• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    小分子有機(jī)硅單體N-(3-三甲氧基硅基乙基)乙二胺的有效藍(lán)色發(fā)光

    2012-11-30 10:33:42許鄒明王玉霞孔維權(quán)
    物理化學(xué)學(xué)報(bào) 2012年3期
    關(guān)鍵詞:硅基乙二胺物理化學(xué)

    許鄒明 王玉霞 戴 鵬 孔維權(quán)

    (中國(guó)科學(xué)院能量轉(zhuǎn)換材料重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)技術(shù)大學(xué)材料科學(xué)與工程系,合肥230026)

    小分子有機(jī)硅單體N-(3-三甲氧基硅基乙基)乙二胺的有效藍(lán)色發(fā)光

    許鄒明 王玉霞*戴 鵬 孔維權(quán)

    (中國(guó)科學(xué)院能量轉(zhuǎn)換材料重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)技術(shù)大學(xué)材料科學(xué)與工程系,合肥230026)

    詳細(xì)研究了N-(3-三甲氧基硅基乙基)乙二胺(TMSEEDA)的電子結(jié)構(gòu)、光物理性質(zhì)以及熱穩(wěn)定性.通過(guò)密度泛函理論計(jì)算獲得了基態(tài)和第一激發(fā)態(tài)的結(jié)構(gòu)參數(shù).計(jì)算結(jié)果還表明在Si-O骨架內(nèi)存在離域電子,這導(dǎo)致了長(zhǎng)波長(zhǎng)的吸收.在270 nm紫外光的激發(fā)下,溶液和固態(tài)均能觀察到一個(gè)寬且強(qiáng)的藍(lán)色發(fā)射,其峰位于430 nm,固態(tài)的強(qiáng)度高出純物質(zhì)5倍左右.在乙醇溶液中,發(fā)光強(qiáng)度隨著TMSEEDA濃度的增大而增加,并在純物質(zhì)時(shí)達(dá)到最大值.這些結(jié)果說(shuō)明TMSEEDA不存在濃度淬滅效應(yīng).我們提出了在Si-O骨架內(nèi)電子離域和d-p π鍵模型來(lái)解釋長(zhǎng)波長(zhǎng)吸收和藍(lán)色發(fā)射.

    光致發(fā)光;密度泛函理論;d-p π鍵模型;淬滅;機(jī)制

    1 Introduction

    Scheme 1 Molecular structure of the N-(3-trimethoxysilylethyl) ethylenediamine

    π-Conjugated organic materials,especially those containing heavier main group-14 elements,1-5play a key role in photonics because of their exceptional luminescence features and thermal stability,attractively with respect to their applications in organic light-emitting diodes(OLEDs),6-8organic solid-state lasers,9organic fluorescent sensor,10and organic photovoltaic cells (OPVs).11In addition to the extensive applications as well as luminescence features,it is also considerably attractive for desirable intrinsic properties of solution-processable small molecules,such as low cost,reproducible and scalable synthesis, tunable structural and electronic properties,ease of processing in device fabrication and high molecular purity.12Hence,one of the current subjects to emerge in this field is the design and development of novel small molecules that emit visible light with high efficiency at high concentration or in solid state(the state usually for device).Most molecules,however,have highly efficient emission in the dilute solution but none or only faint emission in solid state owing to the concentration quenching caused by intermolecular interactions such as excimer formation and energy transfer in the condensed state.13,14

    Extensive research on the development of new organic molecules with high luminescence efficiency has been carried out with the increasing request to fabricate the organic optoelectronic devices.For example,Smith et al.15has reported that mesityl-substituted poly(p-phenylenevinylenes)(PPVs)as well as small molecule models featuring mesityl groups were highly luminescent at high concentration even in solid films.Recently,Shimizu and Hiyama14have reviewed the recent studies on highly fluorescent small organic molecules,such as N,B,C=N,or Si containing molecules and oligothiophenes derivatives, which guides the design of small molecules with efficient photoluminescence(PL)quantum yields in solid state.In many cases,Si containing chromophores not only lead to a reduced π-π*energy gap due to the enhanced σ-π interaction in comparison to their pure C analogues but often red-shift the fluorescence spectra into the visible range.16,17

    N-(3-trimethoxysilylethyl)ethylenediamine(TMSEEDA),which is extensively used as the silane coupling agent,consists of ethylenediamine and trimethoxysilane units linked by an ethyl group(Scheme 1).It has recently been shown that density functional theory(DFT)is hardly expensive and can provide accurate results on systems such as organic molecules.18,19And the time-dependent DFT(TD-DFT)method is demonstrated to be an useful and reliable tool to discuss the excited states of organic molecules.20-22In this article,we use UV-Vis absorption and photoluminescence(PL)spectra in combination with DFT/ TD-DFT methods to investigate the optical properties and electronic structure characteristic of TMSEEDA,trying to elucidate the origin of absorption and PL spectra,which is expected to shed light on the design of OLED.The thermal decomposition features are also studied by thermogravimetric(TG)techniques atthetemperaturerangefromroomtemperatureto800°C.

