• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于啟發(fā)式方法和支持向量機(jī)方法預(yù)測有機(jī)物的熱導(dǎo)率

    2012-12-11 09:10:14時靜潔陳利平陳網(wǎng)樺
    物理化學(xué)學(xué)報 2012年12期
    關(guān)鍵詞:熱導(dǎo)率南京向量

    時靜潔 陳利平 陳網(wǎng)樺,* 石 寧 楊 惠 徐 偉

    (1南京理工大學(xué)化工學(xué)院安全工程系,南京210094;2化學(xué)品安全控制國家重點(diǎn)實(shí)驗室,山東青島266071)

    基于啟發(fā)式方法和支持向量機(jī)方法預(yù)測有機(jī)物的熱導(dǎo)率

    時靜潔1,2陳利平1陳網(wǎng)樺1,*石 寧2楊 惠1徐 偉2

    (1南京理工大學(xué)化工學(xué)院安全工程系,南京210094;2化學(xué)品安全控制國家重點(diǎn)實(shí)驗室,山東青島266071)

    構(gòu)建147個有機(jī)物分子結(jié)構(gòu)與其熱導(dǎo)率值之間的定量結(jié)構(gòu)-性質(zhì)關(guān)系(QSPR)模型,探討影響有機(jī)物熱導(dǎo)率的結(jié)構(gòu)因素.以147個化合物作為樣本集,隨機(jī)選擇118個作為訓(xùn)練集,29個作為測試集.應(yīng)用CODESSA軟件計算了組成、拓?fù)?、幾何、靜電和量子化學(xué)等描述符,通過啟發(fā)式方法(HM)篩選得到5個結(jié)構(gòu)參數(shù)并建立線性回歸模型;用所選5個結(jié)構(gòu)參數(shù)作為支持向量機(jī)(SVM)的輸入,建立非線性的支持向量機(jī)回歸模型.預(yù)測結(jié)果表明:支持向量機(jī)回歸模型的性能(復(fù)相關(guān)系數(shù)R2=0.9240)雖略低于啟發(fā)式回歸模型的性能(R2=0.9267),但是支持向量機(jī)方法預(yù)測性能(R2=0.9682)高于啟發(fā)式方法的預(yù)測性能(R2=0.9574),對于QSPR模型來說,預(yù)測性能更重要.因此,總體來說支持向量機(jī)方法優(yōu)于啟發(fā)式方法.支持向量機(jī)方法和啟發(fā)式方法的提出為工程上提供了一種根據(jù)分子結(jié)構(gòu)預(yù)測有機(jī)物熱導(dǎo)率的新方法.

    啟發(fā)式方法;支持向量機(jī);熱導(dǎo)率;預(yù)測;定量結(jié)構(gòu)-性質(zhì)關(guān)系

    1 Introduction

    Thermal conductivity,also known as the coefficient of thermal conductivity,reflects the capacity of heat transmission.1Thermal conductivity data are most important for the engineering design of any thermal processes.2Thermal conductivities of organics at 20°C in a liquid state were studied in this research. Usually thermal conductivity is experimentally measured.Several different approaches could potentially be used to study thermal conductivity:(i)heat flux meter techniques,3(ii)flash technique,4(iii)transient plane-source method,5(iv)transient hotwire method.6Yet such measuring methods are time-consuming and technique-limited.Furthermore,an accurate determination of this property is very difficult because of convection and radiation accompanying the heat losses during experiment.7Thus,the prediction of the thermal conductivity with a theoretical method becomes important and necessary.

    Quantitative structure-property relationship(QSPR)models are obtained through analyzing and calculating the correlation between the property and a variety of structural information.8-11The purpose of constructing a QSPR model is to find factors that determine the property.Meanwhile,such a model can also predict the property of compounds including those not yet synthesized,since the property is determined by the molecular structure which is translated into the so-called molecular descriptors.Recently,HM and SVM have been developed to predict nematic transition temperatures in themotropic liquid crystal,12binding affinities of adenosine A2Areceptor antagonists,13the activities of imidazothienopyrazines14and so on.Bini and his research team15also built an HM model on the thermal conductivity,but their study had some disadvantages.There were only 33 data in their sample dataset,although the squared correlation coefficient(R2)was a bit higher.Furthermore,they did not divide the sample dataset into the training set and the test one.As a result,it is impossible to know the predictive ability of the model.What is more,they did not study the non-linear model.Hence,we cannot figure out the non-linear relationship between the thermal conductivity and the molecular structure.

    The objective of our work is to find the structural factors which play important roles in the thermal conductivity for organics and to establish the quantitative linear and non-linear relationships(HM and SVM)between the thermal conductivity and molecular descriptors.

    2 Materials and methodology

    2.1 Data

    The accuracy of the prediction model can be affected directly by the reliability of experimental values.Thus it is important to select a reliable dataset.The data source in this work is from Data Manual for the Physical Property of Organic Compounds which is carefully compiled by Qingdao Institute of Chemical.

    The whole dataset is composed of 147 compounds containing C,H,O,N,Cl,S,and F,and covers hydrocarbons,halogen compounds,ethers,alcohols,esters,aldehydes,ketones, amines,and amino compounds.These compounds with wide chemical diversities lay the foundation for a robust and effective prediction model.In order to build a QSPR model,the dataset was randomly divided into two subsets,the training set and the test one,consisting of 118(80%)and 29(20%)compounds,respectively.The training set was used to select variables and to construct the models,and the performance of the models was evaluated by the test one.In addition,for the purpose of comparison,the two subsets which were employed to build an HM model,and the two ones employed to build an SVM model,were exactly the same.

