• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    顯式溶劑模型模擬嵌段共聚物在納米微滴中的圖案化結構

    2012-11-30 10:41:26伍紹貴
    物理化學學報 2012年4期
    關鍵詞:微滴共聚物洋蔥

    伍紹貴 孫 婷 周 萍 周 俊

    (四川師范大學化學與材料科學學院,成都610068)

    顯式溶劑模型模擬嵌段共聚物在納米微滴中的圖案化結構

    伍紹貴*孫 婷 周 萍 周 俊

    (四川師范大學化學與材料科學學院,成都610068)

    采用耗散粒子動力學(DPD)方法研究了嵌段共聚物在納米微滴中的相分離行為.模擬是將共聚物納米微滴置于溶劑環(huán)境中進行自發(fā)相分離,從而形成一些圖案化結構.由于是受限體系,所形成的結構和在溶液或熔融體中形成的相分離結構有所差異,這些結構的形成與親/疏溶劑嵌段比例(RH/T)有關系.隨著親/疏溶劑嵌段比例的增加,依次形成了棗糕球體、排球狀相、多層囊泡(洋蔥相)、籠狀相、納米桿狀相和分散膠束等結構.我們對洋蔥相的形成過程進行了詳細的描述.溶劑粒子的集群屬性有助于更加深入地了解洋蔥相的結構衍化.采用密度曲線分析了洋蔥相的結構.在較高的親/疏溶劑嵌段的比例條件下,嵌段共聚物主要表現(xiàn)為親溶劑性,通過吸收大量的溶劑溶脹形成疏松結構或瓦解形成分散的膠束懸浮在溶劑中.本文模擬結果與理論或?qū)嶒灲Y果基本吻合.

    耗散粒子動力學;洋蔥相;微相分離

    1 Introduction

    Block copolymers,composed of blocks of chemically distinct repeat units,can assemble into a variety of ordered structures in bulk or in solution,such as lamellae,hexagonally ordered cylinders,body-centered cubic arrays of spheres and other more complex structures.1-3These structures are of great in-terest in nanotechnological applications,including targeted drug-release capsules,micro-reactors and templates for heterogeneous catalysts,etc.4,5The main challenge of all these applications lies in the preparation of these nanostructures in a controllable way.Large amount of work has been done to address the problem of tailoring a desired nanostructure using block copolymers both experimentally and theoretically.6-9Groot and coworkers10studied the microphase separation of block copolymer melts after a temperature quench,and found the equilibrium structures to be lamellar,perforated lamellar,hexagonal rods,and micelles.This is in agreement with the results from experiments and mean-field theory qualitatively.However,as the result of using periodic boundary conditions,configurations fused with their periodic images forming across periodic structures11and made it hard to conceive the actual structures in space.Moreover,the phase separation in solvent condition was not covered in their work.Sevink and coworkers12investigated the self-assembly of amphiphilic polymers in solution using self-consistent field theory.A rich variety of complex vesicles were observed and the nanostructures could be tailored by both kinetic and thermodynamic factors.Restricted by the simplicity of the model,the simulation results cannot fully reproduce the real self-assembly process of amphiphilic polymers. Fraaije and coworkers13examined the microphase separation of dispersed droplets using a self-consistent-field simulation and discovered patterned structures formed in nanodroplets.However,since solvent has not been incorporated explicitly,the simulation results are inadequate to reveal the real microphase separation behaviors.

    Dissipative particle dynamics(DPD)is a mesoscopic simulation technique primarily proposed to study the hydrodynamic behavior of complex fluids.With coarse-grained models and employment of soft potentials,DPD can perform efficient simulation of large systems for long period of time,as compared to atomistic molecular dynamics simulations.Furthermore,due to explicit solvent evolved,DPD can truly reproduce the hydrodynamic behavior of complex fluids.It has been successfully used to investigate the phase morphology and the dynamics of soft matter systems,such as lipids,14block copolymers,7surfactants.15In this study,DPD simulation technique is applied to elucidate the microphase separation in block copolymer nanodroplets,and the results are compared to experimental or theoretical results.

    2 Experimental

    2.1 DPD simulation

    DPD is a mesoscopic simulation technique originally developed by Hoogerbrugge and Koelman.16Position r and velocity v of particles are governed by Newton′s second law of motion. Particles interact(fi)with each other via conservative force FC, dissipative force FD,random force FRand spring force FS.

    The first three forces are applied for all inter-particle pairs, which are truncated by the cutoff radius rc.FSis used to refrain the relative distance of adjacent beads.The conservative force FCis a soft repulsion taking the form

    where rijis the distance between particles i and j,and nijis the unit vector pointing from particle j to particle i.The dissipative force FDis given by

    where γ is friction parameterand vijis the relative velocity between particles i and j.The random force FRis defined as

    where ξijis a Gaussian-distributed random element.Dissipative and random forces serve as thermostat that ensures the evolution of system towards a Boltzmann-distributed equilibrium state.Amphiphile chain is modeled by tying particles together using Hookean springs with harmonic force FS,17

    where i,i+1 represent adjacent beads in molecular chain;k2is spring constant and l0is unstretched bond length.

