• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鉑/石墨烯氧還原電催化劑的共還原法制備及表征

    2012-12-11 09:09:54王萬麗馬紫峰
    物理化學(xué)學(xué)報 2012年12期
    關(guān)鍵詞:還原法物理化學(xué)石墨

    王萬麗 馬紫峰

    (上海交通大學(xué)化學(xué)工程系,上海200240)

    鉑/石墨烯氧還原電催化劑的共還原法制備及表征

    王萬麗 馬紫峰*

    (上海交通大學(xué)化學(xué)工程系,上海200240)

    使用硼氫化鈉共還原法制備40%(w)鉑/石墨烯電催化劑用于氧還原反應(yīng).通過循環(huán)伏安測試發(fā)現(xiàn),這種方法制備所得鉑/石墨烯催化劑對氧還原反應(yīng)活性較鉑/碳催化劑差,但穩(wěn)定性有所提高.在穩(wěn)定性測試中,鉑/石墨烯電催化性能衰減為50%,較鉑/碳(79%)好.X射線衍射(XRD)和透射電子顯微鏡(TEM)表征發(fā)現(xiàn)在鉑/石墨烯催化劑中兩者存在明顯交互作用,這可能是阻止石墨烯再堆垛和防止鉑顆粒團聚的主要原因.通過對單電池性能測試也發(fā)現(xiàn)鉑/石墨烯催化劑更有利于電池長期穩(wěn)定.

    石墨烯;共還原法;電催化劑;氧還原反應(yīng);質(zhì)子交換膜燃料電池

    1 Introduction

    Gaphene has attracted great attention from researchers in both theoretical and applied chemistry in recent years.Its use has also been studied in capacitors,1,2lithium batteries,3-6and fuel cells7-9because of its interesting properties,such as ultrahigh surface area(there is a theoretical surface area of 2620 m2·g-1for an isolated graphene sheet),special quantum properties10-13and so on.

    Proton exchange membrane(PEM)fuel cells have been developed as a promising energy technology because of their inherent advantages,such as simplicity,viability,and quick start-up,which give them of great potential in almost any con-ceivable application.14However,several problems still hinder its commercialization.One major problem is the corrosion of carbon support which results in the catalyst being degraded quickly.Much research has been done,however,to improve the durability of carbon support.It was found that carbon materials with nanostructure can improve catalytic properties significantly because of their special electronic properties.15Graphene has also been studied as one of the candidates with the most likely potentiality for its ultrahigh surface area and relatively high conductivity.16

    The Pt/graphene nanocomposite has been identified as a material possibly able to play an important part in the development of low temperature fuel cells.9,17The nano composite has a large surface area,a high electrochemical surface area (ECSA),and well dispersity of platinum particles.However, its performance in a single cell,particularly the durability of the catalyst,still needs to be further researched.

    In this study,Pt/graphene composite was co-reduced,characterized,and compared with Pt/C for oxygen reduction reaction. The electrochemical properties of Pt/graphene were discussed from several aspects,especially its durability.

    2 Experimental

    2.1 Material synthesis

    All the chemicals used were analytical reagents,purchased from Sigma-Aldrich(USA).

    Prior to Pt/gaphene preparation,graphite oxide(GO)was synthesized by the modified Hummers method.18,19In brief,the graphite powder(1 g)was stirred in concentrated sulfuric acid with potassium permanganate added gradually in a water bath till completely oxidized.The reaction was terminated by the addition of a large amount of distilled water and 30%(w)H2O2solution,and then the mixture was centrifuged and washed several times till a natural pH value.The dried film was stored and dispersed in solvents as needed.

    The Pt/graphene was fabricated by a co-reduction process. 10 mg GO was exfoliated into 10 mL water by ultrasonication to form GO dispersion.Adding H2PtCl6·6H2O with stirring and adjusting its pH value to 13 by 1 mol·L-1potassium hydroxide,the dispersion was then reduced by 0.1 mol·L-1sodium borohydride added dropwise at room temperature for 4 h.Pt/graphene powder was gathered by filtration through a mixed cellulose ester membrane filter(0.45 μm pore size),and then it was dried in air.After grinding and sifting through a 200-mesh sieve,the powder was roasted at 200°C for 1.5 h.

    For comparison,40%(w)Pt/C was fabricated using the same procedure using Vulcan XC-72R(Cabot Corporation, USA)instead of graphene.Pure graphene powder was prepared in the same procedure without the platinum precursor.

    2.2 Characterization

    The content of platinum in samples was analyzed by inductively coupled plasma mass spectrometer(ICP-MS,Agilent Technologies,USA).The powder X-ray diffraction(XRD) measurements of the samples were recorded on an X-ray powder diffractometer(D/max-2200/PC,Rigaku Corporation,Japan)using Cu Kαradiation(λ=0.15406 nm)with scattering angles(2θ)of 20°-80°.Scanning electron microscope(SEM, S-4800,Hitachi Corporation,Japan)and energy-dispersive X-ray(EDX)spectroscopy(Inca Oxford,U.K.)attached to the SEM were used to confirm the deposition of Pt on the graphene.The catalyst features were characterized by a transmission electron microscope(TEM,JEM-2010,Jeol,Japan).

