• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    靜電紡絲法制備的鈷酸鎳微米帶的磁性以及電化學(xué)性能

    2012-12-11 09:09:54朱福良趙景新程永亮李海寶閻興斌
    物理化學(xué)學(xué)報(bào) 2012年12期
    關(guān)鍵詞:物理化學(xué)紡絲結(jié)果顯示

    朱福良 趙景新 程永亮 李海寶 閻興斌,*

    (1蘭州理工大學(xué)材料科學(xué)與工程學(xué)院,蘭州730050; 2中國科學(xué)院蘭州化學(xué)物理研究所,清潔能源化學(xué)與材料實(shí)驗(yàn)室,蘭州730000)

    靜電紡絲法制備的鈷酸鎳微米帶的磁性以及電化學(xué)性能

    朱福良1,*趙景新1,2程永亮2李海寶1閻興斌2,*

    (1蘭州理工大學(xué)材料科學(xué)與工程學(xué)院,蘭州730050;2中國科學(xué)院蘭州化學(xué)物理研究所,清潔能源化學(xué)與材料實(shí)驗(yàn)室,蘭州730000)

    通過直接退火靜電紡絲前驅(qū)樣品以及調(diào)節(jié)升溫速率最終得到了鈷酸鎳(NiCo2O4)微米帶.通過X射線衍射、掃描電鏡、振動(dòng)樣品磁強(qiáng)計(jì)以及電化學(xué)工作站等分析手段對鈷酸鎳微米帶的晶體結(jié)構(gòu)、形貌、磁學(xué)性能以及電化學(xué)性能進(jìn)行了研究.結(jié)果顯示,以1°C·min-1的升溫速率得到的NiCo2O4微米帶屬于立方尖晶石結(jié)構(gòu),高溫處理后仍能保持一維結(jié)構(gòu).室溫磁化結(jié)果顯示制備的NiCo2O4微米帶具有超順磁性,在10 kOe時(shí)磁化強(qiáng)度為6.35 emu·g-1.此外,電化學(xué)測試結(jié)果顯示,NiCo2O4微米帶的電容特性是典型的贗電容,并且比電容隨著放電電流密度的增加而減小.

    NiCo2O4;微米帶;磁學(xué)性能;電化學(xué)性能;倍率性能

    1 Introduction

    Recently,the synthesis of magnetic nanomaterials has become an important research field because of their various structures affording various novel properties,which should be useful in a variety of applications including catalysts,1,2information storage media,3electronic device,4medicine,5and gas sen-sors.6So far,many diverse methods have been reported for the preparation of magnetic nanomaterials including template method,7sol-gel,8co-precipitation,9-11and combustion synthesis,12which are interesting and attract much research attention. However,these preparation methods often suffer from tedious procedures and special conditions.Furthermore,agglomeration and wide particle size distribution are the drawbacks associated with most of these methods.From the viewpoint of fundamental research,the development of simple and efficient methods for fabricating magnetic nanostructures at low cost is a great challenge for further practical applications.

    As one of the most important magnetic materials,the magnetic behavior of cobaltate nickel(NiCo2O4)has drawn much interest owing to its broad applications in many fields including electrochemical immunosensors,electrocatalysis,and magnetic hyperthermia.13-15To date,NiCo2O4nanostructural materials with various morphologies have been reported,such as nanoparticles,12,15nanopowders,16,17nanofibers,18nanoflakes,19nanoplates,20nanorods,19and nanowires.21However,NiCo2O4microbelts have never been reported in literature.

    Recently,electrospinning has been widely used as a convenient and facile method to prepare various solid fibers with the diameter ranging from tens of nanometers to several micrometers.Also,by using tubes by fiber template(TUFT) process,22-24coaxial electrospinning,25-27and single nozzle coelectrospinning technique,28,29microbelts can be prepared.However,these methods usually need multi-steps process,strictly control the rate between core and shell solutions,and choose different polymers to generate phase separation.Therefore,it is necessary to develop a simple and one-step electrospinning method to prepare microbelts.

    In this work,electrospinning synthesis route was successfully utilized to produce superparamagnetic crystalline NiCo2O4microbelts with high uniformity.Compared with above mentioned methods,only simple electrospinning and calcination are required.After that,the magnetic properties of as-made NiCo2O4microbelts calcined at 500°C were investigated using vibrating sample magnetometer in detail.Also,the electrochemical propertiesof theNiCo2O4sampleswereinvestigated.

    2 Experimental

    2.1 Materials

    Polyvinylpyrrolidone(PVP,K-30,Mw=3×104)was purchased from Tianjin Tiantai Fine Chemical Co.,Ltd.Ni(NO3)2·6H2O (≥98.0%(w),purchased from Xi?an Chemical Reagent Co., Ltd.),Co(NO3)2·6H2O(≥99.0%(w),purchased from Tianjin Fengyue Chemical Co.,Ltd)and ethanol(C2H5OH,analytical reagentgrade(AR),≥99.7%(w),purchased from Tianjin Rionlon BoHua Medical Chemistry Co.,Ltd.,China)were used as received.KOH(AR,≥85%(w))was otained commercially from BASF Chemical Co.,Ltd.of Tianjin.The conducting graphite(fixed carbon content≥99.9%(atom fraction))and the acetylene black(≥99.99%(w))were obtained commercially from SCM Industrial Chemical Co.,Ltd.Polytetrafluoroethylene(PTFE)emulsion(30%(w))purchased from Bu A Ze Industry&Trade Co.,Ltd.,Shanghai.Other reagents were commercially available and were of analytical reagent grade.