    2.2 DPD model for block copolymer

    Our simulation system contains diblock copolymers and solvent.There are a variety of block copolymers,in which the molecular structure and the volume ratio of solvophilic/solvophobic blocks(RH/T)are varied.Since the microphase separation structure mainly depends on the volume ratio of two blocks,18we adopt linear diblock copolymer model HMTN-Mto elucidate their microphase separation behaviors in nanodroplets,where M and N-M are the numbers of H and T particles,H and T denote solvophilic particles and solvophobic particles,respectively.The diblock copolymer model is built by tying soft spherical particles together using Hookean springs and each particle represents a group of atoms.It should be noted that all connections between adjacent particles are fully flexible in these models.Thus,many complex processes can be reproduced on relatively smaller time and length scales.19,20Each copolymer chain contains N=10 beads.And by changing the numbers of H and T particles we obtain diblock copolymers with different values of RH/T.A parameter is defined as f=M/N,denoting the overall volume fraction of the H component.In addition,solvent is modeled by S particle which represents several solvent molecules.The interaction parameters for the conservative force between DPD particles have been described previously.21The repulsion parameters are set at aij=25kBT for the solvophilic interaction(H-S)and 75kBT for the solvophobic interaction(H-T and S-T).The value of parameter aij=75kBT is a value high enough to induce strong phase segregation of a binary mixture system.The value of repulsion parameters between particles of the same type(H-H,T-T,and S-S)is set at aij=25kBT.22The unstretched bond length l0is chosen at 0.7r0,and spring constant is set at k2=100kBT/r02.

    2.3 Simulation condition

    All physical quantities in this paper are presented in reduced units.The units for mass,length,energy are m0,r0,kBT,respectively.23For simplicity,all particles are assumed to have the same mass m0and size r0.24All the simulations are carried out in the NVT ensemble with constant particle number N,simulation box volume V,and temperature kBT=1.In this work,we quenched a dispersed nanodroplet of block copolymer in a solvent bath and then relaxed the structure by a dissipative particle dynamics simulation method to obtain patterned inner structures.Nanodroplets are generally formed in solvent with random irregular shapes.We have proved that the initial shape of nanodroplet does not affect the final morphology.For solvophobic copolymers,their nanodroplet would minimize its contact with solvent so as to evolve into a sphere.For solvophilic copolymers,their nanodroplet would be swelled by solvent into irregular shapes independent of the initial shape.However, nanodroplets with spherical shapes may accelerate the evolution process.The initial configuration is built as follows:first, a cubic simulation box(76.59r0×76.59r0×76.59r0)is filled up with block copolymers to the density of ρ=3r0-3.After the filling,the total particle number reaches the value of 1387840 (~138784 HMT10-Mmolecules).Then the system is dispersed sufficiently to create a homogenous melt,as shown in Fig.1(A). Subsequently,all the copolymer particles beyond a certain diameter are replaced by solvent particles.Therefore,a spherical copolymer nanodroplet is cut from the original cubic melt as shown in Fig.1(B).These replaced particles turn into the solvent environment surrounding the block copolymer nanodroplet.The thickness of solvent layer should be large enough to circumvent the influence of periodic boundary conditions.

    3 Results and discussion

    The nanodroplet of diblock copolymer in solvent is a confined system,which allows the self-assembly process to occur only inside the sphere.The final configurations depend on f, which is similar to self-assembly of block copolymer melts. For copolymers with f<0.5,the nanodroplet maintains nearsphere shape during the whole simulation time.Extreme asymmetric polymer——H1T9exhibits strong solvophobicity.Its nanodroplet tries to minimize the surface and evolves into an energetically favorable regular sphere(Fig.2(A)).Since insufficient to aggregate into large domains,these H particles gather into a number of small inverted micelles randomly distributed in the nanodroplet resembling the“Plum Pudding Model”. Thus,in this case,there is no obvious patterned internal structure formed in the nanodroplet.This is in full agreement with the prediction of self-consistent field simulation.

    Fig.1 Setup of initial configuration

    Fig.2 Obtained morphologies for(A)H1T9,(B)H2T8, (C)H3T7,(D)H4T6

    For the case of asymmetric copolymer H2T8,H particles gather into many solvophilic domains and T particles form the continuous phase.As shown in Fig.2(B),the resulted morphology is best described as a mixture of long wormlike and short inverted micelles.In melt systems,the mean-filed theory predicts a perfectly hexagonal array of micelles,while the DPD simulation expects a disordered peanut-shaped micellar phase.10Under current simulation conditions,influenced by the curved shape of the nanodroplet,these inverted micelles are aligned in concentric rings.For clear observation,a half of the ring is peeled off from the nanodroplet as shown in Fig.3.It is interesting to find that the original“l(fā)ong wormlike and short”inverted micelles are all long wormlike inverted micelles actually.The cluster analysis shows that the inverted micelles interconnect with each other forming a continuous phase with its appearance resembling volleyball.One ring is corresponding to a perforated shell structure in three-dimension.

    Fig.3 Volleyball-like morphology for H2T8

    As for H3T7(f=0.3)and H4T6(f=0.4),well-ordered structures composed of alternating H and T layers(the so-called onion phase)are formed.Solvent particles are encapsulated in the solvophilic H-rich layers.Onion phase is a particular structure composed of multiple lamellar layers.The gaps between any two solvophobic rings provide a space to encapsulate solvent and other solvophilic contents.This structure attracts great interest for its application in pharmaceutical formulations.The multiple lamellar layers not only protect the encapsulated contents,but also enable the sustained and controlled release of them.The obtained morphology for H4T6is a near-spherical onion with the size of 72.6r0,as shown in Fig.2(D).The onion includes four complete solvophobic rings and a micelle nucleus in the center,containing 19532,11488,5528,1710,and 123 copolymer molecules,respectively.The solvophilic H-rich regions form containers filled with a certain amount of solvent, which is introduced during the initial stage of onion formation. A total amount of 46549 S particles are encapsulated in the nanodroplet while the solvent content makes 12.1%.Each gap (including the central cavity)contains 33169,10060,2885,and 435 S particles,respectively.As for H3T7,affected by the central oblong vesicle,the obtained onion takes the shape of an ellipsoid,as shown in Fig.2(C).