    2.3 Electrochemical measurements

    The electrochemical measurements were conducted in a three-electrode cell recorded by a potentiostat/galvanostat model 273(EG&G Princeton Applied Research,USA).Platinum mesh and saturated calomel electrode(SCE)were used as the counter and reference electrodes,respectively.0.5 mol·L-1H2SO4were employed as the electrolyte.The sample inks were prepared by mixing 10 mg sample powder with 0.45 mL deionized water,0.03 mL isopropanol,and 0.02 mL Nafion?solution(5%(w),Dupont Company,USA),followed by sonication in a water bath for 10 min.20 μL ink was dispensed and dried in air on the glassy carbon electrode(φ=0.5 cm).The electrode was immersed in de-aerated electrolyte and pretreated in cycles between-0.24 and 1 V at a scan rate of 100 mV·s-1for 100 cycles.The anodic corrosion was measured by anodic linear sweep voltammetry from-0.05 V(vs open circuit voltage) to 1.76 V at a scan rate of 5 mV·s-1.The cyclic voltammetry (CV)performance of supported platinum catalyst was measured in a standard way between-0.24 and 0.96 V at a scan rate of 5 mV·s-1.The electrochemical surface area was calculated from the hydrogen adsorption-desorption peak of the CV profiles.20The accelerated durability was measured by cyclic voltammetry in the range of-0.24 to 0.96 V for 1000 cycles at a scan rate of 50 mV·s-1.Oxygen reduction reaction(ORR) performance was evaluated by rotating disc electrode(RDE) technique.The polarization curves for oxygen reduction reaction were measured in an oxygen saturated electrolyte by scanning the potential from 0.9 to 0.1 V at a scan rate of 5 mV·s-1. All potentials were reported with respect to the normal hydrogen electrode(NHE)scale.

    The gas diffusion layer for the cathode and the gas diffusion electrode(1.0 mg·cm-2)for the anode were purchased from ElectroChem,Inc.The platinum loading at the anode side is relatively high,so the overpotential due to the anode half reaction can be neglected allowing the focus to be solely on the cathode side.21In this experiment,catalyst suspension was mixed by a supported platinum catalyst,Nafion(5%(w),Dupont Company,USA),and isopropanol.The mass ratio of catalyst to Nafion was 3:4.After being thoroughly dispersed,the suspension was brushed on the gas diffusion layer at the platinum loading until 0.4 mg·cm-2using as the cathode electrode. Nafion 117 membrane(Dupont Company,USA)was pretreated by boiling in 5%(w)hydrogen peroxide for 1 h,followed by treating in 1 mol·L-1sulfuric acid.After each step the Na-fion membrane was boiled in deionized water for 30 min.The prepared anode and cathode were positioned on the both sides of the membrane and hot pressed at 2 tons and 110°C for 4 min to form the membrane electrode assembly(MEA).

    The PEM fuel cell was tested in a fuel cell testing unit with an active electrode area of 1.5 cm×1.5 cm.The cell was operated at atmospheric pressure.The oxygen and hydrogen flow rate was 200 mL·min-1.The temperature of the cell was 50°C. The current-voltage curves were collected after an activation process at a constant operation voltage of 0.6 V.

    3 Results and discussion

    3.1 Material properties

    The amounts of platinum loaded on Pt/C and Pt/graphene were determined by ICP-MS showing that the contents of platinum were 39.62%(w)and 40.73%(w),respectively.XRD patterns of Pt/graphene and graphene are shown in Fig.1,which contain typical platinum diffraction peaks and a broadening C (002)peak.The peaks at the 2θ of 39.86°,46.25°,and 67.69° are assigned to(111),(200),and(220)facets of the face-centered cubic structure of platinum respectively,which are in agreement with the standard card of platinum(JCPDS No. 4-802).The crystallite size is calculated from Scherrer equation as following:

    where,D is the crystallite size;K is the Scherrer constant(K= 0.89);β is the peak width at half height;θ is the angle of diffraction;λ is the wavelength of X-ray(λ=0.154056).The crystallite size of platinum is calculated as 7.7 nm,bigger than that of Pt/C(6.8 nm).The calculated lattice constants of platinum supported by graphene and carbon are a=b=c=0.3912 nm and a=b=c=0.3938 nm,respectively.The change between these values shows clearly that a stronger interaction exists when platinum particles are deposited onto graphene.22On the other hand, carbon diffraction peaks of Pt/graphene composite are broadened and weakened compared to that of pure graphene,which suggests that there might be a certain interaction between platinum particles and graphene support.It may be caused by platinum particles embedding into the spaces between graphene layers and leading to graphene lattices growing disorderly.8These results also confirm that the platinum precursor and graphite oxide are reduced to the composite of Pt/graphene.

    Fig.1 XRD patterns of Pt/C,Pt/graphene,and graphene

    The features of pure graphene and Pt/graphene composite are shown in Fig.2.The monolayer graphene sheets are found in TEM images,supporting the platinum particles(black dots). The outstretched wrinkles of graphene sheets are clearly observed,which are obviously different from those of Vulcan XC-72.This might be attributed to the dispersion of platinum particles which also hinders the migration of the platinum particles.17The particle size of platinum observed is about 8 nm which agrees well with the results from XRD.The multi-crystal diffraction rings of platinum can be assigned to the(111), (200),and(220)facets of platinum in the selected area electron diffraction(SAED)pattern.However,Pt/graphene has a particular orientation which can be confirmed by the bright spots on the diffraction rings.This might be caused by the surface groups on the dispersed graphite oxide(epoxy and hydroxyl groups),acting as anchoring sites for platinum particles to deposit on.The platinum particles could only have adhered to the top or the bottom of the graphene sheets.The graphene sheets are reduced with wrinkles emerging in succession,leading to parts of the platinum particles changing their facet directions on the graphene sheets.23,24This reducing process might have contributed to the morphology of the platinum particles?deposition.

    The deposition of platinum particles is also confirmed by SEM images(Fig.3).From the top view of pure graphene (Fig.3(a)),the irregular wrinkles(bright lines)could be observed clearly on the surface,meanwhile,no crack could be found,which proving that the graphene is compact and flat. This suggests that it is both impermeable to gas and water resistant.The lamellar structure can be found even it is grinded to a powder.Fig.3(b)indicates that the platinum particles(bright dots)are deposited on the graphene sheets dispersedly.The graphene wrinkles are still formed but less than that of pure graphene film,which might be caused by preventing restacking of the graphene sheets from van der Waals forces when platinum particles deposited onto.The cross section of the film is a layer-by-layer structure as shown in the insert in Fig.3(a).The layers are stacked together closely;they are separated however from each other with only few layers stacking while platinum particles are deposited on the sheets as shown in the insert in Fig.3(b).The layer-by-layer structure is still maintained while the spaces between sheets are increased,suggesting the particles are acting as holders between layers hence resulting in a less layer-stacking film with a larger surface area,which is to its application?s advantage.

