 国产精品爽爽va在线观看网站| 日韩欧美免费精品| 久久亚洲真实| 日韩高清综合在线| 99国产精品一区二区蜜桃av| 国产精品,欧美在线| 亚洲18禁久久av| 一区福利在线观看| 亚洲国产精品sss在线观看| 免费看a级黄色片| 伊人久久大香线蕉亚洲五| 色老头精品视频在线观看| 国产在线精品亚洲第一网站| 亚洲不卡免费看| 午夜福利成人在线免费观看| 蜜桃久久精品国产亚洲av| 国产精品久久电影中文字幕| 国产色婷婷99| 久久精品人妻少妇| 国产精品女同一区二区软件 | 国产精品精品国产色婷婷| 51国产日韩欧美| 丁香六月欧美| 最好的美女福利视频网| 一夜夜www| 狂野欧美激情性xxxx| 国产精品99久久久久久久久| 草草在线视频免费看| 91久久精品国产一区二区成人 | 国产精品久久久久久久久免 | av福利片在线观看| 他把我摸到了高潮在线观看| 嫩草影院入口| 精品久久久久久成人av| 亚洲成人免费电影在线观看| 十八禁网站免费在线| 欧美乱妇无乱码| 99热这里只有是精品50| 久久精品人妻少妇| 精品久久久久久久毛片微露脸| 亚洲人成伊人成综合网2020| 人人妻人人看人人澡| 欧美日韩综合久久久久久 | 成人三级黄色视频| 2021天堂中文幕一二区在线观| 国产99白浆流出| 国产高潮美女av| 97碰自拍视频| eeuss影院久久| 国产私拍福利视频在线观看| 99精品欧美一区二区三区四区| 国产三级黄色录像| 岛国在线免费视频观看| 欧美成人a在线观看| 亚洲av免费高清在线观看| 成年女人永久免费观看视频| 人人妻人人澡欧美一区二区| 国产午夜精品论理片| 午夜福利视频1000在线观看| 日本a在线网址| 亚洲精品色激情综合| 美女免费视频网站| 一进一出抽搐gif免费好疼| 无限看片的www在线观看| 亚洲欧美日韩高清在线视频| av专区在线播放| 欧美大码av| 精品久久久久久成人av| 国产97色在线日韩免费| 婷婷丁香在线五月| 欧美极品一区二区三区四区| 怎么达到女性高潮| 日韩大尺度精品在线看网址| 99热这里只有是精品50| 99热精品在线国产| 欧美乱色亚洲激情| 全区人妻精品视频| 日韩欧美三级三区| 国产精品嫩草影院av在线观看 | 色播亚洲综合网| 国产久久久一区二区三区| 手机成人av网站| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 看免费av毛片| 此物有八面人人有两片| 欧美性猛交╳xxx乱大交人| 久久久国产成人精品二区| 国内精品一区二区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 最近最新免费中文字幕在线| 中文在线观看免费www的网站| 欧美日韩黄片免| 国产一区二区激情短视频| 99久久精品国产亚洲精品| 内射极品少妇av片p| 最新中文字幕久久久久| 中国美女看黄片| 国产在线精品亚洲第一网站| 久久久久久九九精品二区国产| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| 欧美最新免费一区二区三区 | 少妇的逼好多水| 69av精品久久久久久| 黄片大片在线免费观看| 久久久国产成人免费| 一个人观看的视频www高清免费观看| 一边摸一边抽搐一进一小说| 欧美成狂野欧美在线观看| 亚洲最大成人手机在线| 在线观看日韩欧美| 性色avwww在线观看| 岛国在线免费视频观看| av在线天堂中文字幕| 国产高清有码在线观看视频| 老鸭窝网址在线观看| bbb黄色大片| 校园春色视频在线观看| 