• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水溶液中碳酸鈾酰化合物的電子結(jié)構(gòu)

    2012-11-30 10:41:24辜家芳陸春海陳文凱章永凡
    物理化學(xué)學(xué)報(bào) 2012年4期
    關(guān)鍵詞:鈾酰碳酸配體

    辜家芳 陸春海 陳文凱,* 陳 勇 許 可 黃 昕 章永凡

    (1福州大學(xué)化學(xué)系,福州350108;2成都理工大學(xué)核技術(shù)與自動(dòng)化工程學(xué)院,成都610059)

    水溶液中碳酸鈾?;衔锏碾娮咏Y(jié)構(gòu)

    辜家芳1陸春海2陳文凱1,*陳 勇1許 可1黃 昕1章永凡1

    (1福州大學(xué)化學(xué)系,福州350108;2成都理工大學(xué)核技術(shù)與自動(dòng)化工程學(xué)院,成都610059)

    應(yīng)用相對(duì)論密度泛函理論系統(tǒng)研究了水溶液中非水合化和水合化碳酸鈾?;衔顲n/m(其中n和m分別為結(jié)構(gòu)中碳酸配體和水配體的個(gè)數(shù))的結(jié)構(gòu).溶劑效應(yīng)采用類(lèi)導(dǎo)體屏蔽模型(COSMO),并采用零級(jí)規(guī)整近似(ZORA)方法考慮標(biāo)量相對(duì)論效應(yīng)和旋-軌耦合相對(duì)論效應(yīng).電子躍遷采用包含旋-軌耦合相對(duì)論效應(yīng)的含時(shí)密度泛函理論并在相關(guān)交換勢(shì)中采用軌道勢(shì)能統(tǒng)計(jì)平均(SAOP)做近似計(jì)算.結(jié)果表明碳酸配體對(duì)配合物結(jié)構(gòu)和電子躍遷有很大的影響.C3/0配合物的穩(wěn)定性可歸于5f軌道參與了高占據(jù)軌道的成鍵作用.增加碳酸鹽配體導(dǎo)致最大波長(zhǎng)的藍(lán)移,并在近可見(jiàn)光區(qū)域出現(xiàn)高強(qiáng)度的吸收.

    鈾酰;UV-Vis;溶劑效應(yīng);含時(shí)密度泛函理論;旋-軌耦合相對(duì)論效應(yīng)

    1 Introduction

    The uranyl ion is easy to interact with carbonate ligands to form complexesand plays an important role in migration from a nuclear waste repository or in ac-cidental site contamination in natural water.Hence,to understand the properties of the uranyl carbonate complexes in environment is of great importance for scientific interest.Nguyen-Trung3and McGlynn4et al.have made experimental studies on the frequencies of O=U=O vibrations in uranyl ion with various inorganic and organic ligands.de Jong et al.5have theoretically reported the properties of geometries and frequencies on monomer complexes(n=1-3)and trimer complexesusing local density functional theory in gaseous phase with the program of NWChem.Our previous study6by Gaussian 03 program established linear correlations between the frequency of O=U=O systematical vibration and the number of different ligands in gaseous and aqueous phases. And some other spectroscopic techniques,such as X-ray diffraction,nuclear magnetic resonance spectroscopy(NMR),and extended X-ray absorption fine structure(EXAFS),have been employed for uranyl carbonate studies.7,8Some reviews have summarized recent advances in computational actinide chemistry.9-12UV-Vis spectra of uranyl(VI)carbonate complexes have been obtained in experiments,13,14but few studies were reported from the theoretical perspective.Su et al.9,15have calculated the luminescence properties of uranyl-glycine-water complexes in solution with the statistically averaged orbital potentials (SAOP)employed in the spin-orbit coupling time-dependent density functional theory(SO-TD-DFT)calculations.And for other actinide elements,the spectrum studies in theory and experiment were also limited.16To explain the absorption or emission spectra of actinide complexes is important for environmental detections.

    As seen from above survey,there is much experimental and theoretical interest in uranyl carbonate complexes.Absorption spectroscopy is a very important tool for analyzing chemical systems,but the interpretation of electronic spectra in terms of molecular structures remains challenges for experiments.In this paper,solvent effects on geometries of non-hydrated and hydrated structures of uranyl carbonate complexes were considered to predict characteristic absorption band of uranyl complexes in aqueous phase.

    2 Calculation details

    It is necessary to include relativistic effects on uranium included system.There are two general classes of relativistic effects that are clearly summarized as scalar relativistic and spinorbit coupling relativistic by Kaltsoyannis et al.17The scalar relativistic method is sufficient for ground state?s properties of actinide systems,including molecular geometries and vibration frequencies.5,15,17However,the spin-orbit coupling relativistic methods are demanded to be included in the calculation of excited states properties especially optical excitation energies.

    It is advised to obtain results by using gradient-correction DFT functional with small-core relativistic effective core potential(RECP)in the benchmark for approximate calculations on bare uranyl ion by de Jong et al.18We performed the optimizations for ground state structures on the Amsterdam Density Functional Code(ADF2010.01).19-21The corresponding approximation methods obtained reliable results on uranyl glycine complexes by Su et al.15Hence,we used the Perdew-Burke-Ernzerhof(PBE)exchange-correlation functional22and uncontracted Slater basis sets of triple-ζ plus one polarization(TZP) quality for the U atom and sets of double-ζ plus one polarization(DZP)quality for the C and O atoms from ADF basis library.23Small frozen atomic core approximation was applied to C,O with[1s2]and to U with[1s2-5d10].The zeroth-order regular approximation(ZORA)was used to account for scalar relativistic effects.24-26Solvent effects which were estimated by the conductor-like screening model(COSMO)used the solvent accessible surface(SAS).27,28And the default water dielectric constant(ε)is 78.4 for aqueous phase calculations.