    2.2 Descriptors

    Descriptors are defined as numerical characteristics associated with chemical structures.They are derived from the chemical constitution,topology,geometry,wave function,potential energy surface,and some combinations of these items of a given chemical structure.The value of a particular descriptor can be set by the user or calculated automatically by software,such as CODESSA.Each descriptor value must be associated with a previously defined structure.In this paper,CODESSA was employed to compute values of these descriptors.The software, designed by Katritzky team,can be used to calculate 804 descriptors covering constitutional,geometrical,topological,electrostatic,quantum-chemical,and thermodynamic descriptors. The classification of these descriptors is listed in Table 1.

    The selection of suitable molecule descriptors is very critical throughout the QSPR research.An efficient descriptor must be capable of providing as much structural information as possible,and the more precise the better.Recently,there are a variety of variable selection methods such as the genetic algorithm (GA)method and the HM.Herein,HM was chosen in this paper to select variables due to the two advantages of HM.First, with this approach,the global optimal solution could be found.16When selecting variables from large amounts of data, we are in need of a method to go beyond the local best solution so as to find a global best solution.But owing to their own limitations,traditional methods could be only used to search the partial solution,not the global optimal solution.The second advantage is that HM is very simple and convenient compared with GA.Although GA can also obtain the global optimal solution,people need to compile complicated codes in MATLAB environment when using this method.

    HM is employed to remove some descriptors by pretreat-ment according to the following four criteria.(1)Not all compounds share the same parameters;(2)to all compounds,numerical value of descriptors changes within a small range;(3) in the equation related to parameters,HM eliminates the descriptors which do not match the following criterion:the F-test F<0.1;(4)HM deletes the descriptors whose t-test value t is less than the defined one.After the pre-selection of descriptor, multiple linear regression method is developed in a stepwise procedure.First,starting with the top descriptor from the pre-selected list of descriptors,the two-parameter correlation is calculated using the following pairs:the first descriptor with each of the remaining descriptors and the second descriptor with each of the remaining descriptors,etc.The best pairs,as evidenced by the highest F-values in the two-parameter correlations,are chosen and used for further inclusion of descriptors in a similar manner.Then,new descriptors are added one-byone until the pre-selected number of descriptors in the model is achieved.Astepwise addition of further descriptor scales is performed to find the best multi-parameter regression models with the optimum values of statistical criteria(highest values of R2, the F-test,and the standard deviation(S)).From the above processes,five descriptors are selected from descriptors pool and the linear model is produced by the HM.17

    Table 1 Classification of descriptors

    2.3 Computational methods

    SVM was introduced by Vapnik18and has been applied to classification as well as regression tasks.For a given regression problem,the main goal of using SVM is to find the optimal hyperplane with the largest margin separating classes of data.The schematic diagram is shown in Fig.1.

    For the linear regression problem,a data set is considered, and each input{(xi,yi),i=1,2,…,n}is mapped into the corresponding output.The approximate value can be obtained by the linear function:

    In order to ensure the flatness of the function(1),finding out the minimum w is essential.A hypothesis is suggested:all the data points can fit with the linear function in the accuracy of ε. Then minimizing w transforms into the problem of reducing model complexity,namely,the following quadratic programming problem:min(1/2||w||2)

    Fig.1 Principle description of SVM for regression problems

    In consideration of the fitting error,the slack variablesand C are introduced.The constant C>0 is a regularization constant determining the trade-off between the training error and the model flatness.Then the problem correspondingly changes into the following optimization one:

    The solution is a linear regression function of the optimal hyperplane as follows:

    where,αi,and b are the parameters which play the performance of determining the optimal hyperplane and can be achieved by means of working out the above constraint conditions(3).

    For the non-linear regression problem,with the help of the nonlinear mapping ψ,all data points are mapped into the high dimensional feature space.Then the problem can be perfectly solved just by using the above linear regression method.With the transformation of the nuclear function,the points are successfully mapped into the high dimensional feature space by the support vector machine.The kernel function accords with the following constraint:K(x,xi)=<ψ(x)·ψ(xi)>.

    Once the coefficients are determined,the regression estimate is given by Eq.(5):

    In the present study,the kernel function mainly contains four forms:linear nuclear,polynomial nuclear,radial basis function (RBF),and sigmoid.Herein,the widely used technique RBF was adopted for research.

    2.4 Model validation

    Model validation is proved to be crucial to QSPR modelling. It is acknowledged that the three aspects of fitting ability,robust performance,and predictive power are all very important. If one of them is ignored,we would never reach any comprehensive evaluation.Hence,according to OECD principles,the QSPR models,which have been built,must be comprehensively validated from the above mentioned three indices.The quality of fitting ability of the models is judged by the squared correlation coefficient R2,the average absolute error(AAE),and the root mean square error(RMSE).R2is an indicator that measures linear correlation degree between one variable and another.RMSE indicates dispersion degree of random error.The larger R2is,the smaller RMSE will be,and the model will have more fitting ability.However,good fitness does not stand for good robustness and predictive ability,thus internal validation is considered to be necessary for model validation.The internal predictive capability of a model is evaluated by leave-one-out cross-validationon the training set,which is defined as the following equation(6):

    Excellent Q2can illustrate robustness as well as excellent internal predictive ability of the QSPR models;yet,it cannot guarantee the true predictive ability of the models.Roy20and Pinheiro21et al.pointed out that the external validation was a crucial and indispensable validation method used to determine the true predictive ability of the QSPR models for new chemicals.The predictive ability of a model on external validation set can be expressed byby the following equation(7):

    where,yiandare respectively the experimental,predicted values of the test set,andis the mean experimental lnTC values of the samples in the training set.