    2 Experimental

    2.1 Materials

    TMSEEDA was purchased from Meryer Chemical Technology Co.(99%,Shenzhen,China).All other reagents were of analytic grade and received from Shanghai Chemical Reagent Factory and used as received without purification.

    2.2 Spectroscopic measurement

    UV-Vis absorption spectra were recorded on UV-365 UV-Vis spectrophotometer(Shimadzu,Japan)and unless otherwise stated all spectra were recorded as a solution in anhydrous ethanol.The steady-state fluorescence spectra were measured using FluoRoLOG-3-TAU(Jobin Yvon,France)fluorescence spectrometer following excitation by a xenon lamp at 270 nm.The thermal properties of NSTMEE were detected by differential scanning calorimetry using an SDT Q600 TG analyzer(TA Instruments-Waters LLC,America),which was carried out at a heating rate of 10°C·min-1from room temperature to 800°C under nitrogen atmosphere.The nitrogen flow during the experiments was 100 mL·min-1.

    3 Theoretical calculation

    The ground state geometries were fully optimized without any symmetry constraint using Becke?s three-parameter hybrid exchange functional with the Lee-Yang-Parr correlation functional(B3LYP)method23,24along with the 6-311G(d,p)basis set on all atoms,25which were employed in consideration of both accuracy and efficiency.Harmonic frequency calculation was performed for the optimized structure to establish that the stationary point was local minimum on the corresponding potential energy surfaces.And the TD-DFT was applied to optimize the first singlet excited state(S1)with the 6-311+G(d,p) basis set and B3LYP method.The absorption and emission spectra were carried out using TD-DFT/6-311+G(d,p)method based on the optimized ground state structure and the lowest singlet excited state structure,respectively.The continuous absorption and emission spectra were simulated with the help of GaussView 5.0.8 software with the width at half-height of 2500 cm-1on the basis of the calculated vertical excited energy and their corresponding oscillator strengths.

    All of these calculations were performed with the Gaussian 03 package of programs26on a personal computer.

    4 Results and discussion

    4.1 Geometrical and electronic structures of TMSEEDA

    Simply,the TMSEEDA molecule without any mesityl groups is linear structure and composed of ethylenediamine and Si-O moieties,as shown in Scheme 1.Obviously,the silicon atom possesses a tetrahedral coordination environment and is bonded to three oxygen atoms and a carbon atom.

    Fig.1 Optimized molecular structures with atom numberings of TMSEEDAin the ground state(a)and the first singlet excited state(b)obtained at the B3LYP/6-311G(d,p)and 6-311+G(d,p) levels,respectively

    As we know,the optical and electronic properties of organic materials are closely related to the molecular geometrical and electronic structures.Thus,it is important and necessary to optimize the geometrical structure of isolated TMSEEDAby energy minimization under the level of DFT B3LYP,in conjunction with the 6-311G(d,p)basis set.Fig.1(a)shows the chemical and optimized structure of the title molecule at ground state (S0)with numbering of the atoms.The corresponding selected geometry parameters containing bond lengths,bond angles, and torsion angles are listed in Table 1,in accordance with the atom numbering scheme given in Fig.1.As can be seen from the Table 1,an unusual finding is that the atoms N22,C4,C1, Si33,and O8 are practically coplanar with the dihedral angles N22C4C1Si33 and C4C1Si33O8 being-176.8°and 176.9°,respectively.This better planarity can remarkably increase the conjugation degree.The Si-O skeleton,however,is non-coplanar with dihedral angle of-34.0°.In addition,the Si-O bond lengths are approximately 0.164 nm.This valve is very close to that in siloxane derivatives,27where the interaction between the lone pairs on the oxygen atom and the vacant d-type polarization function on the silicon atoms is well-known but disputed.

    When going from the ground state S0to the first singlet excited state S1,there are some variations(Table 1).The structure of excited monomer of TMSEEDA by TDDFT/6-311+G(d,p)is displayed in Fig.1(b).The bonds Si-O and Si-C are elongated,whereas bonds C-O are shortened.It is obvious that the excited structure has a strong coplanar,that is,the conjugation is better in the excited structure.For Si-O skeleton,the dihedral angles are no larger than 4°in the excited state.