    Electronic transitions by the time-dependent density functional theory(TD-DFT)29calculations based on ground state of uranyl complexes were performed.We examined the transitions from the ground state to the excited states.And the spinorbit coupling was included in excitation energies by the relativistic two-component ZORA formalism.24-26The statistically averaged orbital potentials(SAOP)15,30were employed in the TD-DFT calculations.

    3 Results and discussion

    3.1 Bond distance

    Geometries of uranyl carbonate complexes have become great interesting for theoretical and experimental chemists. From previous theoretical studies,5,31the calculated bond lengths for uranyl tri-carbonate anions are in accordance with experimental results8,32(Table 1).The use of COSMO improves the value of R(U-Ocarbonate)in structures at the PBE and PW91 levels.Although addition of diffused functions to U at the LDA

    3level leads to decrease of U=O bond length,the method is difficult in converging.5The R(U-Ocarbonate)at the PBE/ZORA level is close to experimental data in aqueous phase8as compared to those with the PW91 and LDA methods.Hence,we use the PBE/ZORA method with the the approximations of successive uranyl carbonate complexes.

    Table 1 Comparison of calculated and experimental bond lengths for UO2(CO3)4-

    Fig.1 Stable structures of non-hydrated(C1/0,C2/0,C3/0)and hydrated(C1/3,C2/1,C2/2)uranyl carbonate complexes

    The coordination number(CN)in the equator of the linear UO2unit for stable uranyl complexes is 5.15,33,34When CNs of uranyl carbonate complexes are 2 or 4,water molecule could be added to the equator to form more stable structures.Here we label the non-hydrated form and hydrated form with Cn/m (n and m are the numbers of carbonate and water ligands in uranyl complexes,respectively).The non-hydrated(C1/0,C2/0, C3/0)and hydrated(C1/3,C2/1,C2/2)structures of uranyl complexes are shown in Fig.1.In order to estimate the ligand effects on geometry and electronic structures of uranyl complexes,PBE/ZORA method is employed to optimize both forms.The bond lengths are listed in Table 2.

    The trend in the bond distances of non-hydrated structures is substantially the same as those observed in experimental and theoretical data.5By adding carbonate ligand in the equator of the linear UO2unit,the U=O and U-Oeqare elongated.It seems that ligands competing effects of carbonate ions have weakened the bonds of U=O and uranium-carbonate coordination.The R(U=O)of the successive uranyl carbonate complexes ranges from 0.1798 to 0.1852 nm in gaseous phase and 0.1802 to 0.1853 nm in aqueous phase.R(U=O)of C1/0 (UO2CO3)is widely discussed in experiments.35-38It arrived at 0.193 nm by Christ et al.,35(0.167±0.009)nm by Cromer and Harper,36and 0.174 nm by Finch et al.37Recently,Matar38has carried out a DFT study on lattice anisotropy,electronic and chemical geometry of C1/0,and the calculated R(U=O)value is 0.179 nm in the uranyl carbonate crystal.And we favor the results of longer U=O of C1/0 as those determined by theoretical methods.Solvent effects of water elongate the U=O in C1/ 0 as compared with that in gaseous phase.But for high coordination complexes of C2/0 and C3/0(uranyl di-,tri-carbonate complexes),similar R(U=O)values are obtained in gaseous and aqueous phases.The carbonate ion performs a great geometry deformation in successive uranyl carbonate complexes. The differences between R(C=O)and R(C-O)are great in the complexes which contain one or two uranium-carbonate coordination bonds,but are tiny in the complex with three uranium-carbonate coordination bonds.The hydrated water elongates U=O of C1/3 as compared with that in C1/0.And in C2/ 0,C2/1,and C2/2,similar bond lengths in gaseous and aqueous phases again illustrate the little effect by solvent on high uranium-carbonate coordination complexes.The fact that UOwateris much longer than U-Ocarbonateindicates that hydrated water may interact with uranyl ion weakly.

    3.2 Binding energy

    The corresponding binding energies15of the Cn/m complexes defined by energy differences between the whole complex and its components are based on the following formula:

    Cn/m refers to the non-hydrated and hydrated structures of ura-nyl complexes.And C(n-1)/m or Cn/(m-1)refers to the structures removing one carbonate ion or one water molecule from Cn/m.Carbonate,water,and uranyl are the components of a whole complex.The E refers to energy with the inclusion of spin orbit coupling relativistic effects in gaseous or aqueous phase.And all components?energies for the whole complex include the basis set superposition error(BSSE)correction.

    Table 2 Bond distances for uranyl carbonates in gaseous and aqueous phases

    Table 3 Binding energies for uranyl carbonates in gaseous and aqueous phase

    The parameter Ebcarbonate(Table 3)introduced by adding hydrated water in structures indicates that the bond of uraniumcarbonate coordination is strengthened in uranyl hydrated structures.And the small value of Ebwaterillustrates that uranium-water coordination is far weaker.In aqueous phase,the total binding energyof C3/0 is-1495.1 kJ·mol-1and the negative value means that the formation of C3/0is exothermic.The total binding energies show that C2/2 and C3/0 are the most stable carbonate complexes in gaseous and aqueous phases,respectively. These results agree with stability constants of uranyl carbonate in experiments.13,14,39In gaseous phase,the binding energy ofwith positive value means the formation of C3/0 from reactions between carbonate ion and C2/0 is endothermic by 522.1 kJ·mol-1.In Table 3,although hydrated water seems to increase the total binding energies of uranyl carbonate complexes,ligands competing effects could decrease the energies to separate one carbonate ion from C1/3,C2/1,and C2/2.The bond of uranium-water coordination tends to be intensified in aqueous phase as the binding energies of U-Owaterare higher than those in gaseous phase(Table 3).

    3.3 Molecular orbital

    Fig.2 Molecular orbital diagrams of hydrated uranyl complex C1/3H and L are short for the highest occupied and lowest unoccupied orbitals, respectively.The same abbreviation scheme is applied from Fig.3 to Fig.6.