    Fig.4 Density profiles for the obtained morphologies (A)H1T9,(B)H2T8,(C)H3T7,(D)H4T6

    In order to characterize the obtained structures,density profiles are evaluated among these morphologies and the results are summarized in Fig.4.For the extreme asymmetric case of H1T9,though no obvious internal structure is observed in Fig.2(A)as mentioned earlier,the existence of peaks in density curves(Fig.4(A))suggests otherwise:the morphology may have a certain orderly internal structure.As shown in Fig.4(A), there are four discernible H peaks(where H clusters gather) and three T peaks(where T clusters gather)and they appear to be staggered.With the increasing value of the radial distance, the intensity of these H and T peaks grows higher.This implies that the H clusters are arranged more in an incomplete ring when it comes closer to the surface of the nanodroplet and more random when closer to the center.As mentioned earlier, the microphase separation is confined inside the nanodroplet. The effect of the shape of the nanodroplet on the process peaks in the near-surface region,which probably causes the ring-like arrangement of the H clusters in this case.When moving away from the surface,this effect diminishes and results in randomly distributed H clusters.When it comes to the asymmetric model of H2T8(Fig.4(B)),six obvious H peaks emerge in the density curve and are arranged regularly.This shows that H clusters are arranged in incomplete rings in the nanodroplet,which is in agreement with Fig.2(B).Obviously,the outer rings are more regular than the inner ones in the nanodroplet.

    For the systems of H3T7and H4T6(Fig.4(C)and 4(D)),although both form onions,their density curves are slightly different.The peaks for H3T7onion are arranged less regularly than those for H4T6onion,which is caused by the irregularity of the spherical shape of H3T7onion.The intensity of T peaks in Fig.4(D)is almost at the same height——slightly above 3, suggesting that H4T6onion is in the shape of regular sphere and its solvophobic particles are closely packed.The space between two solvophobic layers is a solvophilic layer filled with H and S particles.Thus H and S peaks emerge between two T peaks when illustrated in the density curves as shown in Fig.4 (D).Moreover,when being closer the surface,the intensity of S peaks increases while that of H peaks decreases.This indicates that the amount of solvent contents in outer solvophilic layers is greater than that in inner ones.In addition,on both sides of each T peak,there are two H peaks,which confirm the existence of bilayer structure of each shell25,26(It is similar to a lipid bilayer membrane).Finally,the narrow H peak at r≈32.5r0corresponds to the single layer of H particles coating the onion′s surface.

    Fig.5 Kinetic pathway of onion formation(H4T6)Solvent particles are not displayed,but a slice illustration including solvent particles is depicted at t=8000t0.

    Fig.5 shows a series of snapshots illustrating the evolution pathway of onion from a nanodroplet.At initial stage(t=0t0), phase segregation takes place quickly between H and T particles,forming a lot of small solvophilic and solvophobic domains,which will merge into large ones later.The feature of the structure formed after 50t0can be described as a collection of associated bilayers.Since the shell is not yet sealed,many solvent pores are remained on the surface,providing temporary channels for solvent transmission.This allows the S particles to diffuse into the nanodroplet then to enter the solvophilic domains of H particles.These pores can stay open as long as 6500t0before being fully sealed.The inner space of the droplet is filled with highly folded bilayers,which connect to each other or to the shell.The conjunctions play an important role during the structure transition towards an onion.They enable the bilayers to exchange copolymers to adjust the amount in each bilayer.When a bilayer has sufficient copolymers,all the conjunctions connecting to it begin to break up.Then the bilayer becomes an independent ring.In our simulation,it is found that onion formation is promoted when outer rings are formed earlier than inner ones.This is due to the fact that it is hard for the outer rings to seal with limited number of available copolymers if the inner rings are formed earlier.Therefore,the outer three rings take shape during the time t=(1500-2000)t0.The remaining copolymers are concentrated in the central region and form an unsealed ring with a superfluous part.By the time of t= 7000t0,it is closed and the superfluous part breaks away from it to generate a small spherical micelle nucleus.This marks the formation of the final onion.Sometimes,the superfluous part is very large and forms an oblate bilayer,which would result in an oval onion.

    Fig.6 Particle cluster property

    Fig.7 Obtained morphologies of diblock copolymer nanodroplets(A)H5T5,cage-like structure,(B)H6T4,nanorods,(C)H7T3and(D)H8T2,discrete micelles.H and S particles are not drawn for clear observation.

    Another way to understand onion structure evolution is to investigate the change of particle cluster property.Given that particle i is already inside a cluster,the distance between particle j and i(rij)can be used to determine whether particle j is in a cluster:if rij

    Fig.8 Cluster size(chain number)distributions for H7T3,H8T2and H9T1

    The obtained morphologies of diblock copolymer nanodroplets(f≥0.5)are summarized in Fig.7.For the symmetric H5T5(f=0.5),Groot et al.10predict a lamellar phase in the situation of a pure melt.Under current simulation conditions,a lot of solvent diffuses into the nanodroplet,which makes the morphology swell into a loose cage-like structure,as shown in Fig.7(A).Due to the strong solvophobic interaction between T and S particles,the loose structure still maintains the integrity. The solvophobic regions are interconnected and the structure is actually like a perforated onion.For H6T4(f=0.6),since the number of solvophilic particles is higher than that of solvophobic particles,the diblock copolymer exhibits certain solvophilicity in whole.Therefore,more solvent molecules are attracted into the inner space of the nanodroplet.As a result,the nanodroplet can not keep integrity any more,and turns into a swarm of long worm-like micelles,as shown in Fig.7(B).For H7T3(f=0.7)and other diblock copolymers of f>0.7,due to the large ratio of solvophilic particles,the initial nanodroplets are disintegrated completely into a lot of small micelles,which are homogenously suspended in the solution,as shown in Fig.7(C) and Fig.7(D),respectively.The distribution of cluster sizes for each system is determined and is shown in Fig.8.Cluster sizes of the highest probability are 1,38 and 58 molecules for H9T1, H8T2and H7T3,respectively.With the increasing value of f,the sizes of micelles become smaller.H9T1molecules are almost soluble in the solvent,thus most exist in the free form.