    Immediately,It is noticeable that lots of effects,such as hyperconjugation interaction,28bond iconicity,292pπ-3pπ overlap,30and d-p π-bonding,31-33have been invoked to explain the variation of the Si-X(X=O or N)bond involved in organosilicon compounds.A cursory survey of the most relevant structural aspects prompts that a most possible dative d-p π conjugation, by the formation of the three Si—O groups involved in the TMSEEDA,could exist,which is very similar to the d-p π conjugate in PO3-

    4species.Generally,it is found that d-p π conjugate effect often occurs in some cluster compounds,34which can induce a more stable system with the lone pairs of O atoms wandering into the 3d orbitals on Si atom.For the title molecule,TMSEEDA,a simple molecular orbital(MO)modeling of Si—O provides a reliable description of the possible formation process of the delocalized π bond,as illustrated in Fig.2. Silicon atom appears to be of sp3-type hybrid and bonds with the atoms C1,O7,O8,and O9 leading to four σ bonding orbitals.However,d spatial orbital in Si atom can have positive and covalent overlap with the lone pairs occupied in p orbitals provided by the three adjacent O atoms,giving rise to a delocalized π bonding orbital.Thus,π-delocalization is constructed bythe overlap between the empty Si 3d and O 2pzorbitals.The effectiveness of the covalent overlap,to some degree,brings about lower energy and more stable conformer.In addition,it is not necessary that all the four atoms of the delocalized d-p π-bonding have a two-dimensional coplanar structure due to the largeness and diffusion for silicon empty 3d orbital,which can facilitate overlap with the p orbital side by side in multi-direction.

    Table 1 Selected optimized geometrical parameters obtained for TMSEEDA

    Fig.2 Schematic representation of the interactions between d orbital of silicon and p orbital of oxygen in Si-O skeleton

    Furthermore,to clarify the bonding properties of Si-O and scrutinize the electron density distribution between orbitals,a natural bond orbital(NBO)analysis was performed using the DFT/B3LYP wave functions in combination with 6-311G(d,p) basis set.The results are shown in Table 2.As can be seen,it is found that oxygen atoms have considerable participation at the Si-O bond(always approximately 90%)and silicon atom has 2.18%,2.30%,2.28%d character in Si33-O7,Si33-O8, Si33-O9 bonds,respectively,meaning that the contribution of Si 3d orbitals to Si-O bonds cannot be ignored,which is rather consistent with character of d-p π bonding.

    4.2 Electronic and photophysical properties

    Fundamental photophysical properties of the title molecule are also investigated.Fig.3 shows the experimental and simulated UV-Vis absorption spectra for TMSEEDA in ethanol solution and gas state,respectively.As can be clearly seen,in solution the most intriguing feature is relatively a strong absorption band occurs at 242 nm in addition to a weak and broad absorption band at 341 nm.No doubt that the long wavelength absorp-tion band is highly related to the d-p π-bonding within Si-O skeleton.The former is assigned to spin allowed π-π*electronic transition on Si-O skeleton and the latter is assigned to n-π*transition which most probably originates not only from the promotion of one electron of lone pairs of O to the π*orbital that is delocalized in Si-O skeleton but also from the large electron donating capacity of the nitrogen-containing group,-NH or-NH2.

    Table 2 Natural bond orbital analysis for bond characters of TMSEEDAcalculated with B3LYP/6-311G(d,p)level

    Fig.3 Experimental(ethanol solution)and simulated(gas state) UV-Vis absorption spectra of TMSEEDAGaussian broadening with half-band width 2500 cm-1for the simulated spectrum

    We compute singlet-singlet electronic transition based on the optimized geometries of the ground state using TD-DFT method at the B3LYP/6-311+G(d,p)level in order to gain a detailed insight into the nature of the UV-Vis absorption observed experimentally.The simulated absorption spectrum is superimposed in Fig.3 and adequately scaled for comparison with the experimental one.The first peak position and shape are reproduced well by the TD-DFT(B3LYP)simulation.However,the second peak with a smaller oscillator strength misses from the 300-400 nm region which is caused by the n-π*transition.This failure is presumably due to inherent limitations of the B3LYP.35Another reason may be due to the optically forbidden excited state for n-π*transition.

    In addition to the absorption spectra,the emission spectra, measured at room temperature,of TMSEEDA in its original and in the solid state are displayed in Fig.4.The spectral shape and peak position(432 nm)of the emission spectra in the solid state(Fig.4(b))are almost identical to the one in the solution (Fig.4(a)),but slightly blue-shifted(4 nm).In addition,it is found that a quantitative comparison of PL intensity of the condensed state to the solution phase yields over 5 times,indicating the absence of luminescence quenching when aggregated into solid state.Similar phenomenon has also been observed in many organic compounds characteristic of“aggregation induced emission”.36The inset in Fig.4 shows the concentration dependence of PL intensity for the same peak position at 428 nm,which is carried out varying volume fraction from 10%to 100%pure TMSEEDAin ethanol solution.