又爽又黄无遮挡网站| 国产97色在线日韩免费| 91麻豆av在线| 日韩欧美在线二视频| 国产av麻豆久久久久久久| 香蕉久久夜色| 午夜免费男女啪啪视频观看 | 级片在线观看| 国产高清三级在线| 国产97色在线日韩免费| 国产精品嫩草影院av在线观看 | 老司机深夜福利视频在线观看| 成人永久免费在线观看视频| 婷婷亚洲欧美| 午夜福利在线在线| 91字幕亚洲| 国产免费av片在线观看野外av| 成年女人永久免费观看视频| 天堂√8在线中文| 亚洲无线在线观看| 舔av片在线| 欧美成人a在线观看| 给我免费播放毛片高清在线观看| 禁无遮挡网站| 黄片大片在线免费观看| 一级黄片播放器| 制服人妻中文乱码| 国产精品99久久99久久久不卡| 国产成人系列免费观看| 亚洲精品色激情综合| 久久亚洲真实| 国产亚洲欧美98| 亚洲人成网站高清观看| 欧美日韩精品网址| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 精品欧美国产一区二区三| 99热这里只有精品一区| 亚洲中文日韩欧美视频| 色老头精品视频在线观看| av天堂在线播放| 亚洲av成人av| 一本一本综合久久| 淫妇啪啪啪对白视频| 午夜福利在线在线| 中亚洲国语对白在线视频| 看免费av毛片| 一级a爱片免费观看的视频| 最后的刺客免费高清国语| 日韩欧美在线乱码| 九九久久精品国产亚洲av麻豆| 日韩有码中文字幕| 成人高潮视频无遮挡免费网站| 丰满人妻一区二区三区视频av | 又黄又爽又免费观看的视频| 黄片小视频在线播放| aaaaa片日本免费| 在线观看66精品国产| 成年女人永久免费观看视频| 亚洲第一欧美日韩一区二区三区| 亚洲中文字幕日韩| 日韩欧美免费精品| 99热这里只有是精品50| 少妇人妻一区二区三区视频| 国产精华一区二区三区| 亚洲一区二区三区不卡视频| 在线免费观看的www视频| 97超级碰碰碰精品色视频在线观看| 日本成人三级电影网站| 欧美日韩中文字幕国产精品一区二区三区| 蜜桃久久精品国产亚洲av| 91字幕亚洲| 一区二区三区免费毛片| 亚洲中文日韩欧美视频| 国产蜜桃级精品一区二区三区| 黄色片一级片一级黄色片| 99久久九九国产精品国产免费| 亚洲精品国产精品久久久不卡| 法律面前人人平等表现在哪些方面| 国产精品综合久久久久久久免费| 丝袜美腿在线中文| 国产欧美日韩精品一区二区| 中文字幕人成人乱码亚洲影| 成人av在线播放网站| 久久久久国产精品人妻aⅴ院| 亚洲内射少妇av| 欧美中文综合在线视频| 91字幕亚洲| 亚洲av熟女| 国产精品久久电影中文字幕| 欧美乱码精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 全区人妻精品视频| 国内揄拍国产精品人妻在线| or卡值多少钱| 亚洲精华国产精华精| 无人区码免费观看不卡| 天堂影院成人在线观看| 18+在线观看网站| 中文亚洲av片在线观看爽| 欧美av亚洲av综合av国产av| 久久精品夜夜夜夜夜久久蜜豆| 岛国在线免费视频观看| 法律面前人人平等表现在哪些方面| 亚洲av二区三区四区| 国产免费av片在线观看野外av| 亚洲五月婷婷丁香| 99精品在免费线老司机午夜| 日本五十路高清| 毛片女人毛片| 亚洲最大成人中文| 亚洲国产欧美人成| 在线播放国产精品三级| 2021天堂中文幕一二区在线观| 日韩亚洲欧美综合| 亚洲av二区三区四区| 18禁在线播放成人免费| 99热这里只有是精品50| 男人舔女人下体高潮全视频| 热99re8久久精品国产| 