    Fig.2 TEM images of(a)graphene and(b)Pt/grapheneInsert is the SAED pattern of Pt/graphene.

    Fig.3 SEM images of(a)graphene and(b,c)Pt/grapheneInserts are the cross sections of(a)graphene and(b)Pt/graphene.

    3.2 Electrochemical properties and durability

    The electrochemical properties were characterized by cyclic voltammetry in 0.5 mol·L-1sulphuric acid system.Prepared Pt/ graphene and Pt/C catalysts exhibit the typical Pt peaks of hydrogen under-potential deposition and oxidation of hydrogen around 0-0.3 V in Fig.4(a,b).These peaks are similar to the published work25which indicates that the Pt-oxides formation and reduction appear at the same potentials for Pt/graphene and Pt/C.

    The peaks also indicate that the platinum particles are active when supported by graphene,agreeing well with the reference.26The electrochemical surface area(ECSA)is calculated according to the equation:20

    where,QHis the peak area of hydrogen adsorption-desorption, and[Pt]is the platinum loading.ECSA is calculated as 30.2 and 28.0 m2·g-1for Pt/graphene and Pt/C,respectively.It indicates that the numbers of platinum active sites of Pt/graphene and Pt/C are in the same order of magnitude.The ECSA value of Pt/C agrees well with the published data.27It suggests that the number of active sites is not affected when the feature of catalyst support changes into layer structure.

    Fig.4 Cyclic voltammetry curves of(a)Pt/graphene and(b)Pt/C

    The oxygen reduction reaction behavior was investigated by RDE method.Fig.5(a)shows the result of ORR polarization of Pt/graphene.The variation of the ORR current density(i) changes significantly with the RDE rotating speed(ω)in the diffusion region.The relationship between i-1vs ω-1/2can be expressed by the Koutecky-Levich equation:28

    Fig.5 (a)ORR polarization curves and(b)Koutecky-Levich plots of Pt/graphene

    where,i is the total ORR current density,ikis the kinetic current density(in the activation region),idis the diffusion limited current density(in the high ORR reduction potential)where the current is a plateau and its value changes with the RDE rotating speed(ω)(Fig.5(b)).K is the Levich?s slope which contains the following parameters:n the number of electron transferred in ORR,F the Faraday constant,CO2the bulk concentration of oxygen(1.03×10-3mol·L-1),DO2the diffusion coefficient of oxygen in the bulk solution(2.1×10-5cm2·s-1),and v the kinematic viscosity of the solution(1.07×10-2cm2·s-1).29The calculated n values of the Pt/graphene and Pt/C are 3.86 and 3.90,respectively.This result indicates that the ORR on the Pt/graphene electro-catalyst proceeds via a four-electron transfer process.The kinetic current density ikis obtained by extrapolation of the Koutecky-Levich plots to ω-1/2to zero.The values are listed in Table 1.It is found that ikvalue of Pt/graphene is lower than that of Pt/C.This is an indication that the ORR kinetic rate on Pt/graphene might be lower than that of Pt/ C,even the reaction pathway is the same on both electrodes. The low kinetic rate on Pt/graphene might be due to the inhibition of the oxygen diffusion on its surface.Graphene?s layer structure that platinum particles embedded into it might impede the access of the platinum active sites to oxygen.However,the carbon?s spherical structure encourages the oxygen diffusion.Tafel slopes(b)and current density in activation region of Pt/graphene and Pt/C are listed in Table 1.The larger Tafel slope and the lower current density of Pt/graphene than those of Pt/C also prove the less activity of Pt/graphene for ORR,although Pt/graphene has almost the same platinum active sites of hydrogen adsorption-desorption.

    Table 1 Electron transfer number,dynamic current density,exchange current density,Tafel slope,and current density of Pt/graphene and Pt/C at 850 mV

    The durabilities of both Pt/graphene and Pt/C were investigated under cyclic voltammetry for 1000 cycles in 0.5 mol·L-1sulphuric acid medium.The electrochemical surface area was calculated every hundred cycles.Fig.6 shows the normalized ECSA of Pt/graphene and Pt/C variation as a function of cycling number.Obvious degradations in ECSA values are found as 30.20 m2·g-1before cycles and 15.05 m2·g-1after cycles of Pt/graphene while 28.00 m2·g-1before cycles and 5.88 m2·g-1after cycles of Pt/C.The degradation of homemade Pt/graphene was slightly less than that in reference17where the decrease of activity for ORR was about 50%.17Meanwhile,the decrease of Pt/C was 79%,which was much bigger than that of Pt/graphene.Therefore,platinum on graphene was much more stable than that on carbon under the test condition.The degradation is mainly due to carbon corrosion.As to Pt/C,the carbon support is spherical which encourages the aggregation of platinum particles,leading to a decrease in the platinum surface area.However,the better durability of Pt/graphene could be attributed to the graphene?s interesting electronic properties that there is an interaction between Pt particles and the graphene surface,this hindering the metallic phase coalescence.30Moreover,it is more difficult for platinum particles to aggregate because the available particles are the surrounding ones in two dimensions,while the particles up or below are separated by graphene layers.

    Fig.6 Normalized electrochemical surface area degradation of Pt/graphene and Pt/C

    The performance and durability of Pt/graphene in PEM fuel cell were also investigated.Fig.7(a)shows the performance in a single cell that the open circuit voltage based on Pt/graphene of 0.975 V and the maximum power density of 158.65 mW· cm-2at 0.317 V are observed.The initial performance based on Pt/graphene is poorer than that of Pt/C,which might be due to the inhibition of oxygen diffusion on its catalyst surface as described above.However,a higher stability is observed in Fig.7 (b).The decrease of voltage at 400 mA·cm-2as a function of time based on Pt/graphene is less than that of Pt/C,which might be caused by the greater durability of the Pt/graphene catalyst.This result indicates that graphene might be more suitable for PEM fuel cell application than carbon.