    Fig.3 Isosurfaces(Ψ=±0.03 a.u.)of the corresponding frontier orbitals(H,H-1,L,L+2)in C1/3 complex

    Molecular orbital(MO)diagrams and frontier orbitals of C1/ 3 are displayed in Fig.2 and Fig.3,respectively.In uranyl,the highest occupied MOs(HOMOs)3σg,3σu,1πg(shù),and 2πuare most components of 2p shell centered on oxygen atoms,while the lowest unoccupied MOs(LUMOs)1Фu,1δu,and 3πualmost are the components of 5f shell centered on uranium atom.The HOMOs of C1/3 consist of 2p components from carbonate ligand and the LUMOs are mainly uranium 5f unoccupied orbital as the fragments interactions illustrated in Fig.2.Here we find that the H-1 orbital comes from the interactions of 3σuorbital of uranyl and 2p orbital of carbonate.And the HOMOs, 3σg,1πg(shù),and 2πuof uranyl come to interact with 2p components of water ligands to form orbital of uranyl complex in low energy level.The corresponding orbitals shown in Fig.3 are in accordance to the molecular orbitals interactions.Hence,the more carbonate ligands come to ligate with uranyl ion,the more 2p components of carbonate based orbital could insert in the high occupied energy level.That is also true in molecular orbital diagrams of C2/2 and C3/0 shown in Fig.4 and Fig.5. However,the main difference compared to C1/3 complex is that the components of 5f shell begin to take part in bonding interactions in C2/2 and C3/0.The bonding orbital between 5f and 2p components of C2/2 and C3/0 are showed in Fig.6.And we may attribute stability of C3/0 carbonate complex in aqueous phase to the inclusion of 5f components in high occupied orbital.

    Fig.4 Molecularorbitaldiagramsof hydrated uranylcomplexC2/2

    Fig.5 Molecular orbital diagrams of hydrated uranyl complex C3/0

    3.4 Electronic transitions

    Electronic transition calculations from PBE-ZORA by ADF program are mentioned in the detail of calculations.State splitting by the ligand field and spin-orbit coupling makes more transitions available.But symmetry in structure would restrict the transitions as selection rule only allows transitions with parity changes.

    The experimental characteristic absorption band was at 414 nm for uranyl species.40The absorption band of the uranyl complexes was broad in the visible range between 520 and 370 nm by extensive spectroscopy experiments studies on uranyl carbonate complexes13,14,41,42and some other inorganic ligands.38,43-47The excitation energies above 370 nm of uranyl carbonate complexes in Table 4 are in accordance with the major characteristics observed from experiments discussed above. Just as the main assignments of excitations transitions shown in Table 4,transitions are essentially transferred from high occupied orbital to the low vacant orbital.As the molecular orbitals discussed above,the main transitions between HOMOs and LUMOs are clearly ligand-to-metal charge transfer(LMCT) with electron density essentially transferring from carbonates ligand-based 2p components towards the vacant 5f orbital of the uranium.Only a few high occupied orbitals come from the interactions of 3σuorbital of uranyl and 2p components based orbital of carbonate.When compared to the allowed transitions in C1/3,the allowed ones in C2/2 and C3/0 turn to be with a smaller number for the restriction of centro symmetry of molecule in the selection rule.The maximum of wavelengths are blue shifted for uranyl carbonate complexes C1/3 to C3/0.And relatively stronger absorptions at 420 nm in all the uranyl carbonate complexes accord with properties of material itself.But our calculations indicate that absorptions at 420 nm in C2/2 and C3/0 are far stronger than those in C1/3.Our calculated UV-Vis absorption spectra are simulated by SO-TD-DFT calculations and displayed in Fig.7.The characters of uranyl carbonate complexes on UV-Vis spectra depend on the coordinating number of carbonate ion.And the additions of ligated water in structures make UV-Vis spectra slightly red shift as compared to those in the corresponding non-hydrated structures.Uranyl carbonate C1/0 behaved differently in absorption spectrum with no major characteristics as compared to those of other uranyl carbonate species by experimental study.44And the low intensity of absorptions for C1/3 is in accordance to the results from experiments.44The UV-Vis absorption spectra observed by Gong et al.47on uranyl acetohydroxamate also show no characteristics of other uranyl complexes.The absorption intensity of uranyl carbonate complexes can be explained by the differences in molecular orbital.As we have discussed above, components of 5f shell begin to take part in bonding orbital interactions in C2/2 and C3/0.The ligand contributions of carbonate ion allow larger ligand-to-metal charge transfer(LMCT). We can find that the carbonate ligand plays an important role in electronic absorption.It indicates that the addition of carbonate ligand leads to a blue shift in the maximum wavelength and high intensity of absorption in the near visible region.

    Fig.6 Isosurfaces(Ψ=±0.03 a.u.)of the bonding orbitals(H,and H-2)in C2/2 and C3/0 complexes

    Table 4 Excitation energy and main assignments of spinpolarized excitations for uranyl carbonate complexes

    Fig.7 Simulated UV-Vis spectra for non-hydrated(C1/0,C2/0, C3/0)and hydrated(C1/3,C2/1,C2/2)uranyl carbonate complexes as carbonate and hydrated water ligands changed from 1 to 3

    4 Conclusions

    It indicates that carbonate ligand plays an important role in its geometrical and electronic transitional properties.The geometries of uranyl carbonate complexes agree well with the available experimental and theoretical studies.The interpretations of the characteristics of uranyl carbonate complexes were suggested from a certain viewpoint of molecular orbital.The differences among orbital compositions show that more 2p based orbitals from carbonate ligands in the high occupied energy level are due to the addition of carbonate ligands in structures.This promotes the LMCT in the near visible region.And the adding of water in uranyl complexes makes little effect on LMCT transitions.Hence,the low intensity of absorptions at near visible region for C1/3 is attributed to the low number of carbonate ligand.

    (1)Clark,D.L.;Hobart,D.E.;Neu,M.P.Chem.Rev.1995,95,25.