日本黄色视频三级网站网址| 99国产精品一区二区蜜桃av| 免费av观看视频| 中文字幕人妻丝袜一区二区| 亚洲国产中文字幕在线视频| 亚洲精品在线观看二区| 一本一本综合久久| h日本视频在线播放| 免费看美女性在线毛片视频| 国产精品野战在线观看| 丰满人妻一区二区三区视频av | 国语自产精品视频在线第100页| 欧美性猛交╳xxx乱大交人| 人妻丰满熟妇av一区二区三区| 日本 av在线| 美女高潮的动态| 日韩欧美 国产精品| 亚洲aⅴ乱码一区二区在线播放| 国产高清videossex| 一区二区三区激情视频| av欧美777| 久久久久久久精品吃奶| 99热6这里只有精品| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| 国产一区二区在线av高清观看| 国产精品国产高清国产av| 久久久久亚洲av毛片大全| 久久久久久久午夜电影| 操出白浆在线播放| 精品国内亚洲2022精品成人| 麻豆成人av在线观看| 丰满的人妻完整版| 99riav亚洲国产免费| 97超级碰碰碰精品色视频在线观看| 亚洲天堂国产精品一区在线| 757午夜福利合集在线观看| 999久久久精品免费观看国产| 日本 av在线| 九色成人免费人妻av| 亚洲av免费高清在线观看| 亚洲avbb在线观看| 国产激情欧美一区二区| 身体一侧抽搐| 亚洲av免费在线观看| 在线观看美女被高潮喷水网站 | 国产一区二区在线观看日韩 | 日韩欧美精品免费久久 | 精品欧美国产一区二区三| 一本精品99久久精品77| 国产精品99久久99久久久不卡| 男人舔女人下体高潮全视频| 18禁美女被吸乳视频| 国产精品久久久久久久久免 | 亚洲精品久久国产高清桃花| 亚洲第一欧美日韩一区二区三区| 国产探花极品一区二区| 悠悠久久av| 香蕉av资源在线| 两个人视频免费观看高清| 久久久久性生活片| 天堂网av新在线| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区在线av高清观看| 三级毛片av免费| 无限看片的www在线观看| 国产一区在线观看成人免费| 中亚洲国语对白在线视频| 欧美国产日韩亚洲一区| 内射极品少妇av片p| 国产野战对白在线观看| a级毛片a级免费在线| 一进一出抽搐动态| 欧美成人免费av一区二区三区| 法律面前人人平等表现在哪些方面| 天堂网av新在线| 人妻丰满熟妇av一区二区三区| 在线天堂最新版资源| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 禁无遮挡网站| 中文在线观看免费www的网站| 欧美精品啪啪一区二区三区| 国产男靠女视频免费网站| 国产黄a三级三级三级人| 夜夜夜夜夜久久久久| 特级一级黄色大片| 欧美av亚洲av综合av国产av| 丝袜美腿在线中文| 国产精品永久免费网站| 两个人的视频大全免费| 丰满乱子伦码专区| 99热这里只有精品一区| 全区人妻精品视频| 19禁男女啪啪无遮挡网站| 一级黄片播放器| 熟妇人妻久久中文字幕3abv| 久久久久亚洲av毛片大全| 制服丝袜大香蕉在线| 91麻豆av在线| av天堂中文字幕网| 有码 亚洲区| 亚洲欧美日韩高清专用| 一区二区三区国产精品乱码| 神马国产精品三级电影在线观看| 免费大片18禁| 欧美成人免费av一区二区三区| 欧美三级亚洲精品| 哪里可以看免费的av片| 精品无人区乱码1区二区| 欧美不卡视频在线免费观看| 岛国视频午夜一区免费看| 欧美3d第一页| 在线观看免费视频日本深夜| 欧美性猛交黑人性爽| 