    Fig.7 (a)Single cell performance and(b)stability of Pt/graphene and Pt/C

    4 Conclusions

    The 40%(w)Pt/graphene composite prepared by sodium borohydride chemical co-reduction was introduced as the electrocatalyst for oxygen reduction reaction.The electro catalytic activity and stability were evaluated.The results show that the layer structure of graphene maintains after reduction and the platinum particles with a particle size of 8 nm are dispersed onto graphene.The activity for ORR based on Pt/graphene is lower than that of Pt/C;however,better stability is observed in degradation test that the decrease of Pt/graphene is 50%,which is less than that of Pt/C(79%).On both electrodes,the ORR proceeds via a four-electron process.The performance of a single cell is also tested.The improvement in durability is confirmed by the delayed degradation of cell performance based on Pt/graphene.It might therefore be assumed that the graphene?s layer structure hinders the aggregation of platinum particles.Meanwhile,the platinum particles act as holders,which against the folding of graphene sheets.This result might be useful for the design of the catalyst with carbon support to improve the long-term performance in PEM fuel cells.

    (1)Wang,Y.;Shi,Z.;Huang,Y.;Ma,Y.;Wang,C.;Chen,M.; Chen,Y.The Journal of Physical Chemistry C 2009,113(30), 13103.doi:10.1021/jp902214f

    (2) Lu,X.J.;Dou,H.;Yang,S.D.;Hao,L.;Zhang,F.;Zhang,X. G.Acta Phys.-Chim.Sin.2011,27(10),2333.[盧向軍,竇 輝,楊蘇東,郝 亮,張 方,張校剛.物理化學(xué)學(xué)報, 2011,27(10),2333.]doi:10.3866/PKU.WHXB20111022

    (3)Guo,P.;Song,H.;Chen,X.Electrochem.Commun.2009,11 (6),1320.doi:10.1016/j.elecom.2009.04.036

    (4) Liang,M.;Zhi,L.J.Mater.Chem.2009,19(33),5871.doi: 10.1039/b901551e

    (5)Xu,K.;Shen,L.F.;Mi,C.H.;Zhang,X.G.Acta Phys.-Chim. Sin.2012,28(1),105.[徐 科,申來法,米常煥,張校剛.物理化學(xué)學(xué)報,2012,28(1),105.]doi:10.3866/PKU. WHXB201228105

    (6)Yang,X.W.;He,Y.S.;Liao,X.Z.;Ma,Z.F.Acta Phys.-Chim. Sin.2011,27(11),2583.[楊曉偉,何雨石,廖小珍,馬紫峰.物理化學(xué)學(xué)報,2011,27(11),2583.]doi:10.3866/PKU. WHXB20111123

    (7) Li,Y.;Tang,L.;Li,J.Electrochem.Commun.2009,11(4),846. doi:10.1016/j.elecom.2009.02.009

    (8) Si,Y.;Samulski,E.T.Chem.Mater.2008,20(21),6792.doi: 10.1021/cm801356a

    (9)Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S. G.Acta Phys.-Chim.Sin.2011,27(4),858. [李云霞,魏子棟,趙巧玲,丁 煒,張 騫,陳四國.物理化學(xué)學(xué)報,2011,27(4), 858.]doi:10.3866/PKU.WHXB20110411

    (10) Castro Neto,A.H.;Kotov,V.N.;Nilsson,J.;Pereira,V.M.; Peres,N.M.R.;Uchoa,B.Solid State Commun.2009,149 (27-28),1094.doi:10.1016/j.ssc.2009.02.040

    (11) Geim,A.K.Science 2009,324(5934),1530.doi:10.1126/ science.1158877

    (12) Neto,A.H.C.;Guinea,F.;Peres,N.M.R.;Novoselov,K.S.; Geim,A.K.Reviews of Modern Physics 2009,81(1),109.doi: 10.1103/RevModPhys.81.109

    (13)Rao,C.N.R.;Sood,A.K.;Subrahmanyam,K.S.;Govindaraj, A.Angewandte Chemie-International Edition 2009,48(42), 7752.doi:10.1002/anie.v48:42

    (14) Barbir,F.PEM Fuel Cells——Theory and Practice;Elsevier Academic Press:Burlington,2005.

    (15)Baughman,R.H.;Zakhidov,A.A.;De Heer,W.A.Science 2002,297(5582),787.doi:10.1126/science.1060928

    (16) Chen,H.;Müller,M.B.;Gilmore,K.J.;Wallace,G.G.;Li,D. Adv.Mater.2008,20(18),3557.doi:10.1002/adma.200800757

    (17)Kou,R.;Shao,Y.;Wang,D.;Engelhard,M.H.;Kwak,J.H.; Wang,J.;Viswanathan,V.V.;Wang,C.;Lin,Y.;Wang,Y.; Aksay,I.A.;Liu,J.Electrochem.Commun.2009,11(5),954. doi:10.1016/j.elecom.2009.02.033

    (18) Huffman,G.P.;Shah,N.;Wang,Y.;Huggins,F.E.Prepr. Pap.-Am.Chem.Soc.,Div.Fuel Chem.2004,49(2),731.

    (19) Kovtyukhova,N.I.Chem.Mater.1999,11(3),771.doi: 10.1021/cm981085u

    (20) Fournier,J.;Faubert,G.;Tilquin,J.Y.;Cote,R.;Guay,D.; Dodelet,J.P.J.Electrochem.Soc.1997,144(1),145.doi: 10.1149/1.1837377

    (21) Gasteiger,H.A.;Panels,J.E.;Yan,S.G.J.Power Sources 2004,127(1-2),162.doi:10.1016/j.jpowsour.2003.09.013

    (22) Carmo,M.;Paganin,V.A.;Rosolen,J.M.;Gonzalez,E.R. J.Power Sources 2005,142(1-2),169.doi:10.1016/ j.jpowsour.2004.10.023

    (23) Schniepp,H.C.;Li,J.L.;McAllister,M.J.;Sai,H.;Herrera-Alonso,M.;Adamson,D.H.;Prud?homme,R.K.;Car,R.; Saville,D.A.;Aksay,I.A.The Journal of Physical Chemistry B 2006,110(17),8535.doi:10.1021/jp060936f

    (24) McAllister,M.J.;Li,J.L.;Adamson,D.H.;Schniepp,H.C.; Abdala,A.A.;Liu,J.;Herrera-Alonso,M.;Milius,D.L.;Car, R.;Prud?homme,R.K.;Aksay,I.A.Chem.Mater.2007,19 (18),4396.doi:10.1021/cm0630800

    (25) Climent,V.;Markovi?,N.M.;Ross,P.N.The Journal of Physical Chemistry B 2000,104(14),3116.