    Fig.4 PLspectra of TMSEEDA(a)the original;(b)the solid state.Inset:concentration dependence of PL intensity in ethanol solutions with the varying volume fraction of TMSEEDA; excitation wavelength:270 nm

    The most interesting feature of the PL spectra is that PL intensity increases as increasing content of the title molecule in ethanol solution and reaches the maximum for the pure chromophore.A pronounced difference is noted upon comparison with other organic molecules in this regard,as PL quenching will usually arise when the concentration of organic molecule in solution reaches at some point,where they may aggregate to form less emissive excimers or exciplexes resulting from interor intra-molecule interaction such as hydrogen bonding and π-π stacking.Hence,this suggests that for the TMSEEDA solution in high concentration or in condensed state,there might be lack of formation of excimer and weak intermolecular interaction of excited molecules with the surrounding molecules.It is known that various factors,such as chemical combination, steric hindrance,and weakness of interaction,may inhibit the excimer formation.37Both of the huge steric hindrance of Si-O-C skeletons and alkyl groups as well as non-planar and twisted structure functioning as“insulating”the molecule played the key role in this regard.

    Fig.5 shows the normalized fluorescence spectra for the same volume fraction(10%)TMSEEDA in selected solvents: toluene,chloroform,methanol,ethylene glycol.With the increasing polarity of the medium surrounding TMSEEDA,emission maxima exhibit slightly red-shift,from 425 nm for toluene to 445 nm for ethylene glycol.This situation commonly occurs in the compounds that present π-π*transition,suggesting π-π*absorption mainly contributes to the high blue emission at about 430 nm.

    Fig.5 Normalized PLspectra for 10%TMSEEDAin different solutions under 270 nm excitation at room temperature

    Fig.6 Experimental(ethanol solution)and simulated(gas state) emission spectra of TMSEEDAGaussian broadening with half-band width 2500 cm-1for the simulated spectrum

    In order to gain insight into the nature of the fluorescence emission,the optimized geometry in the first excited state was used as import data to calculate singlet-singlet electronic transition using TD-DFT method at the B3LYP/6-311+G(d,p)level,yielding the vertical electronic transitions energy of S1→S0. Fig.6 shows the comparison between the calculated emission spectra and the experimental one.It can be seen that the simulated emission spectrum mainly consists with the experimental fluorescence spectrum but exhibits a small(about 35 nm)red shift.And,the experimental data are detected in the ethanol solution,while the computed data are obtained in gas phase by employing a single molecule,which may bring about the bathochromic shift.

    4.3 Thermal analysis

    To evaluate the thermal stability of the title molecule,the TG and differential thermogravimetry(DTG)analysis curves are also studied and interpreted in Fig.7.They were measured under a nitrogen atmosphere.The degradation process results in DTG curve with several peaks,which indicates the complexity of the degradation.The temperatures at mass losses of 10%, 30%,50%,and maximum decomposition of the samples are 120,195,250,and 600°C,respectively.So,the thermal stability of TMSEEDA is practically not high.In general,the DTG curve exhibits three distinct mass loss stages.The first mass loss stage occurs from room temperature to about 135°C,most possibly resulting from moisture evaporation.38The second mass loss step,around 135-400°C,might start the decomposition of ethylenediamine,three methyl and ethyl groups as the hard segments degradation.This stage is the main degradation for TMSEEDA.The last mass loss step might be related to the formation of silica.

    Fig.7 TG and DTG curves of TMSEEDAThe curves were carried out at a heating rate of 10°C·min-1from room temperature to 800°C under nitrogen atmosphere.

    5 Conclusions

    In summary,the structural,optical,and thermal characteristics of TMSEEDA have been studied using experimental methods combined with the DFT and TD-DFT calculations.Blue emission with its maximum at about 430 nm is observed with 270 nm excitation at room temperature for both the solution and condensed states.The emission spectrum calculated by TD-DFT(B3LYP)is qualitatively coincident with the experimental one.The absorption spectra and the DFT calculation results suggest the most possible presence of π delocalization electrons within Si-O skeletons.The d-p π bonding,stemming from the interaction between n orbital of the oxygen lone pair electrons and the d-type polarization functions of the silicon atoms,rationally explains the fluorescence spectra.However,the thermal stability of TMSEEDA is not very high and it started to decompose when the temperature exceeds 135°C. The method of organic-inorganic hybrid may improve the thermal stability of TMSEEDA.

    (1) Ponomarenko,S.A.;Kirchmeyer,S.Conjugated Organosilicon Materials for Organic Electronics and Photonics;Springer-Verlag:Berlin,2011;pp 33-45.