    2.2 Preparation of NiCo2O4microbelts

    In the preparation of the NiCo2O4microbelts,1.45 g of Ni(NO3)2·6H2O and 2.91 g of Co(NO3)2·6H2O were added into a mixture of 2.5 mL of ethanol and 7.5 mL of water,then 7.59 g of PVP was added into the above solution to increase viscidity.After the mixture was magnetically stirred for several hours at room temperature(RT),a viscous light-pink clear solution of Ni(NO3)2/Co(NO3)2/PVP was obtained.The schematic of electrospinning apparatus is shown in Fig.1.In the subsequent electrospinning process,the precursor solution was then delivered into a plastic syringe equipped with a 7#stainless steel needle.The metallic needle was connected to a high-voltage power supply,and a piece of grounded aluminum foil was placed 15 cm between the tip of the needle and collector.As a high voltage of 15 kV was applied,the precursor solution jet accelerated toward the aluminum foil,leading to the formation of Ni(NO3)2/Co(NO3)2/PVP composite fibers accompanied by rapid evaporation of solvent.For the following thermolysis process,as-spun fibers were placed in a muffe furnace and calcined at 500°C for 2 h with a heating rate of 1°C·min-1to remove PVP and obtain NiCo2O4samples.

    2.3 Characterization

    Fig.1 Schematic diagram of electrospinning apparatus

    To analyze the crystal structures of the samples,X-ray diffraction(XRD)measurements were conducted on an X-ray diffractometer using Cu Kαradiation(XRD,Panalytical X?Pert Pro.,Holland)from 10°to 80°.The morphology and microstructures of the as-spun fibers and calcined samples were analyzed by the field-emission scanning electron microscope (FESEM,JSM-6701F,Japan).In addition,magnetic measurements were performed at RT using a vibrating sample magnetometer(VSM 7304,Lake Shore,USA)and the electrochemical measurements of each as-prepared electrode were carried out using an electrochemical working station(CHI660D,Shanghai, China)in a half-cell setup configuration at RT.The working electrodes were prepared according to the method reported in literature.30NiCo2O4powder(80%(mass fraction,the same below))was mixed with 7.5%of acetylene black(>99.9%)and 7.5%of conducting graphite in an agate mortar until a homogeneous black powder was obtained.To this mixture,5%of poly (tetrafluoroethylene)was added with a few drops of ethanol. After briefly allowing the solvent to evaporate,the resulting paste was pressed at 10 MPa to nickel gauze with a nickel wire for an electric connection.The electrode assembly was dried for 16 h at 80°C in air.Each NiCo2O4electrode contained about 5 mg of electroactive material and had a geometric surface area of about 1 cm2.Aplatinum gauze electrode and a saturated calomel electrode(SCE)served as the counter electrode and the reference electrode,respectively.The corresponding specific capacitance was calculated from the slope of each discharge curve,according to the equation SC=(I×Δt)/(ΔV×m),where SC is the specific capacitance,I is the constant discharge current,Δt is the discharge time,ΔV is the voltage difference in discharge,and m isthemass of NiCo2O4samplescoatedon eachwork electrode.

    3 Results and discussion

    3.1 XRD analysis

    The XRD pattern of the as-prepared NiCo2O4microbelts synthesized by electrospinning method is shown in Fig.2.It shows that all the diffraction reflections can be indexed to a cubic spinel NiCo2O4(JCPDS.073-1702)and no impurity phase was detected.Therefore,single phase NiCo2O4can be obtained by directly calcining electrospun composite samples.In addition, the average crystallite sizes calculated by the Scherer formula:

    D=0.9λ/(βcosθ)

    where D is the crystallite size(nm),β is the full width of the diffraction line at half the maximum intensity measured in radians,λ is the X-ray wavelength,and θ is the Bragg angle.From the formula,the NiCo2O4crystallite size is found to be around 15.74 nm.

    3.2 SEM characterization

    Fig.2 XRD patterns of NiCo2O4microbelts calcined at 500°C

    Fig.3 FESEM images of(a)precursor samples and(b)calcined NiCo2O4microbelts at 500°CInset in(b)shows the cross-section image of calcined NiCo2O4microbelts.

    Fig.3 shows the SEM images of as-spun precursor fibers and NiCo2O4microbelts prepared at 500°C.As shown in Fig.3(a), precursor samples exhibit ultra-fine belt morphology and the surfaces of the belts appear to be smooth and uniform due to amorphous nature.31,32The average length of most belts is up to tens of micrometers with the average diameter of approximately 3.31 μm.For the NiCo2O4belts,when the calcined temperature reaches 500°C(Fig.3(b)),compared with the precursor samples,although the NiCo2O4belts still maintain the original zonal morphology,the average diameter decreases to about 1.70 μm and the surfaces of the belts become rougher.The obvious shrinkage in diameter is mainly due to the removal of PVP and the decomposition of nitrate salts.The formation of rough surface is contributed to the growth of NiCo2O4nanocrystals at higher temperature.Moreover,the thickness of microbelts is also an important parameter.The cross-section image of NiCo2O4microbelts is shown in the inset of Fig.3(b),it is clearly seen that the thickness of NiCo2O4microbelts reaches 150 nm.All of the results indicate that the prepared NiCo2O4is a zonal structure.

    3.3 Magnetic property

    Fig.4 Room temperature magnetic hysteresis loops of NiCo2O4 microbelts calcined at 500°CInset shows the magnification at lower applied field.