    3 Results and discussion

    3.1 Interpretation of the selected descriptors

    The descriptors of each compound were calculated by CODESSA.HM can give one-to six-parameter models.When adding another descriptor cannot improve significantly the statistics of a model,it shows that the optimum subset size has been achieved.To avoid over-parametrization of the model,an increase in the value which is less than 0.02 is chosen as the breakpoint criterion.22The influences of the numbers of descriptors on R2are shown in Fig.2.

    Fig.2 shows that 5-parameter correlation is an ideal choice and adopted for the model input.Therefore,five descriptors were proposed as the model input.

    3.2 Results of HM

    After the heuristic reduction,a linear model was built shown in the following equation(8):

    Fig.2 R2versus descriptor number

    where,lnTC is the logarithm value of the thermal conductivity, F is Fish criterion,S is corrected mean square error,and n is the number of the sample.The type and the definition of the five descriptors and statistical parameters are described in Table 2.The comparison of the predicted and the experimental values are presented in Fig.3.

    The aim of this study is to seek the structural factors that influence the thermal conductivity by the analysis of the descriptors.There are five descriptors including two electrostatic descriptors,two constitutional descriptors,and one quantumchemical descriptor.These descriptors reflect different characters of the molecular structure.It is observed that constitutional descriptors and electrostatic descriptors play a main role.HA dependent HDSA-1/TMSA among electrostatic descriptors represents solvent-accessible surface area of H-bonding donor H atoms which is affected by the size of the hydrogen bonding interaction.The definition of FPSA3 fractional PPSA(PPSA3/ TMSA)[Zefirov?s PC]is FPSA3=PPSA3/TMSA,PPSA3 indicates total charge weighted partial positively charged molecular surface area,TMSA refers to total molecular surface area, and FPSA3 is expressed by fractional atomic charge weighted partial positive surface area.Relative molecular weight and relative number of C atoms are the constitutional descriptors. Quantum-chemical descriptor of the model is minimun(Min>0.1)bond order of an F atom.How much influence each descriptor has on the thermal conductivity is judged by comparing the coefficients before descriptors.If the coefficient is positive,the correlation between the descriptors and the thermal conductivity is positive,otherwise,negative.The larger the absolute value of the coefficient is,the more influence the descriptor is.Accordingly the permutation order is X3>X1>X2>X4>X5.

    3.3 Results of SVM

    For further research on the non-linear relationship betweenthe thermal conductivity and the molecular structure,SVM was proposed for the non-linear model.Descriptors were selected by HM as input and the thermal conductivity as output. It is difficult to choose related parameters when SVM is developed to predict.Inappropriate parameter selection can make a serious impact on the precision or accuracy of the prediction.

    Table 2 Selected descriptors and statistical parameters

    Fig.3 Comparison between the predicted and experimental lnTC by HM for test set

    RBF was chosen as a kernel function for appropriate related parameters which is most widely used at present.23-25Grid point search(GS)was applied to choose the best parameter combination.The search range of C and γ named the width of RBF, were both from 2-8to 28,and the step length was 1.Then the best coefficient was determined on the basis of Q2loocalculated by leave-one-out cross-validation for the training set.The optimal parameters are displayed as follows:C=256,γ=0.2500,ε= 0.1.The main performance parameters are presented in Table 3 and the comparison between the predicted and the experimental values are shown in Fig.4.

    3.4 Comparison and analysis of the results

    From Fig.3 and Fig.4,one can see that the calculated conversion values of HM and SVM are in good agreement with the experimental ones(Table 4),and the prediction accuracy is satisfying.As shown in Table 3,RMSE and AAE of HM and SVM are both small for the test set,and compared the training set with the test one,the prediction error is close to each other. This depicts that the constructed models have not only higher prediction ability but also better generalization performance than previous ones.

    In addition,the specific calculation results of relative errorfor HM and SVM are shown in Fig.5.In terms of HM,the mean relative error is 0.7961%and the maximum relative error is 2.986%.The relative errors of 52 compounds are smaller than 0.5%,whose number accounts for about 35%of the whole samples.For SVM,the mean relative error is 0.7435% and the maximum relative error is 2.965%.The relative errors of 70 compounds are smaller than 0.5%,whose number accounts for more than 50%of the whole samples.Compared with HM,the number of larger prediction error in SVM is significantly reduced.The data in Table 3 reveals that for the training set,R2of SVM is a bit smaller than that of HM,but for the test set,R2of SVM is higher than that of HM;however,prediction ability is regarded more important,therefore,SVM model for the thermal conductivity is better than HM model.

    Table 3 Performance comparison between the results of two models

    Fig.4 Comparison between the predicted and experimental lnTC by SVM for test set

    Although prediction effect of the two models in this study is satisfying,abnormal values still exist.Abnormal values(Table 5)severely influence the prediction performance of the models.If abnormal values of HM and SVM are screened,the performance of the models is greatly improved.

    Further residual analysis on the test set of the two models was performed(Fig.6).The residuals of HM model and SVM model are both randomly distributed in both sides of the line. Thus it can be concluded that the system error is not produced in the built process for HM model and SVM model,and the built models are very robust.

    Fig.5 Number of compounds for each interval and the percent errors obtained by HM and SVM

    Table 4 Experimental and predicted lnTC by HM and SVM

    Table 5 Abnormal values of predicted ln(TC/(mW·m-1·K-1))

    Fig.6 Comparative residuals vs experimental lnTC of test set for the HM and SVM models

    4 Conclusions

    (1)HM in software CODESSA not only screens molecular descriptors but also builds a linear model in this paper.Then SVM constructs a non-linear model with the screened descriptors.The two models are satisfying;especially SVM has stronger ability to predict.