    (2)Chen,J.W.;Cao,Y.Macromol.Rapid Commun.2007,28,1714.

    (3) Chen,Z.K.;Huang,W.;Wang,L.H.;Kang,E.T.;Chen,B.J.; Lee,C.S.;Lee,S.T.Macromolecules 2000,33,9015.

    (4)Kim,H.K.;Ryu,M.K.;Kim,K.D.;Lee,S.M.;Cho,S.W.; Park,J.W.Macromolecules 1998,31,1114.

    (5) Kim,K.D.;Park,J.S.;Kim,H.K.;Lee,T.B.;No,K.T. Macromolecules 1998,31,7267.

    (6) Adachi,C.;Tsutsui,T.;Saito,S.Appl.Phys.Lett.1990,56,799.

    (7) Friend,R.H.;Gymer,R.W.;Holmes,A.B.;Burroughes,J.H.; Marks,R.N.;Taliani,C.;Bradley,D.D.C.;Dos Santos,D.A.; Bredas,J.L.;Logdlund,M.;Salaneck,W.R.Nature 1999,397, 121.

    (8) Zhao,Y.L.;Duan,L.;Qiao,J.;Zhang,D.Q.;Wang,L.D.;Qiu, Y.Acta Phys.-Chim.Sin.2010,26,531.[趙云龍,段 煉,喬 娟,張德強(qiáng),王立鐸,邱 勇.物理化學(xué)學(xué)報(bào),2010,26, 531.]

    (9) Samuel,I.D.W.;Turnbull,G.A.Chem.Rev.2007,107,1272.

    (10) Sreejith,S.;Divya,K.P.;Ajayaghosh,A.Chem.Commun. 2008,2903.

    (11)Hains,A.W.;Liang,Z.Q.;Woodhouse,M.A.;Gregg,B.A. Chem.Rev.2010,110,6689.

    (12) Duan,L.A.;Hou,L.D.;Lee,T.W.;Qiao,J.A.;Zhang,D.Q.; Dong,G.F.;Wang,L.D.;Qiu,Y.J.Mater.Chem.2010,20, 6392.

    (13) Jakubiak,R.;Collison,C.J.;Wan,W.C.;Rothberg,L.J.;Hsieh, B.R.J.Phys.Chem.A 1999,103,2394.

    (14) Shimizu,M.;Hiyama,T.Chem.Asian J.2010,5,1516.

    (15) Smith,R.C.;Gleason,L.B.;Protasiewicz,J.D.J.Mater. Chem.2006,16,2445.

    (16)Yan,D.C.;Thomson,M.D.;Backer,M.;Bolte,M.;Hahn,R.; Berger,R.;Fann,W.;Roskos,H.G.;Auner,N.Chem.Eur.J. 2009,15,8625.

    (17)Yamaguchi,S.;Xu,C.;Yamada,H.;Wakamiya,A. J.Organomet.Chem.2005,690,5365.

    (18) Liu,J.N.;Chen,Z.R.;Yuan,S.F.Acta Phys.-Chim.Sin.2005, 21,402.[劉軍娜,陳志榮,袁慎峰.物理化學(xué)學(xué)報(bào),2005,21, 402.]

    (19) Zhan,W.S.;Pan,S.;Wang,Q.;Li,H.;Zhang,Y.Acta Phys.-Chim.Sin.2012,28,78. [詹衛(wèi)伸,潘 石,王 喬,李 宏,張 毅.物理化學(xué)學(xué)報(bào),2012,28,78.]

    (20) Zhao,G.J.;Han,K.L.J.Phys.Chem.A 2007,111,2469.

    (21) Ren,Y.L.;Wan,J.;Liu,J.J.;Wan,H.W.Acta Phys.-Chim.Sin. 2004,20,1089.[任彥亮,萬(wàn) 堅(jiān),劉俊軍,萬(wàn)洪文.物理化學(xué)學(xué)報(bào),2004,20,1089.]

    (22) Song,Z.L.;Zhang,F.S.;Chen,X.Q.;Zhao,F.Q.Acta Phys.-Chim.Sin.2003,19,130.[宋爭(zhēng)林,張復(fù)實(shí),陳錫僑,趙福群.物理化學(xué)學(xué)報(bào),2003,19,130.]

    (23) Becke,A.D.J.Phys.Chem.1993,98,5648.

    (24) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (25) Boronat,M.;Corma,A.Phys.Chem.Phys.Chem.1999,1,537.

    (26) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision B.02;Gaussian Inc.:Pittsburgh,PA,2003.

    (27)Newton,M.D.;Gibbs,G.V.Phys.Chem.Miner.1980,6,221.