    (2) Meinrath,G.J.Radioanal.Nucl.Chem.1996,211,349.

    (3)Nguyen-Trung,C.;Begun,G.M.;Palmer,D.A.Inorg.Chem. 1992,31,5280.

    (4) McGlynn,S.P.;Smith,J.K.;Neely,W.C.J.Chem.Phys.1961, 35,105.

    (5) de Jong,W.A.;Aprà,E.;Windus,T.L.;Nichols,J.A.;Harrison, R.J.;Gutowski,K.E.;Dixon,D.A.J.Phys.Chem.A 2005, 109,11568.

    (6) Gu,J.F.;Lu,C.H.;Chen,W.K.;Xu,Y.;Zheng,J.D.Acta Phys.-Chim.Sin.2009,25,655. [辜家芳,陸春海,陳文凱,許 瑩,鄭金德.物理化學(xué)學(xué)報(bào),2009,25,655.]

    (7)Allen,P.G.;Bucher,J.J.;Clark,D.L.;Edelstein,N.M.; Ekberg,S.A.;Gohdes,J.W.;Hudson,E.A.;Kaltsoyannis,N.; Lukens,W.W.Inorg.Chem.1995,34,4797.

    (8) Docrat,T.I.;Mosselmans,J.F.W.;Charnock,J.M.;Whiteley, M.W.;Collison,D.;Livens,F.R.;Jones,C.;Edmiston,M.J. Inorg.Chem.1999,38,1879.

    (9) Su,J.;Li,J.Prog.Chem.2011,23,1329.[蘇 靜,李 雋.化學(xué)進(jìn)展,2011,23,1329.]

    (10) Wang,D.Q.;Gunsteren,W.F.v.Prog.Chem.2011,23,1566. [王東琪,Gunsteren,W.F.v.化學(xué)進(jìn)展,2011,23,1566.]

    (11) Hu,H.S.;Wu,G.S.;Li,J.J.Nucl.Radiochem.2009,31,25. [胡憾石,吳國(guó)是,李 雋.核化學(xué)與放射化學(xué),2009,31,25.]

    (12) Liu,W.J.Prog.Chem.2007,19,833.[劉文劍.化學(xué)進(jìn)展, 2007,19,833.]

    (13) Cinnéide,S.ó.;Scanlan,J.P.;Hynes,M.J.J.Inorg.Nucl. Chem.1975,37,1013.

    (14) Scanlan,J.P.J.Inorg.Nucl.Chem.1977,39,635.

    (15) Su,J.;Zhang,K.;Schwarz,W.H.E.;Li,J.Inorg.Chem.2011, 50,2082.

    (16) Matsika,S.;Pitzer,R.M.;Reed,D.T.J.Phys.Chem.A 2000, 104,11983.

    (17) Kaltsoyannis,N.;Hay,P.J.;Li,J.;Blaudeau,J.P.;Bursten,B. E.Theoretical Studies of the Electronic Structure of Compounds of theActinide Elements.In The Chemistry of the Actinide and Transactinide Elements;Morss,L.R.,Edelstein, N.M.,Fuger,J.,Eds.;Springer:Netherlands,2006;p 1893.

    (18) de Jong,W.A.;Harrison,R.J.;Nichols,J.A.;Dixon,D.A. Theor.Chem.Acc.2001,107,22.

    (19)ADF2010,SCM,Theoretical Chemistry;Vrije Universiteit: Amsterdam,The Netherlands;http://www.scm.com.

    (20) Guerra,C.F.;Snijders,J.G.;Velde,G.T.;Baerends,E.J.Theor. Chem.Acc.1998,99,391.

    (21) Velde,G.T.;Bickelhaupt,F.M.;Baerends,E.J.;Guerra,C.F.; van Gisbergen,S.J.A.;Snijders,J.G.;Ziegler,T.J.Comput. Chem.2001,22,931.

    (22) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996, 77,3865.

    (23) van Lenthe,E.;Baerends,E.J.J.Comput.Chem.2003,24, 1142.

    (24) van Lenthe,E.;Ehlers,A.E.;Baerends,E.J.J.Chem.Phys. 1999,110,8943.

    (25) van Lenthe,E.;Baerends,E.J.;Snijders,J.G.J.Chem.Phys. 1994,101,9783.

    (26) van Lenthe,E.;Baerends,E.J.;Snijders,J.G.J.Chem.Phys. 1993,99,4597.

    (27) Lee,B.;Richards,F.M.J.Mol.Biol.1971,55,379.

    (28) Richards,F.M.Annu.Rev.Biophys.Bioeng.1977,6,151.

    (29) Perdew,J.P.;Ruzsinsky,A.;Tao,J.;Staroverov,V.N.;Scuseria, G.E.;Csonka,G.I.J.Chem.Phys.2005,123,062201.

    (30) Schipper,P.R.T.;Gritsenko,O.V.;van Gisbergen,S.J.A.; Baerends,E.J.J.Chem.Phys.2000,112,1344.

    (31) Vázquez,J.;Bo,C.;Poblet,J.M.;de Pablo,J.;Bruno,J.Inorg. Chem.2003,42,6136.

    (32) Graziani,R.;Bombieri,G.;Forsellini,E.J.Chem.Soc.Dalton Trans.1972,2059.

    (33) Spencer,S.;Gagliardi,L.;Handy,N.C.;Ioannou,A.G.; Skylaris,C.K.;Willetts,A.;Simper,A.M.J.Phys.Chem.A 1999,103,1831.

    (34) Bardin,N.;Rubini,P.;Madic,C.Radiochim.Acta 1998,83,189.

    (35) Christ,C.L.;Clark,J.R.;Evans,H.T.J.Science 1955,121, 472.

    (36) Cromer,D.T.;Harper,P.E.Acta Crystallogr.1955,8,847.

    (37)Finch,R.J.;Cooper,M.A.;Hawthorne,F.C.;Ewing,R.C. Can.Mineral.1999,37,929.