    It is well-known that the magnetic behavior of nanomaterials is strongly affected by their morphology and size.31Fig.4 displays the RT hysteresis loops for the NiCo2O4microbelts calcined at 500°C.It is observed that the NiCo2O4microbelts reveal a typical superparamagnetic behavior.The microbelts calcined at 500°C have a magnetisation value of 6.35 emu·g-1at 10 kOe.Because the microbelts are composed of nanoparticles,the structural property of NiCo2O4nanoparticles and their interaction have significant influence on the magnetic property of the NiCo2O4microbelts.For magnetic nanoparticles,the structures of inner and surface are different,the former is usual spin arrangement,however,the latter atomic moment arrangement is disorder,which could change the surface coordination and break surface exchange bond,leading to the decrease of saturation magnetization(Ms)of nanoparticles.33

    Fig.5 Electrochemical properties of NiCo2O4microbelts calcined at 500°C(a)CV curves at different scan rates;(b)GCD curves at different current densities;(c)Nyquist plots

    3.4 Electrochemical property

    The electrochemical properties of the NiCo2O4microbelts were studied by cyclic voltammetry(CV),galvanostatic charge/ discharge(GCD),and electrochemical impedance spectroscopy (EIS).The CV curves of NiCo2O4microbelt electrodes taken between 0 and 0.5 V in 1 mol·L-1KOH electrolyte at different scan rates are shown in Fig.5(a).Non-rectangular form of CV curves is due to the pseudocapacitive contribution of NiCo2O4. Meanwhile,the current density increases with the increase of the voltage sweep rate.Fig.5(b)presents the typical GCD curves of the NiCo2O4electrodes in the potential range of 0 and 0.4 V in 1 mol·L-1KOH electrolyte at various current densities as indicated.The specific capacitance(SC)for NiCo2O4electrodes at various current densities can be calculated based on the galvanostatic discharge curves in Fig.5(b).Remarkably,the NiCo2O4microbelt electrode manifests acceptable values of SC of 245,240, 235,231,225,220,and 212 F·g-1at current densities of 1,2,4, 5,6,8,and 10A·g-1,respectively.EIS measurements were performed on the NiCo2O4electrodes and Nyquist plots are shown in Fig.5(c),which contain an arc in the high-frequency region and a sloped line in the low-frequency region.At the high-frequency,the arc is mainly caused by the formation of a solid electrolyte interface film and the charge transfer reaction at the electrode/electrolyte interface,respectively.At the low-frequency,a straight sloping line represents the diffusive resistance(Warburg impendence)of the electrolyte in electrode pores and the proton diffusion in the host material.34The spectrum shows a higher angle than 45°,suggesting the low diffusive resistance of the electrolyteinNiCo2O4materialelectrode.35,36

    Fig.6 Specific capacitance of NiCo2O4electrodes as a function of discharging current density

    Fig.6 reveals that the values of the specific capacitance for the NiCo2O4electrodes are strongly dependent on the current density.In detail,the specific capacitance slightly decreases with the increase of the current density.Up to a relatively large current density of 10 A·g-1,86.53%of the initial value remains for the NiCo2O4material.This indicates that the rate capability of the NiCo2O4in KOH electrolyte is nice,indicating that KOH is suitable for the NiCo2O4electrodes.

    The cycle life of the NiCo2O4electrode at the current density of 1 A·g-1in 1 mol·L-1KOH electrolyte was depicted in Fig.7. As shown in Fig.7,the specific capacitance of the NiCo2O4electrodes decreased gradually with the increase of the cycle number.It was seen that about 73.7%of original capacitance was retained after 500 cycles,exhibiting acceptable cycle ability for the NiCo2O4microbelts.The reduction of the specific capacitance was caused by the pseudocapacitance from the oxide.

    Fig.7 Cycle life of the NiCo2O4electrode at the current density of 1A·g-1

    4 Conclusions

    In summary,NiCo2O4have been successfully fabricated by direct calcination of electrospun precursor samples.Compared with other methods for preparing microbelts by electrospinning,only simple calcination of precursor samples is required. After high temperature treatment,the fibers still remain one-dimensional texture of 1.70 μm in diameter.Besides,the microbelts show a superparamagnetic behavior at room temperature with the magnetisation value of 6.35 emu·g-1at 10 kOe.Moreover,the electrochemical capacitances of NiCo2O4microbelts show the typical pseudocapacitive capacitance and the specific capacitance gradually decreases with the increase of discharge current density.The material has an acceptable rate capability in 1 mol·L-1KOH electrolyte,showing about 86.53%of its maximal capacitance at a current density of 10 A·g-1in GCD experiments.The highest specific capacitance of 245 F·g-1is observed in 1 mol·L-1KOH electrolyte at 1A·g-1.

    (1) Zhou,X.W.;Chen,Q.S.;Zhou,Z.Y.;Sun,S.G.J.Nanosci. Nanotechnol.2009,9,2392.doi:10.1166/jnn.2009.SE34

    (2)Gao,Y.Y.;Cao,D.X.;Wang,G.L.;Yin,C.L.ActaPhys.-Chim. Sin.2010,26,29.[高胤義,曹殿學(xué),王貴領(lǐng),尹翠蕾.物理化學(xué)學(xué)報(bào),2010,26,29.]doi:10.3866/PKU.WHXB20100102

    (3) Fried,T.;Shemer,G.;Markovich,G.Adv.Mater.2001,13, 1158.

    (4) Jolley,C.;Pool,V.;Idzerda,Y.;Douglas,T.Chem.Mater.2011, 23,2392.

    (5)Xu,Z.C.;Hou,Y.L.;Sun,S.H.J.Am.Chem.Soc.2007,129, 8698.