    (2)Analysis of the screened abnormal values and the residual figure can improve the built model and make the model robust.

    (3)The interpretation of the models indicates that the influential factors are solvent-accessible surface area of H-bonding donor H atoms,fractional atomic charge,weighted partial positive surface area,relative number of C atoms,and relative molecular weight.Of all the factors,solvent-accessible surface area of H-bonding donor H atoms,fractional atomic charge,and weighted partial positive surface area are primary ones.

    (1) Gao,S.;Cao,C.Z.Acta Phys.-Chim.Sin.2006,22,1478. [高 碩,曹晨忠.物理化學(xué)學(xué)報,2006,22,1478.]doi:10.3866/ PKU.WHXB20061209

    (2) Khajeh,A.;Modarress,H.Struct.Chem.2011,22,1315.doi: 10.1007/s11224-011-9828-6

    (3) Rides,M.;Morikawa,J.;Halldahl,L.;Hay,B.;Lobo,H.; Dawson,A.;Allen,C.Polymer Testing 2009,28,480.doi: 10.1016/j.polymertesting.2009.03.002

    (4) Coquard,R.;Panel,B.Int.J.Therm.Sci.2009,48,747.doi: 10.1016/j.ijthermalsci.2008.06.005

    (5) Huang,L.H.;Liu,L.S.J.Food Eng.2009,95,179.doi: 10.1016/j.jfoodeng.2009.04.024

    (6) Nagasaka,Y.;Nagashima,A.Rev.Sci.Instrum.1981,52,229. doi:10.1063/1.1136577

    (7) Sastri,S.R.S.;Rao,K.K.Chem.Eng.J.1999,74,161.

    (8)Toropov,A.A.;Toropova,A.P.;Benfenati,E.J.Math.Chem. 2009,46,1060.doi:10.1007/s10910-008-9491-3

    (9) Shi,J.J.;Chen,L.P.;Shi,N.;Xu,W.;Yang,H.;Chen,W.H. China Safety Science Journal 2011,21,125.[時靜潔,陳利平,石 寧,徐 偉,楊 惠,陳網(wǎng)樺.中國安全科學(xué)學(xué)報,2011, 21,125.]

    (10)Tamm,K.;Burk,P.J.Mol.Model.2006,12,417.doi:10.1007/ s00894-005-0062-2

    (11) Gharagheizi,F.Comput.Mater.Sci.2007,40,159.doi:10.1016/ j.commatsci.2006.11.010

    (12) Gong,Z.G.;Zhang,R.S.;Xia,B.B.;Hu,R.J.;Fan,B.T. QSAR Comb.Sci.2008,27,1282.doi:10.1002/qsar.200860027 (13)Lu,P.;Wei,X.;Zhang,R.S.;Yuan,Y.G.;Gong,Z.G.Med. Chem.Res.2011,20,1220.doi:10.1007/s00044-010-9431-1

    (14)Long,W.;Liu,P.X.;Li,X.R.;Xu,Y.;Yu,J.;Ma,S.T.;Yu,L. L.;Zou,Z.M.J.Chemometrics 2009,23,304.doi:10.1002/ cem.1235

    (15) Bini,R.;Malvaldi,M.;Pitner,W.R.;Chiappe,C.J.Phys.Org. Chem.2008,21,622.doi:10.1002/poc.1337

    (16) Pan,Y.Research on Prediction Model and Quantitative Relationship between the Structures and Flammability Characteristics of Organic Compounds.Ph.D.Dissertation, Nanjing University of Technology,Nanjing,2009. [潘 勇.有機(jī)物定量結(jié)構(gòu)-燃爆特性相關(guān)性及預(yù)測模型研究[D].南京:南京工業(yè)大學(xué),2009.]

    (17)Katritzky,A.R.;Lobanov,V.S.;Karelson,M.CODESSA Version2.0 Reference Manual;University of Florida:Florida, 1995-1997.

    (18) Vapnik,V.N.The Nature of Statistical Learning Theory;Wiley: New York,1998.

    (19) Ojha,P.K.;Mitra,I.;Das,R.N.;Roy,K.Chemomet.Intell. Lab.Syst.2011,107,194.doi:10.1016/j.chemolab.2011.03.011

    (20) Roy,K.;Mitra,I.;Kar,S.J.Chem.Inf.Model.2012,52,396. doi:10.1021/ci200520g

    (21)Pinheiro,L.M.V.;Ventura,M.C.M.M.;Moita,M.L.C.J.J. Mol.Liq.2010,154,102.doi:10.1016/j.molliq.2010.04.013

    (22) Strouf,O.Chemical Pattern Recognition;Wilely:New York 1986.

    (23) Lin,S.L.;Liu,Z.Journal of Zhejiang University of Technology 2007,35,163.[林升梁,劉 志.浙江工業(yè)大學(xué)學(xué)報,2007, 35,163.]

    (24) Pan,Y.;Jiang,J.C.;Wang,R.;Cao,H.Y.;Cui,Y.J.Hazard. Mater.2009,164,1242.doi:10.1016/j.jhazmat.2008.09.031

    (25)Yang,H.;Chen,L.P.;Xie,C.X.;Shi,N.;Chen,W.H.Fire Safety Science 2011,20,62.[楊 惠,陳利平,謝傳欣,石 寧,陳網(wǎng)樺.火災(zāi)科學(xué),2011,20,62.]

    July 16,2012;Revised:September 10,2012;Published on Web:September 27,2012..