    (26)Takenaka,S.;Matsumori,H.;Matsune,H.;Tanabe,E.;Kishida, M.J.Electrochem.Soc.2008,155(9),B929.

    (27) Cho,Y.H.;Park,H.S.;Cho,Y.H.;Jung,D.S.;Park,H.Y.; Sung,Y.E.J.Power Sources 2007,172(1),89.doi:10.1016/ j.jpowsour.2007.01.067

    (28)Wang,C.;Waje,M.;Wang,X.;Tang,J.M.;Haddon,R.C.;Yan, Y.Nano Lett.2003,4(2),345.

    (29)Chen,Z.;Waje,M.;Li,W.;Yan,Y.Angew.Chem.2007,119 (22),4138.doi:10.1002/ange.200700894

    (30) Rochefort,A.;Yang,D.Q.;Sacher,E.Carbon 2009,47(9), 2233.doi:10.1016/j.carbon.2009.04.013

    July 5,2012;Revised:September 13,2012;Published on Web:September 25,2012.

    Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reduction Reactions

    WANG Wan-Li MA Zi-Feng*
    (Department of Chemical Engineering,Shanghai Jiao Tong University,Shanghai 200240,P.R.China)

    40%(w)Pt/graphene composites were prepared by sodium borohydride chemical coreduction,and were subsequently used as an electrocatalyst for oxygen reduction reactions.The electrocatalytic activity and stability was evaluated by cyclic voltammetry.The results indicated that the initial activity of Pt/graphene was lower than that of Pt/C due to the oxygen diffusion inhibition;however,the Pt/graphene showed superior durability characteristics.Degradation tests showed a 50%degradation of Pt/ graphene,which was substantially less than that of Pt/C(79%).X-ray diffraction and transmission electron microscope results showed that the composite formed strong interactions between the platinum nanoparticles and the graphene supports.The graphene supports may also prevent the graphene sheets from folding or re-stacking,which would hinder platinum nanoparticles?aggregation.The performance of a single cell was also tested,confirming an improvement in durability.

    Graphene;Co-reduction method;Electrocatalyst;Oxygen reduction reaction; Proton exchange membrane fuel cell

    10.3866/PKU.WHXB201209252

    ?Corresponding author.Email:zfma@sjtu.edu.cn;Tel:+86-21-54742894.

    The project was supported by the National Natural Science Foundation of China(21073120,21176155)and Science and Technology Foundation of Shanghai Municipality,China(10JC1406900).