99久久综合精品五月天人人| 国产精品亚洲一级av第二区| 九九热线精品视视频播放| 欧美3d第一页| 精品一区二区三区视频在线观看免费| 国产一区二区在线av高清观看| 99热6这里只有精品| 国产乱人伦免费视频| 亚洲熟妇中文字幕五十中出| 夜夜夜夜夜久久久久| 国产精品98久久久久久宅男小说| 久久久久久久久久黄片| 中国美女看黄片| 欧美一级a爱片免费观看看| 国产视频一区二区在线看| 丰满人妻一区二区三区视频av | 久久久国产成人免费| 日韩大尺度精品在线看网址| 亚洲中文字幕一区二区三区有码在线看| 搡女人真爽免费视频火全软件 | 一区二区三区激情视频| 97超视频在线观看视频| www.www免费av| 国产成人a区在线观看| 波野结衣二区三区在线 | 亚洲18禁久久av| 日本 欧美在线| 成人18禁在线播放| 午夜两性在线视频| 丁香欧美五月| 日日干狠狠操夜夜爽| 在线观看av片永久免费下载| 亚洲美女视频黄频| 午夜福利在线观看吧| 亚洲精品乱码久久久v下载方式 | 亚洲精品美女久久久久99蜜臀| 嫁个100分男人电影在线观看| 国产激情欧美一区二区| 热99在线观看视频| 久久午夜亚洲精品久久| 精品久久久久久久人妻蜜臀av| 国产av在哪里看| 亚洲av第一区精品v没综合| 久久久国产成人精品二区| 精品福利观看| 亚洲av免费在线观看| 啪啪无遮挡十八禁网站| 两个人看的免费小视频| 在线天堂最新版资源| 在线免费观看的www视频| 一本一本综合久久| 日韩大尺度精品在线看网址| 国产精品影院久久| 我要搜黄色片| 熟女少妇亚洲综合色aaa.| 国产午夜福利久久久久久| 亚洲熟妇中文字幕五十中出| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 91av网一区二区| 国模一区二区三区四区视频| 两性午夜刺激爽爽歪歪视频在线观看| 白带黄色成豆腐渣| 成人亚洲精品av一区二区| 91久久精品电影网| 日日干狠狠操夜夜爽| 免费在线观看日本一区| 久久婷婷人人爽人人干人人爱| 首页视频小说图片口味搜索| 日本黄大片高清| 国产高清有码在线观看视频| 亚洲在线观看片| 中文字幕人成人乱码亚洲影| 欧美日韩福利视频一区二区| 亚洲专区国产一区二区| 免费看美女性在线毛片视频| 淫妇啪啪啪对白视频| 村上凉子中文字幕在线| 最近最新免费中文字幕在线| 波多野结衣巨乳人妻| 久久久成人免费电影| 日本黄色片子视频| 1000部很黄的大片| 91久久精品国产一区二区成人 | 国产色婷婷99| 无遮挡黄片免费观看| 男插女下体视频免费在线播放| 成人永久免费在线观看视频| 哪里可以看免费的av片| www.熟女人妻精品国产| 神马国产精品三级电影在线观看| 夜夜爽天天搞| 国产激情欧美一区二区| 国产私拍福利视频在线观看| 亚洲第一欧美日韩一区二区三区| 日韩免费av在线播放| 久久精品91无色码中文字幕| 一个人看视频在线观看www免费 | svipshipincom国产片| 久久欧美精品欧美久久欧美| 午夜精品在线福利| 在线观看66精品国产| 丝袜美腿在线中文| 看片在线看免费视频| 久久精品国产亚洲av香蕉五月| 一级黄片播放器| 身体一侧抽搐| 亚洲精品影视一区二区三区av| 国内精品久久久久精免费| 九九久久精品国产亚洲av麻豆| 在线看三级毛片| 欧美三级亚洲精品| 91在线精品国自产拍蜜月 | 精品乱码久久久久久99久播| www.