    Prediction of the Thermal Conductivity of Organic Compounds Using Heuristic and Support Vector Machine Methods

    SHI Jing-Jie1,2CHEN Li-Ping1CHEN Wang-Hua1,*SHI Ning2YANG Hui1XU Wei2
    (1Department of Safety Engineering,School of Chemical Engineering,Nanjing University of Science&Technology,Nanjing 210094, P.R.China;2State Key Laboratory of Chemical Safety and Control,Qingdao 266071,Shandong Province,P.R.China)

    To build the quantitative structure-property relationship(QSPR)between the molecular structures and the thermal conductivities of 147 organic compounds and investigate which structural factors influence the thermal conductivity of organic molecules,the topological,constitutional,geometrical, electrostatic,quantum-chemical,and thermodynamic descriptors of the compounds were calculated using the CODESSA software package,where these descriptors were pre-selected by the heuristic method (HM).The dataset of 147 organic compounds was randomly divided into a training set(118),and a test set (29).As a result,a five-descriptor linear model was constructed to describe the relationship between the molecular structures and the thermal conductivities.In addition,a non-linear regression model was built based on the support vector machine(SVM)with the same five descriptors.It was concluded that,although the fitting performance of the SVM model(squared correlation coefficient,R2=0.9240)was slightly worse than that of the HM model(R2=0.9267),the predictive performance of the SVM model(R2=0.9682)was better than that of the HM model(R2=0.9574).As the predictive parameter is more important than the fitting parameter,it can be seen that the SVM model is superior to the HM model.The proposed methods(SVM and HM)can be successfully used to predict the thermal conductivity of organic compounds with pre-selected theoretical descriptors,which can be directly calculated solely from the molecular structure.

    Heuristic method; Support vector machine; Thermal conductivity;Prediction;QSPR

    10.3866/PKU.WHXB201209273

    O641

    ?Corresponding author.Email:chenwh_nust@163.com;Tel:+86-25-84315526.

    The project was supported by the National Key Basic Research Program of China(973)(2010CB735510).