    (6) Zhong,J.Y.;Cao,C.B.Sens.Actuators B 2010,145,651.doi: 10.1016/j.snb.2010.01.016

    (7) Chaubal,N.S.;Joshi,V.Y.J.Porous.Mater.2011,18,177.doi: 10.1007/s10934-010-9368-2

    (8) Liu,X.H.;Wang,J.Q.;Zhang,J.Y.;Yang,S.G.Mater.Sci. Eng.A 2006,430,248.doi:10.1016/j.msea.2006.05.059

    (9) Lina,G.;Meng,G.Y.Mater.Res.Bull.2008,43,1555.doi: 10.1016/j.materresbull.2007.06.027

    (10) Mandzhukova,T.;Khrussanova,M.;Grigorova,E.;Stefanov,P.; Khristov,M.;Peshev,P.J.Alloy.Compd.2008,457,472.doi: 10.1016/j.jallcom.2007.03.006

    (11) Keng,C.S.;Tsin,L.K.;Zulkarnain,Z.Electrochim.Acta 2012, 67,67.doi:10.1016/j.electacta.2012.02.014

    (12) Verma,S.;Joshi,H.M.;Jagadale,T.;Chawla,A.;Chandra,R.; Ogale,S.J.Phys.Chem.C 2008,112,15106.doi:10.1021/ jp804923t

    (13) Li,Q.F.;Zeng,L.X.;Wang,J.C.;Tang,D.P.;Liu,B.Q.; Chen,G.N.;Wei,M.D.ACS Appl.Mater.Interfaces 2011,3, 1366.doi:10.1021/am200228k

    (14) Tavares,A.C.;Cartaxo,M.A.M.;Pereira,M.I.D.S.;Costa,F. M.J.Electroanal.Chem.1999,464,187.doi:10.1016/S0022-0728(99)00018-2

    (15) Sangeeta,N.K.;Anil,D.J.;Seema,V.Nanomed-Nanotechnol. 2012,8,452.doi:10.1016/j.nano.2011.07.010

    (16) Cabo,M.;Pellicer,E.;Rossinyol,E.;Estrader,M.;Ortega,A. L.;Nogues,J.;Castell,O.;Surinach,S.;Baro,M.D.J.Mater. Chem.2010,20,7021.doi:10.1039/c0jm00406e

    (17) Bao,J.Z.;Wang,S.L.Acta Phys.-Chim.Sin.2011,27,2849. [鮑晉珍,王森林.物理化學(xué)學(xué)報(bào),2011,27,2849.]doi:10.3866/ PKU.WHXB20112849

    (18)Guan,H.Y.;Shao,C.;Liu,Y.C.;Yu,N.;Yang,X.H.Solid State Electrochem.2004,131,107.

    (19) Salunkhe,R.R.;Jang,K.H.;Yu,H.;Yu,S.;Ganesh,T.;Han,S. H.;Ahn,H.J.Alloy.Compd.2011,509,6677.doi:10.1016/ j.jallcom.2011.03.136

    (20)Hu,L.F.;Wu,L.M.;Liao,M.Y.;Hu,X.H.;Fang,X.S.Adv. Funct.Mater.2012,22,998.doi:10.1002/adfm.v22.5

    (21)Yu,L.Q.;Chen,S.L.;Chang,S.;Li,Y.H.;Gao,Y.Y.;Wang, G.L.;Cao,D.X.Acta Phys.-Chim.Sin.2011,27,615.[于麗秋,陳書禮,常 莎,李云虎,高胤義,王貴領(lǐng),曹殿學(xué).物理化學(xué)學(xué)報(bào),2011,27,615.]doi:10.3866/PKU.WHXB20110317

    (22) Caruso,R.A.;Schauka,J.H.;Greiner,A.Adv.Mater.2001,13, 1577.doi:10.1002/1521-4095(200110)13:20<1577::AIDADMA1577>3.0.CO;2-S

    (23) Ochanda,F.;Jones,W.E.Langmuir 2005,21,10791.doi: 10.1021/la050911s

    (24)Kim,G.M.;Lee,S.M.;Michjler,G.H.;Roggendorf,H.; Güsele,U.;Knez,M.Chem.Mater.2008,20,3085.doi: 10.1021/cm703398b

    (25) Loscertales,I.G.;Banero,A.;Márquez,M.;Spretz,R.; Velardeortiz,R.;Larsen,G.J.Am.Chem.Soc.2004,126,5376. doi:10.1021/ja049443j

    (26) Zhan,S.H.;Chen,D.R.;Jiao,X.L.;Tao,C.H.J.Phys.Chem. B 2006,110,11199.doi:10.1021/jp057372k

    (27) Li,D.;Xia,Y.N.Nano Lett.2004,4,933.doi:10.1021/ nl049590f

    (28)Bazilevsky,A.V.;Yarm,A.L.;Meganridis,C.M.Langmuir 2007,23,2311.doi:10.1021/la063194q

    (29) Sanders,E.H.;Kloefkorn,R.;Bowlin,G.L.;Simpson,D.G.; Wnek,G.F.Macromolecules 2003,36,3803.doi:10.1021/ ma021771l

    (30)Lang,J.W.;Kong,L.B.;Liu,M.;Luo,Y.C.;Kang,L. J.Electrochem.Soc.2010,157,1341.doi:10.1149/1.3497298

    (31) Cheng,Y.L.;Zou,B.L.;Yang,J.L.;Wang,C.J.;Liu,Y.J.; Fan,X.Z.;Zhu,L.;Wang,Y.;Ma,H.M.;Cao,X.Q. CrystEngComm 2011,13,2268.doi:10.1039/c0ce00802h

    (32)Zhang,Z.Y.;Li,X.H.;Wang,C.H.;Wei,L.M.;Liu,Y.C.; Shao,C.L.J.Phys.Chem.C 2009,113,1939.doi:10.1021/ jp806088m

    (33) Pankhurst,O.A.;Polllard,R.J.Phys.Rev.Lett.1991,67,248. doi:10.1103/PhysRevLett.67.248

    (34) Sun,G.H.;Li,K.X.;Sun,C.G.Microporous Mesoporous Mat.2010,128,56.doi:10.1016/j.micromeso.2009.07.027

    (35) Xu,M.W.;Zhao,D.D.;Bao,S.J.;Li,H.L.J.Solid State Electrochem.2007,11,1101.doi:10.1007/s10008-006-0246-4

    (36) Zhang,S.S.;Xu,K.;Jow,T.R.Electrochim.Acta 2004,49, 1057.doi:10.1016/j.electacta.2003.10.016

    July 2,2012;Revised:September 6,2012;Published on Web:September 6,2012.