    國家自然科學(xué)基金(21073120,21176155)及上海市自然科學(xué)基金(10JC1406900)資助項目

    O646

    猜你喜歡
    還原法物理化學(xué)石墨
    石墨系升溫球的實踐與應(yīng)用
    昆鋼科技(2022年1期)2022-04-19 11:36:14
    電化學(xué)氧化還原法降解鹵代有機污染物的研究進展
    云南化工(2021年11期)2022-01-12 06:06:10
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    還原法:文本分析的有效抓手
    Chemical Concepts from Density Functional Theory
    石墨烯的健康路
    還原法制備石墨烯的研究進展及發(fā)展趨勢
    300MW火電機組尿素制氨還原法脫硝熱工控制分析
    自動化博覽(2014年7期)2014-02-28 22:32:41
    石墨礦中固定碳的分析與探討
    av又黄又爽大尺度在线免费看| 波野结衣二区三区在线| 在线观看一区二区三区激情| 国产精品久久久久久av不卡| 精品视频人人做人人爽| 日本91视频免费播放| 国产一区有黄有色的免费视频| 久久毛片免费看一区二区三区| 亚洲在久久综合| 一级毛片黄色毛片免费观看视频| 欧美日韩精品成人综合77777| 日韩大片免费观看网站| 国产精品欧美亚洲77777| 免费观看无遮挡的男女| 国产乱来视频区| videos熟女内射| 国产成人freesex在线| 最近中文字幕2019免费版| 汤姆久久久久久久影院中文字幕| 女人精品久久久久毛片| 好男人视频免费观看在线| 久久99热6这里只有精品| 亚洲第一av免费看| 99精国产麻豆久久婷婷| 又大又黄又爽视频免费| 久久6这里有精品| 精品人妻熟女av久视频| 日韩欧美一区视频在线观看 | 99热网站在线观看| 午夜91福利影院| 韩国高清视频一区二区三区| 亚洲精华国产精华液的使用体验| 男女啪啪激烈高潮av片| 国产男女内射视频| 精品人妻熟女av久视频| 赤兔流量卡办理| 寂寞人妻少妇视频99o| 精品国产一区二区久久| 99久久综合免费| 国产精品久久久久久久久免| 免费大片黄手机在线观看| 久久免费观看电影| 久久ye,这里只有精品| av女优亚洲男人天堂| 又爽又黄a免费视频| 九草在线视频观看| 亚洲欧美成人综合另类久久久| 久久影院123| 女性被躁到高潮视频| 新久久久久国产一级毛片| 久久久久久久久久久免费av| 日韩制服骚丝袜av| 美女内射精品一级片tv| 亚洲国产精品国产精品| 全区人妻精品视频| 国产成人91sexporn| 美女福利国产在线| 国产精品蜜桃在线观看| 欧美日本中文国产一区发布| 免费观看a级毛片全部| 国产视频首页在线观看| 性色av一级| 欧美高清成人免费视频www| av网站免费在线观看视频| 亚洲国产精品专区欧美| 一本久久精品| 在线观看人妻少妇| 边亲边吃奶的免费视频| 欧美另类一区| 中文乱码字字幕精品一区二区三区| 日韩av不卡免费在线播放| av黄色大香蕉| 日韩不卡一区二区三区视频在线| 五月玫瑰六月丁香| 最近中文字幕高清免费大全6| 91在线精品国自产拍蜜月| 久久99热这里只频精品6学生| 黑人高潮一二区| 一区二区av电影网| 少妇人妻一区二区三区视频| 日韩精品有码人妻一区| 欧美精品国产亚洲| 精品一区在线观看国产| 欧美日韩国产mv在线观看视频| 成年人午夜在线观看视频| 99热6这里只有精品| 在线观看www视频免费| 亚洲精品成人av观看孕妇| 久久99热6这里只有精品| 国产精品伦人一区二区| 亚洲精品第二区| 少妇人妻 视频| 亚洲欧美精品自产自拍| 99国产精品免费福利视频| 成年人免费黄色播放视频 | 一级爰片在线观看| 蜜桃久久精品国产亚洲av| 国产精品久久久久久精品电影小说| 国产黄片视频在线免费观看| 人妻人人澡人人爽人人| 日本欧美国产在线视频| a 毛片基地| 麻豆成人午夜福利视频| 丝袜脚勾引网站| 香蕉精品网在线| 熟妇人妻不卡中文字幕| 少妇精品久久久久久久| 亚洲无线观看免费| 国产女主播在线喷水免费视频网站| 纵有疾风起免费观看全集完整版| 久久人人爽人人爽人人片va| 99热这里只有是精品在线观看| 欧美激情国产日韩精品一区| 亚洲欧洲国产日韩| 国产精品久久久久成人av| 国产日韩欧美在线精品| 在线观看免费日韩欧美大片 | 国产日韩欧美视频二区| 日本黄色日本黄色录像| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 黄色日韩在线| 色哟哟·www| 51国产日韩欧美| 91精品一卡2卡3卡4卡| 插逼视频在线观看| 国产永久视频网站| 午夜福利影视在线免费观看| 久久久久久久精品精品| 男人爽女人下面视频在线观看| 啦啦啦中文免费视频观看日本| 一级,二级,三级黄色视频| 美女主播在线视频| 亚洲国产成人一精品久久久| 欧美成人午夜免费资源| 国产黄片视频在线免费观看| 久久人人爽av亚洲精品天堂| 成人国产av品久久久| 欧美丝袜亚洲另类| 日韩欧美精品免费久久| 国产综合精华液| 色哟哟·www| 国产一区二区在线观看av| 精品熟女少妇av免费看| 看十八女毛片水多多多| 亚洲欧美日韩东京热| 少妇精品久久久久久久| 亚洲欧美一区二区三区国产| 最近中文字幕高清免费大全6| 国产精品福利在线免费观看| 九九在线视频观看精品| 久久亚洲国产成人精品v| 又黄又爽又刺激的免费视频.