    (28) Wetzel,D.M.;Brauman,J.I.J.Am.Chem.Soc.1988,110, 8333.

    (29)Apeloig,Y.;Karni,M.J.Am.Chem.Soc.1984,106,6676.

    (30) Olsson,L.;Ottosson,C.H.;Cremer,D.J.Am.Chem.Soc.1995, 117,7460.

    (31) Pauling,L.J.Phys.Chem.1952,56,361.

    (32) Jaffe,H.H.J.Phys.Chem.1954,58,185.

    (33) Janes,N.;Oldfield,E.J.Am.Chem.Soc.1986,108,5743.

    (34) Cheng,W.D.;Guo,G.C.;Huang,J.S.;Lu,J.X.Polyhedron 1995,14,3649.

    (35) Furche,F.Annual Reports in Computational Chemistry; Elsevier:Amsterdam,2005;pp 19-30.

    (36) Feng,W.K.;Kong,S.;Xiao,L.X.;Wang,S.F.;Gong,Q.H. Acta Phys.-Chim.Sin.2010,26,1929.[馮文科,孔 勝,肖立新,王樹峰,龔旗煌.物理化學(xué)學(xué)報(bào),2010,26,1929.]

    (37) Birks,J.B.;Christophorou,L.G.Proc.R.Soc.London Ser.A 1964,277,571.

    (38) Jeguirim,M.;Dorge,S.;Trouve,G.Bioresour.Technol.2010, 101,788.

    October 26,2011;Revised:January 5,2012;Published on Web:January 13,2012.?

    .Email:wyxm@ustc.edu.cn;Tel:+86-551-3601695.

    Efficient Blue Emission from Small-Molecule Organosilicon Monomer N-(3-Trimethoxysilylethyl)ethylenediamine

    XU Zou-Ming WANG Yu-Xia*DAI Peng KONG Wei-Quan
    (CAS Key Laboratory of Materials for Energy Conversion,Department of Materials Science and Engineering, University of Science and Technology of China,Hefei 230026,P.R.China)

    We investigated the electronic structure,photophysical properties,and thermal stability of N-(3-trimethoxysilylethyl)ethylenediamine(TMSEEDA).The optimized structural parameters in the ground state and first excited state were obtained from density functional theory calculations.The results showed that there was probably π electron delocalization within the Si-O skeleton,which induced the long wavelength absorption.A broad and intense blue emission with a maximum at 430 nm was observed for both the solution and the solid state with 270 nm excitation at room temperature.The absorption intensity for the solid state was five-times that of the pure TMSEEDA.For the ethanol solution,the photoluminescence intensityincreasedwithincreasingconcentrationof TMSEEDA andreachedamaximum ata concentration of 100%.These results suggest there is no concentration quenching for TMSEEDA.An accepted model of electron delocalization and d-p π-bonding within the Si-O skeleton was applied to explain the long wavelength absorption and blue emission.

    Photoluminescence;Density functional theory;d-p π-bonding model;Quenching; Mechanism

    10.3866/PKU.WHXB201201131

    O641

    The project was supported by the National Natural Science Foundation of China(5067095).