    4 Conclusions

    In this study,DPD simulation is used to investigate the microphase separation behavior of block copolymer nanodroplets and the results are compared to the experimental or theoretical ones.It is found that block copolymer nanodroplets in solvent form many microphase separated structures,depending on the ratio of the solvophilic to the solvophobic blocks(RH/T).As RH/Tincreases,the formed morphologies are plum pudding microsphere,volleyball-like structure,onion,cage-like structure, nanorods,and discrete micelles in succession.At low value of RH/T,block copolymers exhibit mainly solvophobicity.To minimize the contact with the solvent,microspheres with patterned internal structures are formed.For highly asymmetric copolymer——H1T9,an almost regular sphere with disordered inverted micelles is formed.For H2T8system,H particles aggregate into long inverted micelles,which interconnect with each other and form a continuous phase resembling volleyball.Onion phases are obtained in H3T7and H4T6systems.The pathway of onion formation is described in detail for H4T6system.Density analysis denotes that the rings in onion have a bilayer structure like lipid membrane.Additionally,cluster particle number determination helps to get more intuition about the dynamics of the onion evolution.For symmetric molecule H5T5,different than the lamellar phase formed in melt,a cage-like structure is observed at the existence of solvent.At high value of RH/T, block copolymers exhibit mainly solvophilicity and the formed morphologies are mostly swelled loose structures.The morphology of small micelles suspending in solvent is formed when f>0.7.And the sizes of micelles reduce with the increasing value of f.The microphase separation structures of block copolymer nanodroplets in current simulation are qualitatively consistent with the self-consistent filed theory or the experimental results.Furthermore,with the inclusion of explicit solvent,this DPD technique reveals more actual dynamics of morphology evolution for these structures and represents the situation closer to the reality.

    (1) Li,Z.;Dormidontova,E.E.Macromolecules 2010,43,3521.

    (2) Blanazs,A.;Armes,S.P.;Ryan,A.J.Macromol.Rapid Commun.2009,30,267.

    (3) Ruiz,R.;Kang,H.;Detcheverry,F.A.;Dobisz,E.;Kercher,D. S.;Albrecht,T.R.;de Pablo,J.J.;Nealey,P.F.Science 2008, 321,936.

    (4)Wan,D.H.;Zheng,O.;Zhou,Y.;Wu,L.Y.Acta Phys.-Chim. Sin.2010,26,3243.[萬東華,鄭 歐,周 燕,吳莉瑜.物理化學學報,2010,26,3243.]

    (5) Matsui,H.;Okada,A.;Yoshihara,M.J.Mater.Sci.Lett.2001, 20,1151.

    (6) Roy,S.;Markova,D.;Kumar,A.;Klapper,M.;Mu¨ller-Plathe,F. Macromolecules 2009,42,841.

    (7)Wang,H.;Liu,Y.T.;Qian,H.J.;Lu,Z.Y.Polymer 2011,52, 2094.

    (8) Li,X.;Guo,J.;Liu,Y.;Liang,H.J.Chem.Phys.2009,130, 074908.

    (9)Chen,W.X.;Fan,X.D.;Huang,Y.;Liu,Y.Y.;Sun,L.React. Polym.2009,69,97.

    (10) Groot,R.D.;Madden,T.J.J.Chem.Phys.1998,108,8713.

    (11) Marrink,S.J.;Mark,A.E.J.Am.Chem.Soc.2003,125,15233.

    (12) Sevink,G.;Zvelindovsky,A.Macromolecules 2005,38,7502.

    (13) Fraaije,J.;Sevink,G.Macromolecules 2003,36,7891.

    (14) Ganzenmüller,G.;Hiermaier,S.;Steinhauser,M.Soft Matter 2011,7,4307.

    (15) Li,Z.;Dormidontova,E.E.Soft Matter 2011,7,4179.

    (16) Koelman,J.;Hoogerbrugge,P.J.Europhys.Lett.1993,21,363.

    (17) Shillcock,J.C.;Lipowsky,R.J.Chem.Phys.2002,117,5048.

    (18) Bates,F.S.;Fredrickson,G.H.Annu.Rev.Phys.Chem.1990, 41,525.

    (19)Venturoli,M.;Smit,B.;Sperotto,M.M.Biophys.J.2005,88, 1778.

    (20) Markvoort,A.J.;Pieterse,K.;Steijaert,M.N.;Spijker,P.; Hilbers,P.A.J.J.Phys.Chem.B 2005,109,22649.

    (21)Wu,S.;Guo,H.J.Phys.Chem.B 2009,113,589.

    (22)Yamamoto,S.;Maruyama,Y.;Hyodo,S.J.Chem.Phys.2002, 116,5842.

    (23)Yamamoto,S.;Hyodo,S.A.J.Chem.Phys.2003,118,7937.

    (24) Kranenburg,M.;Venturoli,M.;Smit,B.Phys.Rev.E 2003,67, 060901.

    (25)Van der Linden,E.;Hogervorst,W.T.;Lekkerkerker,H.N.W. Langmuir 1996,12,3127.

    (26) El Rassy,H.;Belamie,E.;Livage,J.;Coradin,T.Langmuir 2005,21,8584.

    (27) Rapaport,D.C.The Art of Molecular Dynamics Simulation; Cambridge Univ Press:Cambridge,2004.

    November 15,2011;Revised:February 4,2012;Published on Web:February 14,2012.