    Magnetic and Electrochemical Properties of NiCo2O4Microbelts Fabricated by Electrospinning

    ZHU Fu-Liang1,*ZHAO Jing-Xin1,2CHENG Yong-Liang2LI Hai-Bao1YAN Xing-Bin2,*
    (1School of Material Science and Engineering,Lanzhou University of Technology,Lanzhou 730050,P.R.China;2Laboratory of Clean Energy Chemistry and Materials,Lanzhou Institute of Chemical Physics,
    Chinese Academy of Sciences,Lanzhou 730000,P.R.China)

    Cobaltate nickel(NiCo2O4)microbelts were fabricated by direct calcination of electrospun precursor samples with an appropriate heating rate.The crystal structure,morphology,magnetic properties,and electrochemical properties of the NiCo2O4microbelts were investigated by X-ray diffraction, scanning electron microscopy,vibrating sample magnetometry,and electrochemical analysis.The results showed that a heating rate of 1°C·min-1resulted in the formation of cubic spinel NiCo2O4microbelts.After calcination at high temperatures,the microbelts retained their one-dimensional structure.Magnetization results indicated that the NiCo2O4microbelts were superparamagnetic and their magnetization value at 10 kOe was 6.35 emu·g-1.Moreover,the electrochemical results suggest that the capacitance of the NiCo2O4microbelts is typical pseudocapacitive capacitance,and the value of the specific capacitance gradually decreases with increasing discharge current density.

    NiCo2O4;Microbelt; Magnetic property;Electrochemical property;Rate capability

    10.3866/PKU.WHXB201209063

    *Corresponding authors.ZHU Fu-Liang,Email:chzfl@lut.cn;Tel:+86-931-9491509;Fax:+86-931-2976578.YAN Xing-Bin, Email:xbyan@licp.cas.cn;Tel/Fax:+86-931-4968055.

    The project was supported by the Natural Science Foundation of Gansu Province,China(3ZS042-B25-029)and National Natural Science Foundation of China(51005225).