熟女人妻精品国产| 丁香欧美五月| 在线看三级毛片| 精品一区二区三区人妻视频| 亚洲精华国产精华精| 内射极品少妇av片p| 亚洲精品美女久久久久99蜜臀| 成人鲁丝片一二三区免费| 成人av一区二区三区在线看| 色精品久久人妻99蜜桃| 亚洲一区二区三区不卡视频| 久久久久久大精品| 国产av麻豆久久久久久久| 国产国拍精品亚洲av在线观看 | 成人国产综合亚洲| 天美传媒精品一区二区| a级一级毛片免费在线观看| 精品乱码久久久久久99久播| 午夜福利成人在线免费观看| 亚洲国产精品999在线| 老司机午夜十八禁免费视频| 欧美一区二区精品小视频在线| 欧美乱妇无乱码| 日本熟妇午夜| 丰满乱子伦码专区| 日本一本二区三区精品| 国产主播在线观看一区二区| 一卡2卡三卡四卡精品乱码亚洲| 久久99热这里只有精品18| 成人18禁在线播放| 在线观看一区二区三区| 欧美丝袜亚洲另类 | 欧美一区二区亚洲| 国产伦精品一区二区三区四那| 男女床上黄色一级片免费看| 国产精品永久免费网站| 搡老岳熟女国产| 久99久视频精品免费| 亚洲 欧美 日韩 在线 免费| 一边摸一边抽搐一进一小说| 亚洲专区国产一区二区| 啪啪无遮挡十八禁网站| 在线十欧美十亚洲十日本专区| 亚洲内射少妇av| 久久久久精品国产欧美久久久| 精华霜和精华液先用哪个| 国产视频内射| 国产高潮美女av| 俺也久久电影网| 精品不卡国产一区二区三区| 亚洲欧美日韩卡通动漫| 99久久99久久久精品蜜桃| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 亚洲人成网站在线播放欧美日韩| 18美女黄网站色大片免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美一区二区三区黑人| 99久久99久久久精品蜜桃| 女生性感内裤真人,穿戴方法视频| 看黄色毛片网站| 国产亚洲欧美在线一区二区| 亚洲人成网站高清观看| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 久久久久亚洲av毛片大全| 国产精品美女特级片免费视频播放器| 女同久久另类99精品国产91| 一个人观看的视频www高清免费观看| 又黄又爽又免费观看的视频| 69人妻影院| 天天一区二区日本电影三级| 深爱激情五月婷婷| 亚洲中文日韩欧美视频| 久久久久久国产a免费观看| 成人精品一区二区免费| 欧美一区二区亚洲| 日本熟妇午夜| 91在线精品国自产拍蜜月 | 一区福利在线观看| 欧美另类亚洲清纯唯美| 91av网一区二区| 成人鲁丝片一二三区免费| 女人高潮潮喷娇喘18禁视频| 国产日本99.免费观看| 精品人妻偷拍中文字幕| 精品熟女少妇八av免费久了| 亚洲一区二区三区色噜噜| 99riav亚洲国产免费| 国产精品1区2区在线观看.| 啪啪无遮挡十八禁网站| 亚洲av二区三区四区| 性色avwww在线观看| 99久久久亚洲精品蜜臀av| xxxwww97欧美| 精品国产三级普通话版| 丰满人妻熟妇乱又伦精品不卡| www.色视频.com| 99热这里只有是精品50| 国产精品三级大全| 免费av观看视频| 亚洲七黄色美女视频| 国产黄片美女视频| 桃红色精品国产亚洲av| 国产免费一级a男人的天堂| 51国产日韩欧美| 日韩成人在线观看一区二区三区| 亚洲avbb在线观看| 搡女人真爽免费视频火全软件 | 色视频www国产| 日韩 欧美 亚洲 中文字幕| 色尼玛亚洲综合影院| 亚洲精品色激情综合| 免费一级毛片在线播放高清视频| 综合色av麻豆| 日韩国内少妇激情av| 亚洲欧美日韩卡通动漫| 变态另类成人亚洲欧美熟女| 亚洲最大成人手机在线| 国产乱人视频|