    Simulating Patterned Structures in Block Copolymer Nanodroplets Using Explicit Solvent Model

    WU Shao-Gui*SUN Ting ZHOU Ping ZHOU Jun
    (College of Chemistry and Materials Sciences,Sichuan Normal University,Chengdu 610068,P.R.China)

    Dissipative particle dynamics(DPD)simulation technique is used to elucidate the microphase separation behavior of block copolymers in nanodroplets.The simulation is performed by relaxing disordered copolymer nanodroplets in a solvent bath.Microphase separation is then carried out inside the nanodroplet,which allows block copolymers self-assemble into many new morphologies differing from those formed in pure melts or in solution.These patterned structures depend on the volume ratio of solvophilic/solvophobic blocks(RH/T).As the value of RH/Tincreases,the following structures are formed: plum-pudding microsphere,volleyball-like structure,multilamellar vesicle,cage-like structure,nanorods, and discrete micelles.Density analysis is performed to characterize the onion′s structure.At high RH/Tvalues,block copolymers exhibit mainly solvophilicity and form swollen loose structures or small micelles suspended in the solvent.The simulation results are in good agreement with experimental and theoretical results.

    Dissipative particle dynamics;Onion phase;Microphase separation

    10.3866/PKU.WHXB201202142

    O648

    ?Corresponding author.Email:wsgchem@foxmail.com.

    The project was supported by the Science and Technology Plan of Sichuan Province,China(2010JY0122),Science Research Fund of Sichuan Normal University,China(10MSL02),and 251 Key Talent Program of Sichuan Normal University,China.