    國(guó)家自然科學(xué)基金(5067095)資助項(xiàng)目

    猜你喜歡
    硅基乙二胺物理化學(xué)
    兩種乙二胺碘酸鹽的制備與性能
    含能材料(2022年4期)2022-04-16 06:28:04
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    基于硅基液晶拼接的高對(duì)比度動(dòng)態(tài)星模擬器光學(xué)系統(tǒng)
    硅基互聯(lián)時(shí)代文化在商業(yè)空間景觀設(shè)計(jì)中的構(gòu)建
    硅基光電子學(xué)的最新進(jìn)展
    一種硅基導(dǎo)電橡膠
    2-羥基-1-萘醛縮乙二胺Schiff堿及其稀土金屬配合物的合成和表征
    對(duì)稱性破缺:手性高氯酸乙酸·二(乙二胺)合鋅(Ⅱ)的合成與結(jié)構(gòu)
    成人午夜高清在线视频| 亚洲成人久久爱视频| 非洲黑人性xxxx精品又粗又长| 日本三级黄在线观看| 9191精品国产免费久久| 人妻夜夜爽99麻豆av| 欧美又色又爽又黄视频| 亚洲中文字幕日韩| 亚洲人成网站在线播放欧美日韩| 搞女人的毛片| 两性午夜刺激爽爽歪歪视频在线观看| 看片在线看免费视频| 制服人妻中文乱码| 免费观看的影片在线观看| 亚洲第一欧美日韩一区二区三区| www日本在线高清视频| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区在线臀色熟女| 在线看三级毛片| av专区在线播放| 色哟哟哟哟哟哟| 黄片小视频在线播放| 一区二区三区免费毛片| 久久国产精品人妻蜜桃| 欧美最新免费一区二区三区 | 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av香蕉五月| а√天堂www在线а√下载| 精品熟女少妇八av免费久了| 免费一级毛片在线播放高清视频| 此物有八面人人有两片| 国产一区二区三区在线臀色熟女| 两人在一起打扑克的视频| 午夜免费男女啪啪视频观看 | 成人鲁丝片一二三区免费| 在线国产一区二区在线| 欧美又色又爽又黄视频| 欧美性猛交黑人性爽| 亚洲国产色片| 精品一区二区三区av网在线观看| 久久久久久人人人人人| a级毛片a级免费在线| 国产亚洲av嫩草精品影院| 国产精品久久视频播放| 两个人的视频大全免费| 亚洲 欧美 日韩 在线 免费| 国产99白浆流出| 麻豆久久精品国产亚洲av| 亚洲真实伦在线观看| 色综合亚洲欧美另类图片| 哪里可以看免费的av片| 午夜福利视频1000在线观看| 啦啦啦韩国在线观看视频| 欧美日韩黄片免| 亚洲18禁久久av| 好男人在线观看高清免费视频| 久久久精品大字幕| 此物有八面人人有两片| 一夜夜www| 狂野欧美激情性xxxx| 亚洲一区二区三区不卡视频| 最新中文字幕久久久久| 啪啪无遮挡十八禁网站| 精品一区二区三区av网在线观看| 成人av一区二区三区在线看| 极品教师在线免费播放| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 久久香蕉国产精品| av片东京热男人的天堂| 熟妇人妻久久中文字幕3abv| 国产精品久久久人人做人人爽| 亚洲精华国产精华精| 高清在线国产一区| 成人av一区二区三区在线看| 一个人免费在线观看电影| 免费看日本二区| 欧美精品啪啪一区二区三区| 国产一区二区在线观看日韩 | 特大巨黑吊av在线直播| 波野结衣二区三区在线 | 欧美一级毛片孕妇| 激情在线观看视频在线高清| 热99在线观看视频| 亚洲欧美日韩高清专用| netflix在线观看网站| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 午夜久久久久精精品| 亚洲电影在线观看av| 在线免费观看的www视频| 久久性视频一级片| 亚洲午夜理论影院| 国产主播在线观看一区二区| 俺也久久电影网| 高潮久久久久久久久久久不卡| 每晚都被弄得嗷嗷叫到高潮| 日本免费a在线| 午夜精品在线福利| 99久久精品国产亚洲精品| 亚洲成人中文字幕在线播放| 欧美日韩综合久久久久久 | 最近最新中文字幕大全免费视频| 免费看美女性在线毛片视频| 免费观看人在逋| 亚洲五月天丁香| 日韩亚洲欧美综合| e午夜精品久久久久久久| 国产在视频线在精品| 亚洲一区二区三区不卡视频| 欧美三级亚洲精品| ponron亚洲| 国产三级在线视频| 18禁国产床啪视频网站| 亚洲熟妇熟女久久| 久久亚洲真实| 欧美色欧美亚洲另类二区| 亚洲在线自拍视频| 一个人看的www免费观看视频| 国产三级在线视频| 国产一区二区激情短视频| 国内精品久久久久久久电影| 免费av不卡在线播放| 欧美黄色片欧美黄色片| 99精品久久久久人妻精品| 国产亚洲精品综合一区在线观看| 久久婷婷人人爽人人干人人爱| 午夜福利视频1000在线观看| 成人永久免费在线观看视频| 黄色女人牲交| 一级作爱视频免费观看| 色老头精品视频在线观看| 