    甘肅省自然科學(xué)基金(3ZS042-B25-029)和國家自然科學(xué)基金(51005225)資助項(xiàng)目

    O646

    猜你喜歡
    物理化學(xué)紡絲結(jié)果顯示
    同軸靜電紡絲法制備核-殼復(fù)合納米纖維
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    靜電紡絲法制備正滲透膜材料
    云南化工(2021年7期)2021-12-21 07:27:36
    最嚴(yán)象牙禁售令
    Chemical Concepts from Density Functional Theory
    新聞眼
    金融博覽(2016年7期)2016-08-16 18:44:41
    第四次大熊貓調(diào)查結(jié)果顯示我國野生大熊貓保護(hù)取得新成效
    綠色中國(2016年1期)2016-06-05 09:02:59
    靜電紡絲制備PVA/PAA/GO三元復(fù)合纖維材料
    數(shù)字直流調(diào)速器6RA70在紡絲牽伸系統(tǒng)中的應(yīng)用
    美女脱内裤让男人舔精品视频| 观看美女的网站| 男女无遮挡免费网站观看| 亚洲欧美成人综合另类久久久| 亚洲精品456在线播放app| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 免费观看av网站的网址| 好男人视频免费观看在线| 五月开心婷婷网| 六月丁香七月| 欧美日韩综合久久久久久| 黄色一级大片看看| .国产精品久久| 久久久久久久久久人人人人人人| 一二三四中文在线观看免费高清| 岛国毛片在线播放| 欧美日韩视频高清一区二区三区二| 久久亚洲国产成人精品v| 日韩强制内射视频| a级片在线免费高清观看视频| 亚洲精品一二三| 亚洲国产精品999| 大香蕉97超碰在线| 亚洲欧美一区二区三区黑人 | 中国三级夫妇交换| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 国产一区有黄有色的免费视频| 亚洲自偷自拍三级| 在线观看免费视频网站a站| 久久久精品94久久精品| 人妻一区二区av| 国精品久久久久久国模美| 亚洲经典国产精华液单| 国产av精品麻豆| 欧美变态另类bdsm刘玥| 91精品国产九色| 我要看黄色一级片免费的| 国产精品一区二区在线不卡| 亚洲精品国产色婷婷电影| 亚洲欧美日韩东京热| 亚洲精品国产av成人精品| 亚洲激情五月婷婷啪啪| 91精品国产九色| 各种免费的搞黄视频| 久久毛片免费看一区二区三区| 青青草视频在线视频观看| 女性生殖器流出的白浆| 日韩亚洲欧美综合| 视频中文字幕在线观看| 一级片'在线观看视频| 欧美日韩在线观看h| 九九在线视频观看精品| av视频免费观看在线观看| 丝瓜视频免费看黄片| 高清在线视频一区二区三区| 久久人人爽av亚洲精品天堂| 免费观看在线日韩| 久久99精品国语久久久| 如何舔出高潮| 日韩av免费高清视频| 麻豆成人av视频| 大片免费播放器 马上看| av网站免费在线观看视频| 如何舔出高潮| 又粗又硬又长又爽又黄的视频| 色5月婷婷丁香| 精品久久久精品久久久| 亚洲精品乱码久久久久久按摩| 欧美成人精品欧美一级黄| 国产一区亚洲一区在线观看| 亚洲欧美成人精品一区二区| 大片免费播放器 马上看| 日韩一本色道免费dvd| 国产爽快片一区二区三区| 午夜激情久久久久久久| 久久精品国产亚洲av涩爱| 精品国产国语对白av| 亚洲真实伦在线观看| av在线app专区| 9色porny在线观看| 黄色一级大片看看| 51国产日韩欧美| 国产伦精品一区二区三区视频9| 国产淫语在线视频| 亚洲精品久久午夜乱码| 亚洲av日韩在线播放| 久久久久久久国产电影| 日本猛色少妇xxxxx猛交久久| 少妇高潮的动态图| 男人爽女人下面视频在线观看| 成人黄色视频免费在线看| 久久国产精品男人的天堂亚洲 | 日韩欧美一区视频在线观看 | 少妇被粗大的猛进出69影院 | 精品国产国语对白av| 国产精品福利在线免费观看| 少妇精品久久久久久久| 美女xxoo啪啪120秒动态图| 亚洲电影在线观看av| 亚洲成人一二三区av| 免费久久久久久久精品成人欧美视频 | 日韩强制内射视频| 天堂中文最新版在线下载| 欧美 日韩 精品 国产| 夫妻午夜视频| 人体艺术视频欧美日本| 一级av片app| 伦理电影免费视频| av.在线天堂| 99久久人妻综合| 观看美女的网站| 男女啪啪激烈高潮av片| 日日啪夜夜爽| 国精品久久久久久国模美| 亚洲精品久久久久久婷婷小说| 国产色爽女视频免费观看| 啦啦啦中文免费视频观看日本| 亚洲一区二区三区欧美精品| 午夜影院在线不卡| 99久久综合免费| 欧美日韩精品成人综合77777| 午夜免费男女啪啪视频观看| av不卡在线播放| 成人国产麻豆网| 99re6热这里在线精品视频| 五月伊人婷婷丁香| 少妇的逼水好多| 春色校园在线视频观看| 精品国产一区二区久久| av天堂久久9| 性色avwww在线观看| 国产熟女午夜一区二区三区 | 精品国产乱码久久久久久小说| 精品人妻偷拍中文字幕| 久久人妻熟女aⅴ| 大陆偷拍与自拍| 伦理电影大哥的女人| 男人添女人高潮全过程视频| 老司机影院成人| 日韩中文字幕视频在线看片| 全区人妻精品视频| 中文在线观看免费www的网站| 亚洲高清免费不卡视频| 国产精品秋霞免费鲁丝片| www.av在线官网国产| 亚洲av综合色区一区| 久久人人爽av亚洲精品天堂| 一区二区三区精品91| 成人黄色视频免费在线看| 一级毛片 在线播放| 一本—道久久a久久精品蜜桃钙片| 99热网站在线观看| 亚洲怡红院男人天堂| 一区二区三区精品91| 午夜av观看不卡| 一级片'在线观看视频| 亚洲国产精品一区二区三区在线| 国产日韩欧美在线精品| 久久久久精品性色| 伦理电影免费视频| 欧美亚洲 丝袜 人妻 在线| 午夜免费观看性视频| 曰老女人黄片| 欧美另类一区| 日日啪夜夜撸| 十八禁网站网址无遮挡 | 国产免费福利视频在线观看| 中文字幕久久专区| 丝袜脚勾引网站| 成人影院久久| 亚洲美女黄色视频免费看| 国产一区二区三区综合在线观看 | .国产精品久久| 一个人免费看片子| 日韩亚洲欧美综合| 男女边吃奶边做爰视频| av在线观看视频网站免费| 国产成人一区二区在线| 国产精品蜜桃在线观看| 啦啦啦视频在线资源免费观看| 国产精品秋霞免费鲁丝片| av.