    四川省應用基礎項目(2010JY0122),四川師范大學校級面上項目(10MSL02)和“251重點人才培養(yǎng)工程”資助

    猜你喜歡
    微滴共聚物洋蔥
    銀墨水/樹脂雙材料微滴噴射過程數(shù)值模擬與分析
    對稱Y型分岔微通道微滴分裂數(shù)值模擬與實驗探究
    織物表面導電線路噴射打印中微滴關鍵參數(shù)的視覺測量
    紡織學報(2021年7期)2021-07-26 10:04:56
    兩嵌段共聚物軟受限自組裝行為研究
    基于改進分水嶺分割算法的致密熒光微滴識別
    中國光學(2019年4期)2019-09-02 07:46:46
    洋蔥寫檢討
    切洋蔥
    雙親嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA的自組裝行為
    化工進展(2015年3期)2015-11-11 09:18:44
    DADMAC-AA兩性共聚物的合成及應用
    剝開心的洋蔥
    日本与韩国留学比较| 99热只有精品国产| 成年版毛片免费区| 美女被艹到高潮喷水动态| 国产激情偷乱视频一区二区| 国产免费av片在线观看野外av| 91麻豆精品激情在线观看国产| 一a级毛片在线观看| 日本五十路高清| 日韩中文字幕欧美一区二区| 亚洲国产精品合色在线| 韩国av一区二区三区四区| 黄色欧美视频在线观看| 免费黄网站久久成人精品| 亚洲成a人片在线一区二区| 久久精品国产亚洲av天美| 色尼玛亚洲综合影院| 性欧美人与动物交配| 日韩av在线大香蕉| 男女边吃奶边做爰视频| 国产精品国产三级国产av玫瑰| 欧美bdsm另类| 日本 av在线| 嫩草影视91久久| 日韩精品青青久久久久久| 成人三级黄色视频| 久久精品国产亚洲av香蕉五月| 热99在线观看视频| 女生性感内裤真人,穿戴方法视频| 男女之事视频高清在线观看| 色精品久久人妻99蜜桃| 毛片女人毛片| 美女cb高潮喷水在线观看| 日韩高清综合在线| 成人无遮挡网站| 亚洲国产色片| 亚洲av电影不卡..在线观看| 大又大粗又爽又黄少妇毛片口| 精品久久久噜噜| 尤物成人国产欧美一区二区三区| 欧美中文日本在线观看视频| 国产单亲对白刺激| 成年免费大片在线观看| 欧美一区二区亚洲| 十八禁网站免费在线| 国产精品人妻久久久影院| 欧美性猛交╳xxx乱大交人| 国产精品三级大全| 欧美在线一区亚洲| 国产成人aa在线观看| 久久精品国产99精品国产亚洲性色| 亚洲av电影不卡..在线观看| 国产综合懂色| 国产精品人妻久久久久久| 亚洲av二区三区四区| 12—13女人毛片做爰片一| 午夜福利18| 在线观看一区二区三区| 美女黄网站色视频| 亚洲无线在线观看| 嫩草影院新地址| 国产精华一区二区三区| 韩国av在线不卡| 久久久久精品国产欧美久久久| 中文字幕高清在线视频| 婷婷亚洲欧美| 成人av一区二区三区在线看| 搡老岳熟女国产| 亚洲av免费在线观看| 午夜亚洲福利在线播放| 亚洲四区av| 亚洲av不卡在线观看| 人妻丰满熟妇av一区二区三区| 免费一级毛片在线播放高清视频| 精品久久久久久久人妻蜜臀av| av在线亚洲专区| 精品人妻偷拍中文字幕| 草草在线视频免费看| 亚洲av日韩精品久久久久久密| 少妇猛男粗大的猛烈进出视频 | 亚洲av二区三区四区| 日韩精品青青久久久久久| 美女大奶头视频| 国产精品一及| 日韩欧美免费精品| 午夜精品在线福利| 成熟少妇高潮喷水视频| 免费av观看视频| 日本黄色视频三级网站网址| 国内少妇人妻偷人精品xxx网站| 精品国产三级普通话版| 变态另类丝袜制服| 日韩欧美免费精品| 最近在线观看免费完整版| 很黄的视频免费| 联通29元200g的流量卡| 精品福利观看| 久久香蕉精品热| 中文字幕久久专区| 国内久久婷婷六月综合欲色啪| 久久久久久久久中文| 少妇裸体淫交视频免费看高清| 日本a在线网址| 国产人妻一区二区三区在| 又黄又爽又刺激的免费视频.| 尾随美女入室| 久久香蕉精品热| 国产av在哪里看| 在线观看免费视频日本深夜| 亚洲成人精品中文字幕电影| 亚洲美女黄片视频| 草草在线视频免费看| 国产av不卡久久| 国产精品久久久久久av不卡| 麻豆成人午夜福利视频| 亚洲国产色片| 亚洲av不卡在线观看| 欧美一级a爱片免费观看看| 久久久久久久亚洲中文字幕| 日韩在线高清观看一区二区三区 | 国产精品不卡视频一区二区| 老司机深夜福利视频在线观看| 一级黄色大片毛片| 欧美一区二区精品小视频在线| 亚洲专区中文字幕在线| 亚洲乱码一区二区免费版| 日韩欧美精品v在线| 色吧在线观看| 久久久久久久午夜电影| 日日撸夜夜添| 变态另类丝袜制服| 丰满乱子伦码专区| 亚洲av第一区精品v没综合| 少妇人妻精品综合一区二区 | 国产一级毛片七仙女欲春2| 日本与韩国留学比较| 在线免费观看的www视频| 亚洲av美国av| 久久久久久久午夜电影| 国产黄a三级三级三级人| 我要看日韩黄色一级片| 一区二区三区高清视频在线| 亚洲国产精品久久男人天堂| 亚洲国产精品久久男人天堂| 亚洲国产精品久久男人天堂| 免费黄网站久久成人精品| 亚洲在线自拍视频| 尾随美女入室| 国产亚洲精品综合一区在线观看| 联通29元200g的流量卡| 日本熟妇午夜| 亚洲国产精品合色在线| 精品一区二区三区视频在线观看免费| netflix在线观看网站| 国产探花极品一区二区| 国产精品1区2区在线观看.