    (38) Matar,S.F.Chem.Phys.2010,372,46.

    (39) Pashalidis,I.;Czerwinski,K.R.;Fanghanel,T.;Kim,J.I. Radiochim.Acta 1997,76,55.

    (40) Rude,W.Los Alamos Science 2000,26,412.

    (41) Meinrath,G.J.Radioanal.Nucl.Chem.1997,224,119.

    (42) Meinrath,G.;Klenze,R.;Kim,J.I.Radiochim.Acta 1996,74, 81.

    (43) Havel,J.;Soto-Guerrero,J.;Lubal,P.Polyhedron 2002,21, 1411.

    (44) Tian,G.;Rao,L.J.Chem.Thermodyn.2009,41,569.

    (45) Rao,L.;Tian,G.J.Chem.Thermodyn.2008,40,1001.

    (46) Tian,G.;Rao,L.Inorg.Chem.2009,48,6748.

    (47) Gong,C.M.S.;Poineau,F.;Czerwinski,K.R.Radiochim.Acta 2007,95,439.

    September 26,2011;Revised:January 8,2012;Published on Web:January 17,2012.

    Electronic Structures of Uranyl(VI)Carbonate Complexes in the Aqueous Phase

    GU Jia-Fang1LU Chun-Hai2CHEN Wen-Kai1,*CHEN Yong1XU Ke1HUANG Xin1ZHANG Yong-Fan1
    (1Department of Chemistry,Fuzhou University,Fuzhou 350108,P.R.China;2College of Nuclear Technology and Automation Engineering,Chengdu University of Technology,Chengdu 610059,P.R.China)

    A systematic study of series of non-hydrated and hydrated Cn/m uranyl carbonate complexes (n is number of carbonate ligands,and m is number of water molecules)in the aqueous phase was carried out using relativistic density functional theory.The conductor-like screening model was used to calculate solvent effects.The zeroth-order regular approximation was used to account for scalar relativistic effects and spin-orbit coupling relativistic effects.Time-dependent density functional theory with the inclusion of spin-orbit coupling relativistic effects was used to calculate electronic transitions using the statistically averaged orbital potentials.The results indicate that carbonate ligands play an important role in the geometric and electronic transition properties of the complex.The stability of the C3/0 carbonate complex in the aqueous phase may be attributed to the involvement of 5f components in the highest occupied bonding orbital.The addition of carbonate ligands caused a blue shift in the maximum wavelength and high intensity absorptions in the near visible region.

    Uranyl;UV-Vis;Solvent effect;Time-dependent density functional theory;Spin-orbit coupling relativistic effect

    10.3866/PKU.WHXB201201171

    O641

    ?Corresponding author.Email:qc2008@fzu.edu.cn;Tel:+86-591-22866162.

    The project was supported by the National Natural Science Foundation of China(10676007)and Program for New Century Excellent Talents at the University of Fujian Province,China(HX2006-103).

    國(guó)家自然科學(xué)基金(10676007)和福建省高等學(xué)校新世紀(jì)優(yōu)秀人才計(jì)劃(HX2006-103)資助項(xiàng)目