在线天堂| 80岁老熟妇乱子伦牲交| 三级国产精品片| 国产高清有码在线观看视频| 精品久久久久久电影网| 九九在线视频观看精品| 午夜影院在线不卡| 狂野欧美激情性bbbbbb| 一级毛片久久久久久久久女| 26uuu在线亚洲综合色| 色94色欧美一区二区| tube8黄色片| 免费黄色在线免费观看| 欧美日韩视频高清一区二区三区二| 婷婷色综合大香蕉| av福利片在线观看| 欧美一级a爱片免费观看看| 少妇 在线观看| 黄色怎么调成土黄色| 国产伦精品一区二区三区视频9| 天堂中文最新版在线下载| 久久毛片免费看一区二区三区| 国产一级毛片在线| 王馨瑶露胸无遮挡在线观看| 国产亚洲欧美精品永久| av播播在线观看一区| 久久久久久久久久久免费av| 成人亚洲欧美一区二区av| 国产91av在线免费观看| 在现免费观看毛片| 日韩强制内射视频| 亚洲美女视频黄频| 国产成人精品无人区| 亚洲无线观看免费| 日日啪夜夜爽| 少妇人妻精品综合一区二区| 国精品久久久久久国模美| 亚洲一级一片aⅴ在线观看| 亚洲精品亚洲一区二区| 看十八女毛片水多多多| 男人添女人高潮全过程视频| 久久99热6这里只有精品| 日日摸夜夜添夜夜爱| 国产欧美另类精品又又久久亚洲欧美| 男人舔奶头视频| 人妻 亚洲 视频| 插阴视频在线观看视频| a级毛片免费高清观看在线播放| 久久精品国产亚洲av涩爱| 韩国高清视频一区二区三区| 伦理电影免费视频| 国产伦精品一区二区三区视频9| 成人毛片60女人毛片免费| 精品人妻熟女毛片av久久网站| 久久精品国产鲁丝片午夜精品| a 毛片基地| 国产免费视频播放在线视频| 日韩av免费高清视频| av福利片在线| 久久热精品热| 黄色一级大片看看| 日韩一区二区视频免费看| 女的被弄到高潮叫床怎么办| 男人爽女人下面视频在线观看| 精品少妇久久久久久888优播| 插阴视频在线观看视频| 精品亚洲成国产av| 国产成人午夜福利电影在线观看| 大香蕉久久网| 亚洲欧美精品自产自拍| 日本与韩国留学比较| www.色视频.com| 国产精品偷伦视频观看了| 久久久久久久久久久久大奶| 黑丝袜美女国产一区| 精品少妇黑人巨大在线播放| 99热这里只有是精品50| 三上悠亚av全集在线观看 | 性高湖久久久久久久久免费观看| 国产精品国产av在线观看| 免费黄频网站在线观看国产| 亚洲国产欧美日韩在线播放 | 国产精品.久久久| 三级国产精品欧美在线观看| 啦啦啦在线观看免费高清www| 噜噜噜噜噜久久久久久91| 美女内射精品一级片tv| 乱系列少妇在线播放| 久久久久久人妻| 国产午夜精品一二区理论片| .国产精品久久| 亚洲国产精品专区欧美| 一级毛片我不卡| 中国国产av一级| 国产亚洲午夜精品一区二区久久| 国产精品国产三级国产av玫瑰| 99热国产这里只有精品6| 国产精品成人在线| a级毛片在线看网站| 高清黄色对白视频在线免费看 | a级毛片免费高清观看在线播放| 一本—道久久a久久精品蜜桃钙片| 日韩伦理黄色片| 午夜av观看不卡| 免费高清在线观看视频在线观看| 91久久精品电影网| 成年美女黄网站色视频大全免费 | 国产成人精品一,二区| 亚洲美女搞黄在线观看| 欧美丝袜亚洲另类| 亚洲精品第二区| 国产 精品1| 亚洲四区av| av国产久精品久网站免费入址| av国产精品久久久久影院| 青青草视频在线视频观看| 成人影院久久| 日韩强制内射视频| 国产一区二区在线观看日韩| 国内少妇人妻偷人精品xxx网站| 大话2 男鬼变身卡| 午夜福利在线观看免费完整高清在| 亚洲成人av在线免费| 在线精品无人区一区二区三| 久久久精品免费免费高清| 久久精品国产鲁丝片午夜精品| 99九九在线精品视频 | 日本91视频免费播放| 久久精品国产a三级三级三级| 欧美日韩亚洲高清精品| 丝袜在线中文字幕| 国产一级毛片在线| 国产一级毛片在线| 18禁动态无遮挡网站| 国产一级毛片在线| 亚洲av不卡在线观看| 欧美3d第一页| 欧美丝袜亚洲另类| 亚洲精品456在线播放app| 极品教师在线视频| 国产爽快片一区二区三区| 晚上一个人看的免费电影| 丝袜在线中文字幕| 午夜精品国产一区二区电影| 在线亚洲精品国产二区图片欧美 | 亚洲欧美清纯卡通| 欧美 亚洲 国产 日韩一| 老司机亚洲免费影院| 久久国内精品自在自线图片| 色婷婷久久久亚洲欧美| av国产久精品久网站免费入址| 亚洲高清免费不卡视频| av不卡在线播放| 赤兔流量卡办理| 久久99蜜桃精品久久| 国产极品粉嫩免费观看在线 | 中文字幕制服av| 国产在线一区二区三区精| 纯流量卡能插随身wifi吗| 免费黄网站久久成人精品| 精品亚洲乱码少妇综合久久| 久久精品国产鲁丝片午夜精品| 伊人久久国产一区二区| 亚洲av成人精品一区久久| 国产淫语在线视频| 熟女av电影| 日韩,欧美,国产一区二区三区| 大香蕉久久网| 一级毛片黄色毛片免费观看视频| 久久99一区二区三区| 亚洲av国产av综合av卡| 国产 一区精品| 极品人妻少妇av视频| 在线观看三级黄色| 成人影院久久| 国产成人免费无遮挡视频| 一区二区三区免费毛片| 亚洲av免费高清在线观看| 亚洲人与动物交配视频| 国产无遮挡羞羞视频在线观看| 亚洲精品乱码久久久v下载方式| 国产高清三级在线| 日韩欧美一区视频在线观看 | 最近最新中文字幕免费大全7| 啦啦啦在线观看免费高清www| 中国国产av一级| 六月丁香七月| 麻豆成人午夜福利视频| 欧美3d第一页| 精品人妻一区二区三区麻豆| h视频一区二区三区| 内射极品少妇av片p| 最近中文字幕2019免费版| 天天操日日干夜夜撸| 日本午夜av视频| 国产精品人妻久久久影院| 亚洲国产精品一区三区| 99九九在线精品视频 | 亚洲经典国产精华液单| 七月丁香在线播放| 久久精品久久久久久久性| 内射极品少妇av片p| 最黄视频免费看| 国产精品久久久久久av不卡| 纯流量卡能插随身wifi吗| 三级经典国产精品| 亚洲国产av新网站| 亚洲va在线va天堂va国产| 国产无遮挡羞羞视频在线观看| 在线观看一区二区三区激情| 亚洲国产精品999| 肉色欧美久久久久久久蜜桃| 久久国产乱子免费精品| 国产精品人妻久久久影院| 亚洲精品久久午夜乱码| 成年人午夜在线观看视频| 99热这里只有精品一区| av视频免费观看在线观看| 国产男女超爽视频在线观看| 国产极品天堂在线| 一级毛片 在线播放| 