| 日韩中文字幕欧美一区二区| 又粗又爽又猛毛片免费看| 久久人人精品亚洲av| 夜夜看夜夜爽夜夜摸| 麻豆久久精品国产亚洲av| 久久热精品热| 97人妻精品一区二区三区麻豆| 色噜噜av男人的天堂激情| 久久精品国产亚洲av香蕉五月| 久久久成人免费电影| 99在线人妻在线中文字幕| 天堂√8在线中文| 免费看美女性在线毛片视频| 亚洲av免费高清在线观看| 久久99热6这里只有精品| 无人区码免费观看不卡| 国产69精品久久久久777片| 亚洲男人的天堂狠狠| 婷婷丁香在线五月| 国产在视频线在精品| 成人精品一区二区免费| 久久久久国产精品人妻aⅴ院| 又黄又爽又免费观看的视频| 一区二区三区激情视频| 久久久久久九九精品二区国产| 国产精品福利在线免费观看| 国产高清视频在线播放一区| 精品人妻视频免费看| 久久精品夜夜夜夜夜久久蜜豆| 久久精品影院6| 亚洲av一区综合| 春色校园在线视频观看| 美女 人体艺术 gogo| 91麻豆av在线| 午夜精品一区二区三区免费看| 亚洲中文日韩欧美视频| 成人永久免费在线观看视频| 亚洲午夜理论影院| 久久精品国产鲁丝片午夜精品 | 国产一区二区在线观看日韩| 91麻豆精品激情在线观看国产| 久久精品国产亚洲av香蕉五月| 99久久中文字幕三级久久日本| 少妇的逼好多水| 欧美成人性av电影在线观看| 国产精品精品国产色婷婷| 亚洲性夜色夜夜综合| 免费人成视频x8x8入口观看| 久久国内精品自在自线图片| 少妇人妻精品综合一区二区 | 99热6这里只有精品| 能在线免费观看的黄片| 一卡2卡三卡四卡精品乱码亚洲| 乱码一卡2卡4卡精品| 可以在线观看毛片的网站| 国产av麻豆久久久久久久| 日韩在线高清观看一区二区三区 | 午夜影院日韩av| 深夜精品福利| 成人午夜高清在线视频| 毛片女人毛片| 美女高潮的动态| 精品99又大又爽又粗少妇毛片 | 亚洲精品日韩av片在线观看| 丰满乱子伦码专区| a在线观看视频网站| 一进一出抽搐动态| 99久国产av精品| 又爽又黄a免费视频| 国产精品野战在线观看| 成人永久免费在线观看视频| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 日本精品一区二区三区蜜桃| 女人十人毛片免费观看3o分钟| 亚洲人与动物交配视频| 欧美中文日本在线观看视频| av在线老鸭窝| 成年女人毛片免费观看观看9| 九九爱精品视频在线观看| 亚洲av中文字字幕乱码综合| 老司机深夜福利视频在线观看| 中文字幕av成人在线电影| 亚州av有码| 久久久久久伊人网av| 丰满乱子伦码专区| 午夜福利视频1000在线观看| 国内精品久久久久久久电影| 内地一区二区视频在线| av在线亚洲专区| 亚洲成人久久性| 3wmmmm亚洲av在线观看| 日韩欧美三级三区| 俄罗斯特黄特色一大片| 国内精品久久久久久久电影| 国产 一区 欧美 日韩| 亚洲精华国产精华液的使用体验 | 美女免费视频网站| 婷婷精品国产亚洲av在线| avwww免费| 制服丝袜大香蕉在线| 精品久久久久久久末码| 久久久色成人| 黄色丝袜av网址大全| 久久久久久久亚洲中文字幕| 国产探花极品一区二区| 在线观看av片永久免费下载| 婷婷六月久久综合丁香| 超碰av人人做人人爽久久| 嫁个100分男人电影在线观看| bbb黄色大片| 国产大屁股一区二区在线视频| 日韩精品中文字幕看吧| 久久久久久九九精品二区国产| www.色视频.com| 欧美日韩乱码在线| 亚洲人成伊人成综合网2020| 蜜桃久久精品国产亚洲av| 老师上课跳d突然被开到最大视频| 国产精品一区二区三区四区免费观看 | 国模一区二区三区四区视频| 欧美极品一区二区三区四区| 亚洲色图av天堂| 精品人妻1区二区| 亚洲aⅴ乱码一区二区在线播放| 级片在线观看| 少妇高潮的动态图| 黄色女人牲交| www.www免费av| 欧美国产日韩亚洲一区| 成人精品一区二区免费| 精品人妻偷拍中文字幕| 一级毛片久久久久久久久女| 精品久久久久久久久久久久久| 天天一区二区日本电影三级| av天堂中文字幕网| 五月伊人婷婷丁香| av.在线天堂| 在线观看av片永久免费下载| 我的女老师完整版在线观看| 国产亚洲av嫩草精品影院| 欧美国产日韩亚洲一区| av福利片在线观看| 一进一出好大好爽视频| 嫩草影院新地址| 内地一区二区视频在线| 黄色一级大片看看| 婷婷精品国产亚洲av在线| 久久精品影院6| 欧美色视频一区免费| 校园春色视频在线观看| 国产精品人妻久久久久久| 国产高清视频在线播放一区| 少妇的逼好多水| 国产亚洲欧美98| 国产黄片美女视频| 久久中文看片网| 国产真实乱freesex| 尾随美女入室| 久久久成人免费电影| 99在线视频只有这里精品首页| 日日夜夜操网爽| 2021天堂中文幕一二区在线观| 国产av不卡久久| 亚洲欧美清纯卡通| 国产在视频线在精品| 精品不卡国产一区二区三区| av中文乱码字幕在线| 亚洲av成人av| 日本 欧美在线| 人妻少妇偷人精品九色| 十八禁国产超污无遮挡网站| 老司机深夜福利视频在线观看| 亚洲av中文av极速乱 | bbb黄色大片| 人妻丰满熟妇av一区二区三区| 黄色配什么色好看| 黄片wwwwww| 琪琪午夜伦伦电影理论片6080| 最近中文字幕高清免费大全6 | 天堂影院成人在线观看| 国产亚洲精品av在线| 一级黄色大片毛片| 18禁黄网站禁片免费观看直播| 国产私拍福利视频在线观看| 深爱激情五月婷婷| 午夜精品久久久久久毛片777| 亚洲国产精品久久男人天堂| 黄色欧美视频在线观看| 又紧又爽又黄一区二区| 精品久久久久久久久亚洲 | 久久精品国产鲁丝片午夜精品 | 国产精品人妻久久久影院| 性色avwww在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区免费欧美| 熟妇人妻久久中文字幕3abv| 我的老师免费观看完整版| 欧美日本亚洲视频在线播放| 香蕉av资源在线| 少妇裸体淫交视频免费看高清| 午夜精品在线福利| 中文在线观看免费www的网站| 人妻制服诱惑在线中文字幕| 97碰自拍视频| 色综合亚洲欧美另类图片| 少妇裸体淫交视频免费看高清| x7x7x7水蜜桃| 欧美高清成人免费视频www| 我的老师免费观看完整版| 免费av毛片视频| 女人十人毛片免费观看3o分钟| 又爽又黄无遮挡网站| 色综合婷婷激情| 国产乱人视频| 综合色av麻豆| av女优亚洲男人天堂| 免费观看精品视频网站| 久久香蕉精品热| 婷婷六月久久综合丁香| 亚洲av一区综合| 免费在线观看成人毛片| 美女被艹到高潮喷水动态| 色哟哟哟哟哟哟| 五月玫瑰六月丁香| 日韩高清综合在线| 尤物成人国产欧美一区二区三区| 亚洲色图av天堂| 热99在线观看视频| 岛国在线免费视频观看| 欧美丝袜亚洲另类 | 日韩人妻高清精品专区| 国产一区二区亚洲精品在线观看| 韩国av在线不卡| 看片在线看免费视频| 亚洲专区中文字幕在线| 国产一区二区亚洲精品在线观看| 极品教师在线视频| 亚洲一区二区三区色噜噜| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 成人永久免费在线观看视频| 欧美黑人欧美精品刺激| 亚洲精品456在线播放app | 岛国在线免费视频观看| 国产精品一区二区免费欧美| 