    國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2010CB735510)資助

    猜你喜歡
    熱導(dǎo)率南京向量
    南京比鄰
    “南京不會忘記”
    空位缺陷對單層石墨烯導(dǎo)熱特性影響的分子動力學(xué)
    向量的分解
    聚焦“向量與三角”創(chuàng)新題
    連續(xù)碳纖維鋁基復(fù)合材料橫向等效熱導(dǎo)率的模擬分析
    Si3N4/BN復(fù)合陶瓷熱導(dǎo)率及其有限元分析
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    又是磷復(fù)會 又在大南京
    向量垂直在解析幾何中的應(yīng)用
    欧美日本视频| 国产不卡一卡二| 日本-黄色视频高清免费观看| 欧美区成人在线视频| 欧美区成人在线视频| 精品人妻偷拍中文字幕| 神马国产精品三级电影在线观看| 亚洲精品,欧美精品| 欧美日韩精品成人综合77777| 日本wwww免费看| 国产 一区精品| 亚洲国产精品专区欧美| 国产乱来视频区| 亚洲人与动物交配视频| 人妻系列 视频| 中文字幕精品亚洲无线码一区| 91精品国产九色| 欧美3d第一页| 亚洲精品456在线播放app| 国产精品美女特级片免费视频播放器| 成年免费大片在线观看| 国产一级毛片在线| 亚洲国产精品国产精品| 国产 一区 欧美 日韩| 赤兔流量卡办理| 国产午夜精品一二区理论片| 少妇熟女aⅴ在线视频| 夜夜看夜夜爽夜夜摸| 汤姆久久久久久久影院中文字幕 | 国产黄色视频一区二区在线观看 | 91aial.com中文字幕在线观看| 少妇丰满av| 免费电影在线观看免费观看| 亚洲av电影在线观看一区二区三区 | 国产伦在线观看视频一区| 又粗又爽又猛毛片免费看| 91aial.com中文字幕在线观看| 26uuu在线亚洲综合色| 亚洲欧美成人综合另类久久久 | 亚洲国产成人一精品久久久| 在线播放国产精品三级| 国产精品蜜桃在线观看| 亚洲人与动物交配视频| 亚洲人与动物交配视频| 成人亚洲精品av一区二区| 亚洲精品乱码久久久v下载方式| 午夜久久久久精精品| a级一级毛片免费在线观看| 搞女人的毛片| 国产老妇女一区| 中文天堂在线官网| av播播在线观看一区| 久久久久久伊人网av| АⅤ资源中文在线天堂| 亚洲av一区综合| 最后的刺客免费高清国语| 国产中年淑女户外野战色| 免费观看精品视频网站| 午夜福利在线在线| 岛国在线免费视频观看| 99久久人妻综合| 久久鲁丝午夜福利片| 深夜a级毛片| 视频中文字幕在线观看| 中文字幕制服av| 伊人久久精品亚洲午夜| 搡女人真爽免费视频火全软件| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 色综合色国产| 七月丁香在线播放| 人妻少妇偷人精品九色| 欧美+日韩+精品| 精品人妻视频免费看| 综合色丁香网| 亚洲国产精品国产精品| 亚洲国产高清在线一区二区三| 国产伦精品一区二区三区视频9| 日韩欧美三级三区| 亚洲成人久久爱视频| 韩国高清视频一区二区三区| 国产淫语在线视频| 久久99蜜桃精品久久| 九九热线精品视视频播放| 少妇人妻精品综合一区二区| 色5月婷婷丁香| 日本色播在线视频| 久久韩国三级中文字幕| 国产高清三级在线| 精品不卡国产一区二区三区| 精品人妻偷拍中文字幕| 国产av在哪里看| 亚洲精品成人久久久久久| 欧美bdsm另类| 国产成人福利小说| 久久韩国三级中文字幕| 99热6这里只有精品| 久久久久久久久久久丰满| 亚洲成av人片在线播放无| 国产高清不卡午夜福利| 国产亚洲5aaaaa淫片| 免费播放大片免费观看视频在线观看 | 亚洲内射少妇av| 91精品伊人久久大香线蕉| 国产精品一区www在线观看| 久久久久久久国产电影| 国产精品不卡视频一区二区| eeuss影院久久| 亚洲精品影视一区二区三区av| av黄色大香蕉| 中文天堂在线官网| 18禁在线播放成人免费| 国产在线一区二区三区精 | 两个人视频免费观看高清| 亚洲av电影不卡..在线观看| 国产熟女欧美一区二区| 久久人人爽人人爽人人片va| 熟女人妻精品中文字幕| 国内精品一区二区在线观看| 久久这里只有精品中国| 亚洲av免费高清在线观看| 麻豆一二三区av精品| 村上凉子中文字幕在线| 亚洲婷婷狠狠爱综合网| 精品久久久久久久人妻蜜臀av| 欧美丝袜亚洲另类| 精品久久久噜噜| 国产免费一级a男人的天堂| 热99在线观看视频| 久久综合国产亚洲精品| 一级av片app| 亚洲欧美成人精品一区二区| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久黄片| 天美传媒精品一区二区| 男插女下体视频免费在线播放| 欧美成人精品欧美一级黄| 欧美97在线视频| 精品国产一区二区三区久久久樱花 | 内射极品少妇av片p| 亚洲激情五月婷婷啪啪| 国产精品一区二区三区四区久久| 亚洲aⅴ乱码一区二区在线播放| 51国产日韩欧美| 欧美一级a爱片免费观看看| 亚洲av日韩在线播放| 欧美一区二区国产精品久久精品| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 国产成人福利小说| 成年av动漫网址| 日本黄色视频三级网站网址| 中文字幕熟女人妻在线| 国产亚洲av片在线观看秒播厂 | 哪个播放器可以免费观看大片| 天天躁日日操中文字幕| 国产日韩欧美在线精品| 国产一区二区三区av在线| 卡戴珊不雅视频在线播放| 国产大屁股一区二区在线视频| 成人毛片60女人毛片免费| 中国国产av一级| 极品教师在线视频| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 久久久a久久爽久久v久久| 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| 最近最新中文字幕大全电影3| 又粗又爽又猛毛片免费看| 91在线精品国自产拍蜜月| 最近最新中文字幕大全电影3| 中文字幕av成人在线电影| 校园人妻丝袜中文字幕| 国产一区有黄有色的免费视频 | 久久久久精品久久久久真实原创| 日韩 亚洲 欧美在线| 天天一区二区日本电影三级| 国产黄a三级三级三级人| 免费黄色在线免费观看| 美女被艹到高潮喷水动态| 国产乱人视频| 国国产精品蜜臀av免费| 男人和女人高潮做爰伦理| 观看免费一级毛片| 日本黄大片高清| 有码 亚洲区| 