久久久久精品久久久久真实原创| 亚洲国产欧美在线一区| 欧美丝袜亚洲另类| 三级国产精品欧美在线观看| 青青草视频在线视频观看| 中文字幕免费在线视频6| 性高湖久久久久久久久免费观看| 亚洲av成人精品一二三区| 性色avwww在线观看| 久久国产精品男人的天堂亚洲 | 久久精品夜色国产| 十八禁网站网址无遮挡 | 高清不卡的av网站| 亚洲精品成人av观看孕妇| 久久久a久久爽久久v久久| 亚洲国产日韩一区二区| 亚洲一区二区三区欧美精品| 一本—道久久a久久精品蜜桃钙片| 少妇 在线观看| 永久网站在线| 99久久综合免费| 久久精品国产亚洲av涩爱| 99热国产这里只有精品6| 青春草亚洲视频在线观看| 亚洲国产精品成人久久小说| av黄色大香蕉| 国产成人精品福利久久| 久久99蜜桃精品久久| 国产精品欧美亚洲77777| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 人妻一区二区av| 久久久亚洲精品成人影院| 大码成人一级视频| 99九九在线精品视频 | 国内少妇人妻偷人精品xxx网站| 99久久中文字幕三级久久日本| 亚洲,一卡二卡三卡| 热re99久久精品国产66热6| 少妇被粗大的猛进出69影院 | 91午夜精品亚洲一区二区三区| 日韩大片免费观看网站| 毛片一级片免费看久久久久| 国产一级毛片在线| 亚洲性久久影院| 日韩不卡一区二区三区视频在线| 亚洲成人一二三区av| 蜜臀久久99精品久久宅男| 亚洲精品第二区| 午夜福利网站1000一区二区三区| 一级a做视频免费观看| 日韩中文字幕视频在线看片| av在线播放精品| 亚洲精品456在线播放app| 日日摸夜夜添夜夜添av毛片| 一级,二级,三级黄色视频| 日韩中文字幕视频在线看片| 午夜老司机福利剧场| 久久久久久久久久久丰满| 久久久国产精品麻豆| 最新中文字幕久久久久| 亚洲色图综合在线观看| 日本黄色片子视频| 亚洲无线观看免费| 久久99蜜桃精品久久| 偷拍熟女少妇极品色| 99热这里只有是精品在线观看| 国产精品人妻久久久久久| 天天躁夜夜躁狠狠久久av| 午夜久久久在线观看| 麻豆成人午夜福利视频| 日韩精品免费视频一区二区三区 | 中文天堂在线官网| 日韩av免费高清视频| 欧美日韩av久久| 国产在线男女| 亚洲精品日韩在线中文字幕| a级毛片免费高清观看在线播放| 亚洲人与动物交配视频| 久久久欧美国产精品| 蜜臀久久99精品久久宅男| 丰满迷人的少妇在线观看| 超碰97精品在线观看| 日韩,欧美,国产一区二区三区| 日韩伦理黄色片| 一区二区三区免费毛片| 老女人水多毛片| 高清黄色对白视频在线免费看 | 午夜精品国产一区二区电影| 女人久久www免费人成看片| 亚洲美女视频黄频| 一区二区三区乱码不卡18| 亚洲av成人精品一区久久| 欧美精品一区二区大全| 国产亚洲最大av| 91精品国产九色| 色94色欧美一区二区| 十分钟在线观看高清视频www | 久久99热6这里只有精品| 久久精品国产亚洲av涩爱| 亚洲欧洲国产日韩| 最近手机中文字幕大全| 男女无遮挡免费网站观看| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 男人舔奶头视频| 午夜免费鲁丝| 老熟女久久久| 在线看a的网站| 99九九线精品视频在线观看视频| 亚洲国产欧美日韩在线播放 | 亚洲欧洲精品一区二区精品久久久 | 少妇丰满av| 最近手机中文字幕大全| 日韩一区二区视频免费看| 亚洲美女黄色视频免费看| 国产精品久久久久久av不卡| 国产一区有黄有色的免费视频| 日韩一本色道免费dvd| 观看美女的网站| videos熟女内射| 日韩av在线免费看完整版不卡| 亚洲情色 制服丝袜| 自线自在国产av| 人体艺术视频欧美日本| 91aial.com中文字幕在线观看| 综合色丁香网| 91成人精品电影| 亚洲av中文av极速乱| 国产一区亚洲一区在线观看| 午夜福利影视在线免费观看| 国产日韩欧美在线精品| 国产精品成人在线| 最近的中文字幕免费完整| 国产黄色免费在线视频| 亚洲欧美中文字幕日韩二区| 国产av精品麻豆| 热re99久久国产66热| 不卡视频在线观看欧美| 搡老乐熟女国产| 精品一区二区三卡| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 中文欧美无线码| 老司机亚洲免费影院| 免费大片黄手机在线观看| 国产亚洲欧美精品永久| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 久久6这里有精品| h视频一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲欧美中文字幕日韩二区| 欧美激情极品国产一区二区三区 | 久久久久精品性色| av有码第一页| 亚洲精品国产色婷婷电影| 97在线人人人人妻| 亚洲精品,欧美精品| 久久国内精品自在自线图片| 内射极品少妇av片p| 午夜激情久久久久久久| 中文字幕制服av| 亚洲怡红院男人天堂| 久久久a久久爽久久v久久| xxx大片免费视频| 成人综合一区亚洲| 国产一区亚洲一区在线观看| 久久久国产欧美日韩av| 七月丁香在线播放| 新久久久久国产一级毛片| 九九久久精品国产亚洲av麻豆| 亚洲国产成人一精品久久久| 日本色播在线视频| 免费看日本二区| 日韩中字成人| 高清在线视频一区二区三区| 草草在线视频免费看| 国产无遮挡羞羞视频在线观看| 91久久精品电影网| 性色avwww在线观看| 免费大片黄手机在线观看| 91久久精品国产一区二区三区| 91成人精品电影| 少妇丰满av| 热re99久久精品国产66热6| 伊人亚洲综合成人网| 最近手机中文字幕大全| av有码第一页| 日韩成人av中文字幕在线观看| 午夜免费观看性视频| 亚州av有码| 高清在线视频一区二区三区| 哪个播放器可以免费观看大片| 久久久久国产精品人妻一区二区| 永久网站在线| 日韩欧美精品免费久久| av有码第一页| 久久99热这里只频精品6学生| 另类亚洲欧美激情| 丰满人妻一区二区三区视频av| 熟妇人妻不卡中文字幕| 一区在线观看完整版| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 一区二区三区乱码不卡18| 国产黄片美女视频| 最近中文字幕高清免费大全6| 亚洲无线观看免费| 日韩强制内射视频| 午夜免费观看性视频|