    猜你喜歡
    鈾酰碳酸配體
    什么!碳酸飲料要斷供了?
    冒泡的可樂(lè)
    一種鈾酰配合物的合成及其光催化降解性能研究
    pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers
    電噴霧串聯(lián)質(zhì)譜快速鑒別水溶液中鈾酰形態(tài)及在檸檬酸鈾酰形態(tài)研究的應(yīng)用
    “碳酸鈉與碳酸氫鈉”知識(shí)梳理
    基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
    新型三卟啉醚類(lèi)配體的合成及其光學(xué)性能
    鈾酰-Salophen與環(huán)己烯酮的作用模式
    鑭石型碳酸鐠釹向堿式碳酸鐠釹的相轉(zhuǎn)變反應(yīng)特征及其應(yīng)用
    变态另类成人亚洲欧美熟女 | 国产男女超爽视频在线观看| 亚洲成人免费电影在线观看| 亚洲国产欧美在线一区| 香蕉丝袜av| 女人高潮潮喷娇喘18禁视频| 黄色毛片三级朝国网站| 国产高清videossex| 在线观看免费日韩欧美大片| 老司机影院毛片| 国产精品国产av在线观看| 久久国产精品影院| 精品卡一卡二卡四卡免费| 婷婷丁香在线五月| 18禁黄网站禁片午夜丰满| 一夜夜www| 国产免费av片在线观看野外av| 欧美+亚洲+日韩+国产| 97人妻天天添夜夜摸| 国产成人精品久久二区二区免费| xxxhd国产人妻xxx| 精品卡一卡二卡四卡免费| 9热在线视频观看99| 亚洲精品在线美女| 新久久久久国产一级毛片| 亚洲视频免费观看视频| 亚洲欧美一区二区三区黑人| 一级片'在线观看视频| 丰满少妇做爰视频| 日韩制服丝袜自拍偷拍| 午夜福利在线免费观看网站| 亚洲成国产人片在线观看| 少妇猛男粗大的猛烈进出视频| 老汉色∧v一级毛片| 亚洲成av片中文字幕在线观看| 免费人妻精品一区二区三区视频| 久久青草综合色| 妹子高潮喷水视频| a级片在线免费高清观看视频| 欧美日韩亚洲综合一区二区三区_| 精品久久久精品久久久| 91av网站免费观看| 国产在线免费精品| 国产男女超爽视频在线观看| 欧美日韩亚洲综合一区二区三区_| 满18在线观看网站| 国产极品粉嫩免费观看在线| 国产日韩一区二区三区精品不卡| 9热在线视频观看99| 在线观看一区二区三区激情| 国产又爽黄色视频| 在线观看一区二区三区激情| www.999成人在线观看| 欧美黑人精品巨大| 亚洲五月色婷婷综合| 夫妻午夜视频| 国产成人av激情在线播放| 国产日韩一区二区三区精品不卡| 亚洲一区中文字幕在线| 好男人电影高清在线观看| 成人免费观看视频高清| 如日韩欧美国产精品一区二区三区| 精品第一国产精品| 亚洲欧美精品综合一区二区三区| 国产主播在线观看一区二区| av欧美777| 最近最新免费中文字幕在线| 亚洲国产欧美在线一区| 丰满饥渴人妻一区二区三| 国产精品麻豆人妻色哟哟久久| 久久亚洲精品不卡| 一区二区三区精品91| 成人国语在线视频| 欧美国产精品va在线观看不卡| 999久久久精品免费观看国产| 99re6热这里在线精品视频| 大型av网站在线播放| 99国产精品一区二区蜜桃av | 宅男免费午夜| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 18禁裸乳无遮挡动漫免费视频| 两个人看的免费小视频| 中国美女看黄片| 看免费av毛片| 国产熟女午夜一区二区三区| 高清视频免费观看一区二区| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区三区在线| 嫩草影视91久久| 考比视频在线观看| 亚洲黑人精品在线| 免费不卡黄色视频| 黄色视频在线播放观看不卡| 在线观看一区二区三区激情| 91国产中文字幕| 精品午夜福利视频在线观看一区 | 欧美 日韩 精品 国产| av视频免费观看在线观看| 视频在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 丰满迷人的少妇在线观看| 在线观看www视频免费| 日本欧美视频一区| 18在线观看网站| 大片电影免费在线观看免费| 精品国产超薄肉色丝袜足j| 搡老岳熟女国产| 满18在线观看网站| 午夜久久久在线观看| 一本综合久久免费| 日韩精品免费视频一区二区三区| 亚洲国产精品一区二区三区在线| 正在播放国产对白刺激| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| cao死你这个sao货| 亚洲色图综合在线观看| 国产无遮挡羞羞视频在线观看| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美在线一区二区| 一区在线观看完整版| 国产免费视频播放在线视频| 妹子高潮喷水视频| 美女高潮到喷水免费观看| 久久性视频一级片| 少妇猛男粗大的猛烈进出视频| 亚洲精品在线美女| 少妇裸体淫交视频免费看高清 | 亚洲少妇的诱惑av| 亚洲成av片中文字幕在线观看| 亚洲欧美一区二区三区黑人| 91大片在线观看| 在线 av 中文字幕| 美女高潮喷水抽搐中文字幕| 免费看十八禁软件| 午夜激情久久久久久久| 老司机亚洲免费影院| 超碰97精品在线观看| 午夜福利免费观看在线| 制服诱惑二区| 一本大道久久a久久精品| 999久久久国产精品视频| 狠狠婷婷综合久久久久久88av| 精品国产乱码久久久久久小说| 亚洲专区字幕在线| 午夜福利欧美成人| 1024视频免费在线观看| 伦理电影免费视频| 美女国产高潮福利片在线看| 日韩欧美三级三区| 成人手机av| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区三区在线| www.