久久久国产成人免费| 午夜免费男女啪啪视频观看| 亚洲色图av天堂| 亚洲国产精品sss在线观看| 男女视频在线观看网站免费| 乱系列少妇在线播放| 青春草视频在线免费观看| 国产免费福利视频在线观看| 在线观看一区二区三区| av在线播放精品| 亚洲国产精品国产精品| 免费观看在线日韩| 国产成人免费观看mmmm| av国产久精品久网站免费入址| 亚洲人成网站在线播| 老司机影院毛片| 搡女人真爽免费视频火全软件| av在线天堂中文字幕| 国产精品久久久久久久久免| 国产精品国产高清国产av| 免费观看a级毛片全部| 国产精品爽爽va在线观看网站| 亚洲欧美一区二区三区国产| 精品国内亚洲2022精品成人| 午夜福利在线观看免费完整高清在| 色吧在线观看| 性插视频无遮挡在线免费观看| 成人亚洲精品av一区二区| 九草在线视频观看| 亚洲成人中文字幕在线播放| 欧美性感艳星| 韩国高清视频一区二区三区| 搞女人的毛片| 免费观看a级毛片全部| 日日摸夜夜添夜夜爱| 高清毛片免费看| 中文字幕av在线有码专区| 三级男女做爰猛烈吃奶摸视频| 精品国产露脸久久av麻豆 | 日本黄大片高清| 天堂√8在线中文| 日韩亚洲欧美综合| 级片在线观看| 精品国产一区二区三区久久久樱花 | 身体一侧抽搐| 国产精品一区二区三区四区久久| 亚洲va在线va天堂va国产| 直男gayav资源| 国产精品乱码一区二三区的特点| 哪个播放器可以免费观看大片| 免费观看人在逋| 久久久精品大字幕| 高清日韩中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 国产高潮美女av| 丝袜美腿在线中文| 亚洲在久久综合| 国产成人福利小说| 最近最新中文字幕大全电影3| 2022亚洲国产成人精品| 深爱激情五月婷婷| 国产亚洲一区二区精品| 亚洲色图av天堂| 亚洲自偷自拍三级| 国产美女午夜福利| 亚洲人成网站在线观看播放| 中文字幕av成人在线电影| 精品一区二区三区视频在线| 免费人成在线观看视频色| 寂寞人妻少妇视频99o| 变态另类丝袜制服| 亚洲国产精品成人久久小说| 一级爰片在线观看| 亚洲av日韩在线播放| 国产精品日韩av在线免费观看| 亚洲欧美中文字幕日韩二区| 国产一区有黄有色的免费视频 | 欧美变态另类bdsm刘玥| 国内少妇人妻偷人精品xxx网站| 国产高清国产精品国产三级 | 精品人妻一区二区三区麻豆| 欧美激情久久久久久爽电影| 久久精品夜夜夜夜夜久久蜜豆| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 国产熟女欧美一区二区| 国产一区二区在线av高清观看| 国产成人aa在线观看| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 亚洲精品影视一区二区三区av| av在线老鸭窝| 日韩欧美 国产精品| 欧美一区二区国产精品久久精品| 久久99热6这里只有精品| 国产午夜精品论理片| 色噜噜av男人的天堂激情| 国语对白做爰xxxⅹ性视频网站| 伦精品一区二区三区| 国产成人福利小说| 大又大粗又爽又黄少妇毛片口| 搡女人真爽免费视频火全软件| 亚洲一区高清亚洲精品| 波多野结衣高清无吗| 春色校园在线视频观看| 中文亚洲av片在线观看爽| 一区二区三区四区激情视频| 国产精品乱码一区二三区的特点| 欧美一区二区亚洲| 国产成人一区二区在线| 乱人视频在线观看| 国产激情偷乱视频一区二区| 日本猛色少妇xxxxx猛交久久| 中文字幕人妻熟人妻熟丝袜美| 精品人妻偷拍中文字幕| 91精品伊人久久大香线蕉| 午夜精品一区二区三区免费看| 小说图片视频综合网站| 亚洲熟妇中文字幕五十中出| 日本黄色片子视频| 久久精品91蜜桃| 一级毛片电影观看 | 久久久久久久久中文| 91aial.com中文字幕在线观看| 欧美成人a在线观看| 久久这里有精品视频免费| 亚洲精品成人久久久久久| 禁无遮挡网站| 看黄色毛片网站| 美女大奶头视频| 在现免费观看毛片| 国产成人午夜福利电影在线观看| 亚洲国产欧美人成| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站 | 中文欧美无线码| 国产美女午夜福利| 午夜日本视频在线| 一级黄片播放器| 天天躁夜夜躁狠狠久久av| 午夜精品在线福利| 纵有疾风起免费观看全集完整版 | 丝袜美腿在线中文| a级一级毛片免费在线观看| 国产三级在线视频| 国产亚洲最大av| 欧美另类亚洲清纯唯美| 欧美日韩一区二区视频在线观看视频在线 | 国产免费视频播放在线视频 | 成人一区二区视频在线观看| 欧美区成人在线视频| 国产精品一区二区三区四区久久| 18禁在线无遮挡免费观看视频| 插阴视频在线观看视频| 免费人成在线观看视频色| 国产 一区精品| 美女cb高潮喷水在线观看| 日韩欧美在线乱码| 国内揄拍国产精品人妻在线| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 亚洲欧洲日产国产| 久久精品国产99精品国产亚洲性色| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩无卡精品| 九色成人免费人妻av| 欧美成人一区二区免费高清观看| 午夜精品国产一区二区电影 | 免费观看性生交大片5| 真实男女啪啪啪动态图| 黄片无遮挡物在线观看| 男人的好看免费观看在线视频| 中文字幕av在线有码专区| 人人妻人人澡欧美一区二区| 国产黄片视频在线免费观看| 亚洲天堂国产精品一区在线| 日本与韩国留学比较| 插阴视频在线观看视频| 91狼人影院| 中文精品一卡2卡3卡4更新| 麻豆av噜噜一区二区三区| 亚洲中文字幕日韩| 日本免费a在线| 国产探花在线观看一区二区| 黄片wwwwww| 人妻少妇偷人精品九色| 国产精品一区二区在线观看99 | 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 在线天堂最新版资源| 免费看美女性在线毛片视频| 午夜精品一区二区三区免费看| 看非洲黑人一级黄片| 中文字幕精品亚洲无线码一区| h日本视频在线播放| 99热网站在线观看| 欧美xxxx性猛交bbbb| 亚洲经典国产精华液单| 中文精品一卡2卡3卡4更新| 91精品国产九色| 久久久久久九九精品二区国产| 男女视频在线观看网站免费| 欧美高清成人免费视频www| 好男人在线观看高清免费视频| 尤物成人国产欧美一区二区三区| 91久久精品电影网| 免费看美女性在线毛片视频| 亚洲精品乱码久久久v下载方式| 欧美又色又爽又黄视频| 