国内揄拍国产精品人妻在线| 久久久国产成人免费| 成年版毛片免费区| 舔av片在线| 直男gayav资源| 亚洲精品在线观看二区| 日本一二三区视频观看| 少妇的逼水好多| 99久久中文字幕三级久久日本| 两人在一起打扑克的视频| 三级男女做爰猛烈吃奶摸视频| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 日韩精品青青久久久久久| 日本 欧美在线| 男女那种视频在线观看| 身体一侧抽搐| 美女黄网站色视频| 国产高清三级在线| 国产一区二区三区视频了| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 91狼人影院| 亚州av有码| 中文字幕免费在线视频6| 老熟妇仑乱视频hdxx| 国产精品自产拍在线观看55亚洲| 国产69精品久久久久777片| 欧美最新免费一区二区三区| 变态另类丝袜制服| 国产麻豆成人av免费视频| 91狼人影院| 亚洲熟妇中文字幕五十中出| 男人狂女人下面高潮的视频| 在线观看av片永久免费下载| 久久久色成人| av天堂中文字幕网| 日本免费a在线| 日韩欧美国产在线观看| 亚洲精品亚洲一区二区| 亚洲精品久久国产高清桃花| 窝窝影院91人妻| 国产私拍福利视频在线观看| 欧美丝袜亚洲另类 | 99热网站在线观看| 91麻豆av在线| 婷婷精品国产亚洲av在线| 亚洲av免费高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 男女视频在线观看网站免费| 黄色配什么色好看| 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 成人特级av手机在线观看| 亚洲人成网站高清观看| .国产精品久久| 女人十人毛片免费观看3o分钟| 成人高潮视频无遮挡免费网站| 免费不卡的大黄色大毛片视频在线观看 | 好男人在线观看高清免费视频| 久久久色成人| 少妇高潮的动态图| 国产精品精品国产色婷婷| 国内精品久久久久精免费| 精品国产三级普通话版| 欧美丝袜亚洲另类 | 男人的好看免费观看在线视频| 国语自产精品视频在线第100页| 最近视频中文字幕2019在线8| 亚洲欧美日韩高清在线视频| 国产91精品成人一区二区三区| 内地一区二区视频在线| 五月伊人婷婷丁香| 国产日本99.免费观看| 日本黄大片高清| 在线观看午夜福利视频| 国产探花极品一区二区| 免费大片18禁| 国产成人一区二区在线| 免费大片18禁| 搡老熟女国产l中国老女人| 国产精品精品国产色婷婷| 国产欧美日韩精品一区二区| 长腿黑丝高跟| 91在线观看av| 欧美成人一区二区免费高清观看| 22中文网久久字幕| 校园春色视频在线观看| 欧美精品国产亚洲| 一个人看视频在线观看www免费| www.www免费av| 国产女主播在线喷水免费视频网站 | 啦啦啦啦在线视频资源| 亚洲av.av天堂| 免费一级毛片在线播放高清视频| 少妇裸体淫交视频免费看高清| 日本成人三级电影网站| 成人av在线播放网站| 欧美又色又爽又黄视频| 女人被狂操c到高潮| 久久亚洲精品不卡| 国产激情偷乱视频一区二区| 久久久久久国产a免费观看| 国产综合懂色| 久久久久久久久久黄片| 观看免费一级毛片| 国产精品乱码一区二三区的特点| 欧美bdsm另类| 日本撒尿小便嘘嘘汇集6| 欧美又色又爽又黄视频| 熟女人妻精品中文字幕| 免费看a级黄色片| 久久草成人影院| 欧美bdsm另类| 99久久成人亚洲精品观看| 搡女人真爽免费视频火全软件 | 国产亚洲av嫩草精品影院| 一个人看视频在线观看www免费| 国产精品女同一区二区软件 | 一区二区三区四区激情视频 | 国产综合懂色| 国产黄a三级三级三级人| 久久久精品大字幕| 久久久成人免费电影| bbb黄色大片| av在线观看视频网站免费| 成熟少妇高潮喷水视频| 日日撸夜夜添| 啦啦啦韩国在线观看视频| 床上黄色一级片| 可以在线观看毛片的网站| 亚洲国产欧洲综合997久久,| 精品一区二区三区av网在线观看| 精品久久久久久久久av| 99精品在免费线老司机午夜| 黄色视频,在线免费观看| 久久精品国产亚洲av涩爱 | 国产一区二区在线观看日韩| 精品久久久久久成人av| 国内揄拍国产精品人妻在线| 女的被弄到高潮叫床怎么办 | 久久久国产成人精品二区| 大型黄色视频在线免费观看| 亚洲欧美激情综合另类| 成人三级黄色视频| 国产精品伦人一区二区| 国产 一区精品| 性欧美人与动物交配| 国产一级毛片七仙女欲春2| 国产伦人伦偷精品视频| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 免费av不卡在线播放| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线| 桃红色精品国产亚洲av| 国产精品一区二区性色av| 日韩 亚洲 欧美在线| 国产av在哪里看| 欧美成人一区二区免费高清观看| 看免费成人av毛片| 99riav亚洲国产免费| 国产女主播在线喷水免费视频网站 | 午夜福利高清视频| 午夜福利在线观看吧| 99久久久亚洲精品蜜臀av| 午夜老司机福利剧场| 身体一侧抽搐| 国产美女午夜福利| 午夜影院日韩av| 亚洲国产精品久久男人天堂| 国内揄拍国产精品人妻在线| 亚洲国产精品久久男人天堂| 日韩欧美一区二区三区在线观看| 日本在线视频免费播放| www日本黄色视频网| 精品日产1卡2卡| 亚洲自拍偷在线| 男人狂女人下面高潮的视频| 热99在线观看视频| 男女那种视频在线观看| 国产高清视频在线观看网站| 国产探花在线观看一区二区| 国产精品三级大全| 国产成人一区二区在线| 久久亚洲真实| 久久精品91蜜桃| 1024手机看黄色片| 在线观看av片永久免费下载| 免费看av在线观看网站| 99久久精品热视频| 老师上课跳d突然被开到最大视频| 国产国拍精品亚洲av在线观看| 中国美白少妇内射xxxbb| 色播亚洲综合网| 国产精品亚洲一级av第二区| 国产真实乱freesex| 男人舔奶头视频| 免费在线观看成人毛片| 国产 一区精品| 国产单亲对白刺激| 国产精品无大码| 女的被弄到高潮叫床怎么办 | 九色国产91popny在线| 亚洲av免费在线观看| 伦精品一区二区三区| 乱系列少妇在线播放| 丰满人妻一区二区三区视频av| 日本熟妇午夜| 久99久视频精品免费| 色吧在线观看|