| 婷婷色av中文字幕| 国产 精品1| 在线观看免费高清a一片| 狂野欧美激情性xxxx在线观看| 少妇人妻久久综合中文| 国产一区二区三区av在线| 国产有黄有色有爽视频| 九草在线视频观看| 人妻一区二区av| 热re99久久精品国产66热6| 97精品久久久久久久久久精品| 91精品国产国语对白视频| 91久久精品国产一区二区三区| 国产成人免费观看mmmm| 国产 一区精品| 国产精品久久久久久久电影| 亚洲中文av在线| 亚洲久久久国产精品| 精品一品国产午夜福利视频| 又爽又黄a免费视频| 欧美成人精品欧美一级黄| 秋霞在线观看毛片| av不卡在线播放| 综合色丁香网| 男女边吃奶边做爰视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美精品专区久久| 男女啪啪激烈高潮av片| 大话2 男鬼变身卡| 人人妻人人澡人人爽人人夜夜| 国产av一区二区精品久久| 九九爱精品视频在线观看| 性色av一级| 三级国产精品片| 人妻系列 视频| 简卡轻食公司| 在线观看免费高清a一片| 免费av中文字幕在线| 黑人高潮一二区| 极品人妻少妇av视频| 街头女战士在线观看网站| 一级毛片黄色毛片免费观看视频| 久久女婷五月综合色啪小说| 大香蕉久久网| 中国美白少妇内射xxxbb| 久久久欧美国产精品| 青春草视频在线免费观看| 久久久久久人妻| a级毛色黄片| 国产精品99久久99久久久不卡 | 日本与韩国留学比较| 久久国产精品大桥未久av | 免费观看a级毛片全部| 成人毛片a级毛片在线播放| 色5月婷婷丁香| 大又大粗又爽又黄少妇毛片口| 国产日韩欧美在线精品| 精品亚洲成a人片在线观看| 亚洲国产成人一精品久久久| 美女视频免费永久观看网站| 亚洲精品第二区| 老司机影院成人| 亚洲精品国产av成人精品| 18禁在线无遮挡免费观看视频| 欧美日韩国产mv在线观看视频| 久久97久久精品| 美女xxoo啪啪120秒动态图| 日韩av免费高清视频| 久久久久久伊人网av| 国产伦精品一区二区三区视频9| 少妇人妻一区二区三区视频| 深夜a级毛片| 免费高清在线观看视频在线观看| 久久99一区二区三区| 国产极品天堂在线| a级毛片免费高清观看在线播放| 男人和女人高潮做爰伦理| 青春草视频在线免费观看| 国产午夜精品一二区理论片| h视频一区二区三区| 丝袜在线中文字幕| 亚洲av欧美aⅴ国产| 日韩av在线免费看完整版不卡| 日韩制服骚丝袜av| 91久久精品国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美成人综合另类久久久| 黄片无遮挡物在线观看| 国产白丝娇喘喷水9色精品| 内射极品少妇av片p| 日韩成人伦理影院| 日韩在线高清观看一区二区三区| 18+在线观看网站| 国产午夜精品一二区理论片| av在线老鸭窝| 久久狼人影院| 99久久精品一区二区三区| 免费人成在线观看视频色| 久久婷婷青草| 日韩一区二区视频免费看| 在线观看免费视频网站a站| 国产色爽女视频免费观看| 亚洲美女搞黄在线观看| 成年av动漫网址| 久热久热在线精品观看| 色视频www国产| 97精品久久久久久久久久精品| 精品一区二区三区视频在线| 99九九线精品视频在线观看视频| 青春草亚洲视频在线观看| 中国国产av一级| 高清av免费在线| 黑人高潮一二区| 五月玫瑰六月丁香| 18禁裸乳无遮挡动漫免费视频| av福利片在线| 国产亚洲91精品色在线| 青青草视频在线视频观看| 在现免费观看毛片| 久久精品久久精品一区二区三区| 在线观看美女被高潮喷水网站| 五月伊人婷婷丁香| 在线观看三级黄色| 久久影院123| 国产成人免费无遮挡视频| 日本欧美视频一区| 91精品国产九色| 亚洲精品456在线播放app| 亚洲欧美日韩另类电影网站| 嘟嘟电影网在线观看| 99久久人妻综合| 精品亚洲成a人片在线观看| 久久这里有精品视频免费| 久久毛片免费看一区二区三区| 国产伦精品一区二区三区四那| 亚洲欧美成人精品一区二区| 欧美老熟妇乱子伦牲交| 国产伦理片在线播放av一区| 三级经典国产精品| 看十八女毛片水多多多| 最近中文字幕2019免费版| 内射极品少妇av片p| 日韩免费高清中文字幕av| 亚洲欧美中文字幕日韩二区| 最近的中文字幕免费完整| 超碰97精品在线观看| 老熟女久久久| 午夜视频国产福利| 三级国产精品欧美在线观看| 深夜a级毛片| 亚洲精品日韩av片在线观看| 日本色播在线视频| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| 狂野欧美激情性bbbbbb| 热re99久久精品国产66热6| 18禁动态无遮挡网站| 久久av网站| .国产精品久久| 亚洲精品日韩在线中文字幕| 成人黄色视频免费在线看| 桃花免费在线播放| 91精品国产国语对白视频| 国产亚洲精品久久久com| 国产亚洲一区二区精品| av线在线观看网站| 国产一级毛片在线| 亚洲欧美成人精品一区二区| 色网站视频免费| 国产精品国产三级专区第一集| 视频区图区小说| 久久99精品国语久久久| 永久免费av网站大全| 91午夜精品亚洲一区二区三区| freevideosex欧美| 91aial.com中文字幕在线观看| 精华霜和精华液先用哪个| 久久久久久伊人网av| 我要看日韩黄色一级片| av在线播放精品| 女性被躁到高潮视频| 欧美 亚洲 国产 日韩一| 狂野欧美激情性bbbbbb| 妹子高潮喷水视频| 久久精品国产a三级三级三级| 丝瓜视频免费看黄片| 97在线人人人人妻| 免费看日本二区| 久久精品久久久久久久性| 三上悠亚av全集在线观看 | 插阴视频在线观看视频| 午夜91福利影院| 国产成人aa在线观看| 纯流量卡能插随身wifi吗| 亚洲av在线观看美女高潮| 男人添女人高潮全过程视频| 99国产精品免费福利视频| av.在线天堂| 中文字幕人妻丝袜制服| 边亲边吃奶的免费视频| 各种免费的搞黄视频| 天堂8中文在线网| 人妻人人澡人人爽人人| 嫩草影院新地址| 亚洲av男天堂| 极品人妻少妇av视频| 99九九线精品视频在线观看视频| 婷婷色综合www| 简卡轻食公司| 国产精品久久久久久久久免| 亚洲性久久影院| av网站免费在线观看视频| av免费在线看不卡| 黑人高潮一二区| 91精品伊人久久大香线蕉| 在线 av 中文字幕| 亚洲第一av免费看| 国产熟女午夜一区二区三区 | 晚上一个人看的免费电影| 久久国产精品男人的天堂亚洲 | av网站免费在线观看视频| 又粗又硬又长又爽又黄的视频| 国产av国产精品国产| 国产精品一区www在线观看| 纯流量卡能插随身wifi吗| 国产日韩欧美在线精品| 国产在线视频一区二区| 国产男女超爽视频在线观看| 亚洲av国产av综合av卡| 免费播放大片免费观看视频在线观看| 国产精品女同一区二区软件| 熟女人妻精品中文字幕| 免费黄频网站在线观看国产| 人妻夜夜爽99麻豆av| 亚洲av福利一区| 国产精品99久久99久久久不卡 | 亚洲四区av| 大又大粗又爽又黄少妇毛片口| 天天躁夜夜躁狠狠久久av| 亚洲欧洲日产国产| 久久久久网色| 夜夜爽夜夜爽视频| 国产探花极品一区二区| 伊人亚洲综合成人网| 国产成人免费观看mmmm| 国产成人免费无遮挡视频| 乱系列少妇在线播放| 午夜激情福利司机影院| av在线app专区| 国产伦在线观看视频一区| 纵有疾风起免费观看全集完整版| 在线观看一区二区三区激情| 国产精品国产av在线观看| .