午夜精品在线福利| 白带黄色成豆腐渣| 中国国产av一级| 国产成人a区在线观看| 免费观看a级毛片全部| av女优亚洲男人天堂| 色网站视频免费| a级毛片免费高清观看在线播放| a级一级毛片免费在线观看| 淫秽高清视频在线观看| 在线播放无遮挡| 一个人免费在线观看电影| 国产毛片a区久久久久| 男女视频在线观看网站免费| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美精品自产自拍| 午夜爱爱视频在线播放| 国产三级在线视频| 99热这里只有精品一区| 我的女老师完整版在线观看| 美女被艹到高潮喷水动态| 久久精品综合一区二区三区| 国产免费男女视频| 久久午夜福利片| 日本免费在线观看一区| 国产精品一区www在线观看| 亚洲精品亚洲一区二区| 久热久热在线精品观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲美女视频黄频| 久热久热在线精品观看| 日本与韩国留学比较| 精品国内亚洲2022精品成人| 久久精品国产亚洲网站| 天堂中文最新版在线下载 | 熟妇人妻久久中文字幕3abv| 久久久久久大精品| 99久久精品一区二区三区| 最近视频中文字幕2019在线8| 成人综合一区亚洲| 久久久久久久久大av| 国产精品国产三级国产专区5o | 日本爱情动作片www.在线观看| 精品久久久久久久人妻蜜臀av| 国产成人91sexporn| 精品久久久久久久末码| 国产亚洲精品av在线| 中文字幕熟女人妻在线| 国产精品伦人一区二区| 最新中文字幕久久久久| 精品久久久噜噜| 久久久久久大精品| 小蜜桃在线观看免费完整版高清| 国产亚洲91精品色在线| 男女边吃奶边做爰视频| 视频中文字幕在线观看| 欧美97在线视频| 人妻夜夜爽99麻豆av| 99在线人妻在线中文字幕| 日本欧美国产在线视频| 天堂网av新在线| 91aial.com中文字幕在线观看| 午夜爱爱视频在线播放| av福利片在线观看| 色综合亚洲欧美另类图片| 精品一区二区三区视频在线| 免费观看在线日韩| 插阴视频在线观看视频| 黄色日韩在线| 男女视频在线观看网站免费| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 亚洲欧洲日产国产| 色尼玛亚洲综合影院| 日本色播在线视频| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 在线观看美女被高潮喷水网站| 国产 一区 欧美 日韩| 国产一区二区三区av在线| 国产美女午夜福利| 久久精品91蜜桃| 成人无遮挡网站| 联通29元200g的流量卡| 亚洲一级一片aⅴ在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产黄a三级三级三级人| 国产精品99久久久久久久久| 国产亚洲午夜精品一区二区久久 | 国产精品1区2区在线观看.| 亚洲av电影在线观看一区二区三区 | 日韩一本色道免费dvd| 成人鲁丝片一二三区免费| 国产精品久久久久久精品电影| 成人欧美大片| 丝袜美腿在线中文| 欧美精品一区二区大全| 干丝袜人妻中文字幕| 亚洲综合色惰| kizo精华| videossex国产| 日韩人妻高清精品专区| 国产麻豆成人av免费视频| 国产三级中文精品| 免费黄色在线免费观看| 寂寞人妻少妇视频99o| 狠狠狠狠99中文字幕| av在线亚洲专区| or卡值多少钱| 中文字幕av在线有码专区| 日韩欧美三级三区| 午夜久久久久精精品| 亚洲欧洲日产国产| 成年版毛片免费区| 99在线视频只有这里精品首页| 国产 一区精品| 又黄又爽又刺激的免费视频.| or卡值多少钱| 国产老妇女一区| 水蜜桃什么品种好| 亚洲欧洲国产日韩| 国产欧美日韩精品一区二区| 两个人视频免费观看高清| 最近中文字幕2019免费版| 国产高清不卡午夜福利| 国产成人精品婷婷| 高清在线视频一区二区三区 | 91精品伊人久久大香线蕉| 永久免费av网站大全| 晚上一个人看的免费电影| 亚洲熟妇中文字幕五十中出| 天天一区二区日本电影三级| 亚洲欧美日韩高清专用| 美女大奶头视频| 欧美一级a爱片免费观看看| 日韩成人av中文字幕在线观看| 免费观看在线日韩| 国产单亲对白刺激| 精品午夜福利在线看| 一个人看视频在线观看www免费| 亚洲国产精品成人综合色| 三级经典国产精品| 欧美激情在线99| 天天一区二区日本电影三级| 嫩草影院新地址| 伦精品一区二区三区| 在线观看美女被高潮喷水网站| 日韩成人伦理影院| 免费观看人在逋| 成年女人看的毛片在线观看| 成人鲁丝片一二三区免费| 国产成年人精品一区二区| 亚洲,欧美,日韩| 毛片女人毛片| 亚洲国产精品sss在线观看| 又黄又爽又刺激的免费视频.| 一个人免费在线观看电影| 大话2 男鬼变身卡| 一卡2卡三卡四卡精品乱码亚洲| 精品午夜福利在线看| 成人高潮视频无遮挡免费网站| 在线免费十八禁| 黄片wwwwww| 午夜久久久久精精品| 高清av免费在线| 日韩在线高清观看一区二区三区| 男女边吃奶边做爰视频| 亚洲人成网站高清观看| 亚洲欧洲国产日韩| 欧美另类亚洲清纯唯美| 色综合亚洲欧美另类图片| 美女被艹到高潮喷水动态| 一夜夜www| 成人毛片a级毛片在线播放| 久久久久久久国产电影| 亚洲精品国产成人久久av| 在线观看66精品国产| 日韩一区二区三区影片| 日韩三级伦理在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 在现免费观看毛片| 国产一区二区在线观看日韩| 天堂影院成人在线观看| АⅤ资源中文在线天堂| av在线亚洲专区| 狠狠狠狠99中文字幕| 看十八女毛片水多多多| 午夜福利在线观看吧| 大话2 男鬼变身卡| 秋霞在线观看毛片| 国产三级在线视频| 内地一区二区视频在线| 亚洲国产欧美在线一区| 老女人水多毛片| 亚洲av免费在线观看| 赤兔流量卡办理| 国产高清有码在线观看视频| .国产精品久久| 在线免费十八禁| 蜜臀久久99精品久久宅男| 韩国高清视频一区二区三区| 搡女人真爽免费视频火全软件| 97超碰精品成人国产| 国内精品宾馆在线| 久久亚洲精品不卡| 欧美日韩国产亚洲二区| 亚洲欧美中文字幕日韩二区| 亚洲综合色惰| 久久鲁丝午夜福利片| 精品无人区乱码1区二区| 免费电影在线观看免费观看| 人妻制服诱惑在线中文字幕| 秋霞在线观看毛片| 中文精品一卡2卡3卡4更新| 亚洲成色77777| 久久精品国产99精品国产亚洲性色| 亚洲国产欧美人成| 你懂的网址亚洲精品在线观看 |