自偷自拍.com| 国产精品九九99| 亚洲国产av新网站| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 亚洲av第一区精品v没综合| 国产人伦9x9x在线观看| 亚洲欧美激情在线| 午夜福利一区二区在线看| 男女下面插进去视频免费观看| 首页视频小说图片口味搜索| 在线观看www视频免费| 精品一区二区三卡| 中亚洲国语对白在线视频| 亚洲av欧美aⅴ国产| 黄色视频在线播放观看不卡| 亚洲欧美日韩另类电影网站| videos熟女内射| 日韩欧美一区视频在线观看| 国产野战对白在线观看| 国产欧美日韩精品亚洲av| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 操出白浆在线播放| 欧美性长视频在线观看| 18禁观看日本| 香蕉丝袜av| 免费看十八禁软件| 丝袜美足系列| 日本av手机在线免费观看| 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一出视频| 久久av网站| 久久久久国内视频| 又黄又粗又硬又大视频| 亚洲国产看品久久| 欧美日韩视频精品一区| 精品少妇内射三级| 国产91精品成人一区二区三区 | 9191精品国产免费久久| 美女午夜性视频免费| 国产免费现黄频在线看| 免费观看人在逋| 久久久国产精品麻豆| 亚洲一区中文字幕在线| 一边摸一边抽搐一进一出视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲成av片中文字幕在线观看| 久久人妻福利社区极品人妻图片| 欧美亚洲 丝袜 人妻 在线| 久久久国产一区二区| 真人做人爱边吃奶动态| 国产精品免费视频内射| 国产精品香港三级国产av潘金莲| 日本精品一区二区三区蜜桃| 天天添夜夜摸| 老鸭窝网址在线观看| av网站在线播放免费| 国产一区二区 视频在线| 亚洲中文日韩欧美视频| 久久婷婷成人综合色麻豆| 中文字幕人妻丝袜制服| 午夜激情久久久久久久| 日韩欧美国产一区二区入口| 久久99一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 夜夜夜夜夜久久久久| 人妻一区二区av| 国产在线视频一区二区| 亚洲av日韩在线播放| 99精品久久久久人妻精品| 久久午夜综合久久蜜桃| 久久精品国产综合久久久| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 纯流量卡能插随身wifi吗| 捣出白浆h1v1| 久久午夜综合久久蜜桃| 91字幕亚洲| av超薄肉色丝袜交足视频| 一级毛片电影观看| 精品人妻1区二区| 久久99一区二区三区| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 欧美乱妇无乱码| 窝窝影院91人妻| 日本欧美视频一区| 麻豆国产av国片精品| 欧美日韩av久久| 80岁老熟妇乱子伦牲交| 久久久国产成人免费| 精品卡一卡二卡四卡免费| 人妻一区二区av| 日本撒尿小便嘘嘘汇集6| 中文亚洲av片在线观看爽 | 欧美 日韩 精品 国产| 国产精品久久久久久人妻精品电影 | av不卡在线播放| 国产主播在线观看一区二区| 99riav亚洲国产免费| 亚洲专区字幕在线| 十八禁网站免费在线| 18禁黄网站禁片午夜丰满| 女人精品久久久久毛片| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 后天国语完整版免费观看| 成人影院久久| 精品一区二区三卡| 亚洲五月婷婷丁香| 国产视频一区二区在线看| 日本黄色日本黄色录像| 黄色丝袜av网址大全| 老汉色∧v一级毛片| 男女边摸边吃奶| 久久青草综合色| 国产欧美日韩一区二区三| 久久午夜亚洲精品久久| 色视频在线一区二区三区| 国产一区二区三区视频了| 日韩人妻精品一区2区三区| 国产成+人综合+亚洲专区| 精品国产一区二区三区四区第35| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影 | 日韩人妻精品一区2区三区| 99九九在线精品视频| 精品国产一区二区三区四区第35| 一本—道久久a久久精品蜜桃钙片| 国产老妇伦熟女老妇高清| 老司机影院毛片| 成人18禁在线播放| 天天影视国产精品| 麻豆av在线久日| 女性被躁到高潮视频| 国产精品国产av在线观看| 一级片'在线观看视频| 精品国产亚洲在线| 一级,二级,三级黄色视频| 久久国产亚洲av麻豆专区| 久久人人97超碰香蕉20202| 亚洲七黄色美女视频| 国产精品秋霞免费鲁丝片| 精品一区二区三区视频在线观看免费 | 国产成人啪精品午夜网站| 变态另类成人亚洲欧美熟女 | 无人区码免费观看不卡 | 国产精品影院久久| 人人妻人人澡人人看| 亚洲精品在线美女| cao死你这个sao货| 亚洲va日本ⅴa欧美va伊人久久| 91麻豆精品激情在线观看国产 | 国产淫语在线视频| 性少妇av在线| 女同久久另类99精品国产91| 91麻豆精品激情在线观看国产 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产看品久久| 精品久久久久久久毛片微露脸| 日本一区二区免费在线视频| 国产精品一区二区在线不卡| 欧美激情久久久久久爽电影 | 老司机靠b影院| 久久国产精品男人的天堂亚洲| videosex国产| 两人在一起打扑克的视频| 久久青草综合色| 狠狠精品人妻久久久久久综合| 国内毛片毛片毛片毛片毛片| 色婷婷av一区二区三区视频| 真人做人爱边吃奶动态| 99re在线观看精品视频| 亚洲精品一卡2卡三卡4卡5卡| 在线观看66精品国产| 99久久人妻综合| 91麻豆精品激情在线观看国产 | 午夜福利一区二区在线看| tocl精华| 亚洲欧美日韩高清在线视频 | 国产一区二区三区在线臀色熟女 | 成人永久免费在线观看视频 | 天天添夜夜摸| 亚洲国产av新网站| 国产亚洲精品一区二区www | 18禁裸乳无遮挡动漫免费视频| 精品少妇一区二区三区视频日本电影| 视频在线观看一区二区三区| 国产精品国产高清国产av | 一本一本久久a久久精品综合妖精| 精品欧美一区二区三区在线| 欧美成人午夜精品| 黄色视频,在线免费观看| 亚洲精品国产一区二区精华液| 欧美日韩黄片免| 久久久国产精品麻豆| 怎么达到女性高潮| 国产av一区二区精品久久| 高清av免费在线| 悠悠久久av| 欧美成狂野欧美在线观看| 王馨瑶露胸无遮挡在线观看| 国产av精品麻豆| 欧美久久黑人一区二区| 精品人妻熟女毛片av久久网站| 精品午夜福利视频在线观看一区 | 18禁国产床啪视频网站| 久久国产精品人妻蜜桃| 国产又色又爽无遮挡免费看| 亚洲国产欧美在线一区| 日韩欧美国产一区二区入口| 亚洲人成电影免费在线| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 亚洲专区字幕在线| 午夜福利一区二区在线看| 丰满人妻熟妇乱又伦精品不卡| 欧美 日韩 精品 国产| 免费观看a级毛片全部| 动漫黄色视频在线观看| 最新的欧美精品一区二区| 中文亚洲av片在线观看爽 | 叶爱在线成人免费视频播放| 91九色精品人成在线观看| 一区二区日韩欧美中文字幕| 久久久久精品国产欧美久久久| 97在线人人人人妻| 精品午夜福利视频在线观看一区 | 久久久水蜜桃国产精品网| 91麻豆av在线| av视频免费观看在线观看| e午夜精品久久久久久久| 97在线人人人人妻| 后天国语完整版免费观看| 