国产精品久久| 桃花免费在线播放| 一级毛片久久久久久久久女| 在现免费观看毛片| 纯流量卡能插随身wifi吗| 国产又色又爽无遮挡免| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 高清不卡的av网站| 在线免费观看不下载黄p国产| av在线app专区| 国产一区二区三区综合在线观看 | 天天躁夜夜躁狠狠久久av| 国产 一区精品| 日本猛色少妇xxxxx猛交久久| 六月丁香七月| 欧美丝袜亚洲另类| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久人人人人人人| 久久99精品国语久久久| 日韩中文字幕视频在线看片| 性色avwww在线观看| 观看免费一级毛片| 亚洲第一区二区三区不卡| 亚洲国产欧美在线一区| 欧美 亚洲 国产 日韩一| 蜜桃久久精品国产亚洲av| 日韩成人伦理影院| 女性生殖器流出的白浆| 成人黄色视频免费在线看| 成人影院久久| 亚洲精品成人av观看孕妇| 黄色欧美视频在线观看| 免费av不卡在线播放| 国产极品天堂在线| 亚洲av.av天堂| 欧美日韩视频高清一区二区三区二| 国产成人aa在线观看| 精品亚洲成a人片在线观看| 国产成人午夜福利电影在线观看| 国产av码专区亚洲av| 精品久久久久久久久亚洲| 夫妻午夜视频| 热99国产精品久久久久久7| 香蕉精品网在线| 亚洲精品一二三| 高清午夜精品一区二区三区| 观看av在线不卡| www.色视频.com| 黄色怎么调成土黄色| 女的被弄到高潮叫床怎么办| a级一级毛片免费在线观看| 久久久久久久久久人人人人人人| 99久久精品一区二区三区| 99热全是精品| 成人综合一区亚洲| 亚洲精品aⅴ在线观看| 又粗又硬又长又爽又黄的视频| 午夜老司机福利剧场| 人妻人人澡人人爽人人| 嘟嘟电影网在线观看| 国产伦在线观看视频一区| 国产亚洲5aaaaa淫片| 午夜久久久在线观看| 水蜜桃什么品种好| 日韩欧美一区视频在线观看 | 欧美最新免费一区二区三区| 色婷婷av一区二区三区视频| 色视频在线一区二区三区| 国产精品伦人一区二区| 欧美+日韩+精品| 欧美亚洲 丝袜 人妻 在线| 黑人猛操日本美女一级片| 黄色视频在线播放观看不卡| 久久久久久人妻| 国产毛片在线视频| 精华霜和精华液先用哪个| 久久午夜综合久久蜜桃| 国产 精品1| videos熟女内射| 久久久久久久久久人人人人人人| 免费观看a级毛片全部| 在线观看美女被高潮喷水网站| 欧美精品亚洲一区二区| 日韩电影二区| 国产成人精品无人区| 国产男人的电影天堂91| 嫩草影院入口| 精品一区二区三区视频在线| 亚洲国产毛片av蜜桃av| 欧美人与善性xxx| av在线观看视频网站免费| 国产伦精品一区二区三区四那| 人体艺术视频欧美日本| 国产伦精品一区二区三区视频9| 亚洲欧洲国产日韩| 少妇人妻精品综合一区二区| 国产成人午夜福利电影在线观看| 久久久亚洲精品成人影院| 激情五月婷婷亚洲| 亚洲图色成人| 99视频精品全部免费 在线| 国产成人91sexporn| 丰满少妇做爰视频| 免费黄频网站在线观看国产| 国产伦在线观看视频一区| 亚洲熟女精品中文字幕| 久久6这里有精品| 亚洲不卡免费看| 免费av不卡在线播放| 精品久久久久久电影网| av卡一久久| 十八禁高潮呻吟视频 | 精品人妻偷拍中文字幕| 久久影院123| 免费看日本二区| 亚洲中文av在线| 99热网站在线观看| 最近手机中文字幕大全| 欧美日韩亚洲高清精品| h日本视频在线播放| 欧美日韩在线观看h| 久久99热这里只频精品6学生| 国产精品嫩草影院av在线观看| 亚洲av成人精品一区久久| 日日啪夜夜撸| 久久久久网色| 99视频精品全部免费 在线| 亚洲色图综合在线观看| 国产精品不卡视频一区二区| 高清av免费在线| 精品人妻一区二区三区麻豆| 人人妻人人澡人人看| 一级av片app| 日产精品乱码卡一卡2卡三| 老司机亚洲免费影院| 色网站视频免费| 久久国产亚洲av麻豆专区| 久久av网站| 伦理电影免费视频| 久久狼人影院| 97超视频在线观看视频| 99久久人妻综合| 26uuu在线亚洲综合色| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 午夜福利影视在线免费观看| 国产白丝娇喘喷水9色精品| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 久久ye,这里只有精品| 欧美变态另类bdsm刘玥| xxx大片免费视频| 久久久久久久大尺度免费视频| 在线观看av片永久免费下载| 久久午夜福利片| 精品酒店卫生间| 亚洲,一卡二卡三卡| 亚洲在久久综合| 18禁在线播放成人免费| av视频免费观看在线观看| www.色视频.com| 亚洲国产精品国产精品| 免费人妻精品一区二区三区视频| 亚洲综合精品二区| 大香蕉久久网| 亚洲va在线va天堂va国产| 99精国产麻豆久久婷婷| 免费观看性生交大片5| av福利片在线观看| 少妇猛男粗大的猛烈进出视频| 97超碰精品成人国产| 欧美另类一区| 在线观看一区二区三区激情| 精品久久久久久久久av| 国产成人精品一,二区| 最新中文字幕久久久久| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 嫩草影院新地址| 色94色欧美一区二区| 午夜免费鲁丝| 久久精品国产亚洲av涩爱| 男女国产视频网站| 久久毛片免费看一区二区三区| 精品国产一区二区久久| 免费黄色在线免费观看| 汤姆久久久久久久影院中文字幕| 国产片特级美女逼逼视频| 亚洲欧美一区二区三区黑人 | 日韩精品免费视频一区二区三区 | 黑人高潮一二区| 成人综合一区亚洲| 18禁裸乳无遮挡动漫免费视频| 国产精品麻豆人妻色哟哟久久| 国产伦精品一区二区三区视频9| 97在线人人人人妻| 少妇被粗大猛烈的视频| 熟女av电影| 中国国产av一级| 欧美+日韩+精品| 91精品国产国语对白视频| 老司机影院毛片| 最近手机中文字幕大全| 精品熟女少妇av免费看| 丝袜脚勾引网站| 国产黄色免费在线视频| 亚洲精品成人av观看孕妇| av在线观看视频网站免费|