成人av一区二区三区在线看| 亚洲人成电影观看| 不卡一级毛片| av超薄肉色丝袜交足视频| 国产精品亚洲一级av第二区| 18禁美女被吸乳视频| 国产精品国产高清国产av | 欧美精品一区二区大全| 久久精品亚洲熟妇少妇任你| 一夜夜www| 亚洲国产欧美网| 免费高清在线观看日韩| 国产精品 欧美亚洲| 1024香蕉在线观看| 中文字幕人妻熟女乱码| 男女午夜视频在线观看| 欧美成人免费av一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 涩涩av久久男人的天堂| 国产区一区二久久| 欧美日韩黄片免| 免费在线观看黄色视频的| 欧美激情久久久久久爽电影 | 无人区码免费观看不卡 | 男女免费视频国产| 下体分泌物呈黄色| 亚洲九九香蕉| 国产精品99久久99久久久不卡| 一个人免费在线观看的高清视频| xxxhd国产人妻xxx| 一进一出好大好爽视频| av国产精品久久久久影院| 免费黄频网站在线观看国产| 国产精品欧美亚洲77777| 丝瓜视频免费看黄片| 一本色道久久久久久精品综合| 欧美亚洲日本最大视频资源| 成人黄色视频免费在线看| 国产精品熟女久久久久浪| 亚洲精华国产精华精| 精品高清国产在线一区| 久久中文字幕人妻熟女| 一级毛片精品| 大陆偷拍与自拍| 最近最新中文字幕大全电影3 | av天堂在线播放| 嫁个100分男人电影在线观看| 12—13女人毛片做爰片一| 免费观看人在逋| 精品国内亚洲2022精品成人 | 亚洲精品中文字幕在线视频| 精品熟女少妇八av免费久了| 热re99久久精品国产66热6| 一进一出抽搐动态| 欧美日韩亚洲高清精品| 久久久久久亚洲精品国产蜜桃av| 乱人伦中国视频| 婷婷丁香在线五月| 日韩成人在线观看一区二区三区| 黑人猛操日本美女一级片| 国产xxxxx性猛交| 成人影院久久| 在线永久观看黄色视频| 免费在线观看日本一区| 亚洲欧美色中文字幕在线| 成人18禁在线播放| 国产日韩欧美亚洲二区| 亚洲伊人久久精品综合| 日本黄色视频三级网站网址 | 在线av久久热| 欧美日韩精品网址| 两性夫妻黄色片| 国产精品1区2区在线观看. | 香蕉丝袜av| 国产成人免费无遮挡视频| 国产伦人伦偷精品视频| 一本综合久久免费| 国产黄色免费在线视频| 久久久久网色| 国产精品二区激情视频| 天堂8中文在线网| 在线观看免费视频网站a站| 狂野欧美激情性xxxx| 无遮挡黄片免费观看| 菩萨蛮人人尽说江南好唐韦庄| 国产深夜福利视频在线观看| 国产成人av教育| 搡老乐熟女国产| av欧美777| 国产精品免费大片| 99国产精品免费福利视频| 最新美女视频免费是黄的| 亚洲精品粉嫩美女一区| 久久久国产一区二区| 欧美黑人欧美精品刺激| av网站在线播放免费| 欧美在线黄色| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 日日摸夜夜添夜夜添小说| 精品人妻熟女毛片av久久网站| 一本久久精品| 成人亚洲精品一区在线观看| 九色亚洲精品在线播放| 69精品国产乱码久久久| 久久久久久久大尺度免费视频| 十分钟在线观看高清视频www| 国产男靠女视频免费网站| 国产精品免费大片| 欧美黑人精品巨大| 99国产精品99久久久久| 国产精品久久久久久人妻精品电影 | 亚洲国产欧美日韩在线播放| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 夫妻午夜视频| 在线天堂中文资源库| 在线观看免费高清a一片| 天天操日日干夜夜撸| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区精品| 激情视频va一区二区三区| 亚洲伊人久久精品综合| 久久久精品区二区三区| 亚洲精品乱久久久久久| 亚洲第一青青草原| 啦啦啦中文免费视频观看日本| 亚洲七黄色美女视频| 99九九在线精品视频| 久久精品91无色码中文字幕| 一边摸一边做爽爽视频免费| 国产麻豆69| 女人高潮潮喷娇喘18禁视频| 最新美女视频免费是黄的| 一区二区日韩欧美中文字幕| 热re99久久国产66热| 亚洲av美国av| 两性午夜刺激爽爽歪歪视频在线观看 | av片东京热男人的天堂| 午夜福利视频在线观看免费| 十分钟在线观看高清视频www| 欧美老熟妇乱子伦牲交| 精品第一国产精品| 中文字幕人妻丝袜制服| 色婷婷久久久亚洲欧美| 如日韩欧美国产精品一区二区三区| 丝瓜视频免费看黄片| 日韩大片免费观看网站| 欧美午夜高清在线| 最新美女视频免费是黄的| 久久人妻福利社区极品人妻图片| av电影中文网址| 两性夫妻黄色片| 久久婷婷成人综合色麻豆| 午夜激情久久久久久久| 日本欧美视频一区| 日本av手机在线免费观看| 日韩欧美三级三区| 亚洲专区字幕在线| 日本精品一区二区三区蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 日韩大码丰满熟妇| 国产精品久久久久久精品古装| 久久久久视频综合| 新久久久久国产一级毛片| 久久久久久久久免费视频了| 免费观看av网站的网址| 激情在线观看视频在线高清 | 大香蕉久久成人网| 天堂俺去俺来也www色官网| 国产97色在线日韩免费| 国产深夜福利视频在线观看| 大码成人一级视频| 五月开心婷婷网| 国产亚洲精品第一综合不卡| 精品第一国产精品| 中文字幕人妻丝袜制服| 国产高清视频在线播放一区| 精品欧美一区二区三区在线| 一本一本久久a久久精品综合妖精| 国产成+人综合+亚洲专区| 高清黄色对白视频在线免费看| 国产无遮挡羞羞视频在线观看| 国产福利在线免费观看视频| 悠悠久久av| 亚洲av欧美aⅴ国产| 午夜免费成人在线视频| 久久久久久久久免费视频了| 国产三级黄色录像| 老司机在亚洲福利影院| 狠狠狠狠99中文字幕| 久久人人97超碰香蕉20202| 免费在线观看黄色视频的| 97在线人人人人妻| 久久人妻av系列| 久久久久精品人妻al黑| 国产精品国产高清国产av | 国产男女内射视频| 天天影视国产精品| 国产成人免费无遮挡视频| 欧美激情高清一区二区三区| 午夜视频精品福利| 欧美人与性动交α欧美精品济南到| h视频一区二区三区| 王馨瑶露胸无遮挡在线观看| 男女免费视频国产| 久久婷婷成人综合色麻豆| 欧美乱妇无乱码| 国产高清激情床上av| 一本综合久久免费| 老鸭窝网址在线观看| 在线观看人妻少妇| 性少妇av在线| 日本黄色日本黄色录像| 欧美日韩精品网址| 桃红色精品国产亚洲av| av在线播放免费不卡| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| av天堂在线播放| 十八禁人妻一区二区|