国产主播在线观看一区二区| 一区二区三区免费毛片| 午夜激情欧美在线| 久久草成人影院| 亚洲天堂国产精品一区在线| 伊人久久精品亚洲午夜| 国产一区二区三区视频了| 国产高清激情床上av| 两个人视频免费观看高清| 99久久成人亚洲精品观看| 亚洲成人久久性| 欧美一区二区国产精品久久精品| 蜜桃久久精品国产亚洲av| 一个人看的www免费观看视频| 国产精品香港三级国产av潘金莲| 三级国产精品欧美在线观看| 少妇的丰满在线观看| 国产精品亚洲av一区麻豆| 欧美一级a爱片免费观看看| 国产精品国产高清国产av| 成人av一区二区三区在线看| 久久这里只有精品中国| АⅤ资源中文在线天堂| 18禁裸乳无遮挡免费网站照片| 性欧美人与动物交配| 国产精品野战在线观看| 日韩人妻高清精品专区| 国产伦精品一区二区三区视频9 | 一边摸一边抽搐一进一小说| 午夜福利成人在线免费观看| 欧美+日韩+精品| 人人妻人人澡欧美一区二区| 噜噜噜噜噜久久久久久91| 熟女少妇亚洲综合色aaa.| 午夜两性在线视频| 国产亚洲欧美在线一区二区| 色尼玛亚洲综合影院| 免费在线观看影片大全网站| 啪啪无遮挡十八禁网站| 国产亚洲精品av在线| 搡女人真爽免费视频火全软件 | 老司机在亚洲福利影院| www.999成人在线观看| 最新在线观看一区二区三区| 国产老妇女一区| 久久久久久国产a免费观看| 精品午夜福利视频在线观看一区| 一进一出抽搐gif免费好疼| 我要搜黄色片| 国产色婷婷99| 一区福利在线观看| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 亚洲无线在线观看| 午夜福利成人在线免费观看| 国产高清视频在线播放一区| 天美传媒精品一区二区| 麻豆一二三区av精品| 精品久久久久久,| 超碰av人人做人人爽久久 | 少妇人妻一区二区三区视频| 亚洲成人中文字幕在线播放| 亚洲真实伦在线观看| 国产三级黄色录像| 午夜老司机福利剧场| 三级毛片av免费| 国产成人a区在线观看| 欧美区成人在线视频| www.色视频.com| 嫩草影院入口| 成人18禁在线播放| 亚洲国产高清在线一区二区三| or卡值多少钱| 观看免费一级毛片| 久久精品国产自在天天线| 真人一进一出gif抽搐免费| 日本熟妇午夜| 露出奶头的视频| 级片在线观看| av中文乱码字幕在线| 久久久久国内视频| 国产伦在线观看视频一区| 国产精品,欧美在线| av片东京热男人的天堂| 国产免费一级a男人的天堂| 搡老妇女老女人老熟妇| 中文字幕av在线有码专区| 成人三级黄色视频| 丝袜美腿在线中文| 老司机午夜福利在线观看视频| 亚洲av第一区精品v没综合| 香蕉av资源在线| a在线观看视频网站| 亚洲av免费在线观看| 18禁裸乳无遮挡免费网站照片| 久久久精品大字幕| 人妻夜夜爽99麻豆av| 午夜免费观看网址| 禁无遮挡网站| 欧美中文日本在线观看视频| 日韩大尺度精品在线看网址| av福利片在线观看| 久久99热这里只有精品18| 最近最新免费中文字幕在线| 99久久成人亚洲精品观看| 99视频精品全部免费 在线| 国产成年人精品一区二区| 成人无遮挡网站| 国产麻豆成人av免费视频| 成人精品一区二区免费| 波多野结衣高清无吗| 乱人视频在线观看| av片东京热男人的天堂| 亚洲国产精品合色在线| 天堂√8在线中文| 国产精品久久久久久久久免 | 国产又黄又爽又无遮挡在线| 国产野战对白在线观看| 99在线视频只有这里精品首页| 欧美日韩国产亚洲二区| 国产黄a三级三级三级人| 一卡2卡三卡四卡精品乱码亚洲| 国产高潮美女av| 国产精品久久久久久人妻精品电影| 美女被艹到高潮喷水动态| 男人舔女人下体高潮全视频| 久久久久性生活片| 国产一区二区三区视频了| 亚洲av熟女| 一级毛片女人18水好多| 亚洲激情在线av| 色视频www国产| 精品国产超薄肉色丝袜足j| 精品免费久久久久久久清纯| 午夜免费男女啪啪视频观看 | 97超级碰碰碰精品色视频在线观看| 成人特级黄色片久久久久久久| 观看美女的网站| 怎么达到女性高潮| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 亚洲中文字幕一区二区三区有码在线看| 日日干狠狠操夜夜爽| 啦啦啦韩国在线观看视频| 亚洲片人在线观看| 国产单亲对白刺激| 国产爱豆传媒在线观看| 成年人黄色毛片网站| 757午夜福利合集在线观看| 国产精品日韩av在线免费观看| 国产精品永久免费网站| 搡老岳熟女国产| 亚洲成人久久爱视频| 一级黄色大片毛片| 亚洲精品影视一区二区三区av| 韩国av一区二区三区四区| 免费高清视频大片| 国内精品久久久久精免费| 99久久精品热视频| 日韩欧美在线二视频| 亚洲欧美日韩无卡精品| xxxwww97欧美| 国产男靠女视频免费网站| 在线观看午夜福利视频| 国产97色在线日韩免费| 搡老妇女老女人老熟妇| 久久性视频一级片| 真人做人爱边吃奶动态| 日韩成人在线观看一区二区三区| 亚洲精品影视一区二区三区av| 看免费av毛片| 五月伊人婷婷丁香| 色播亚洲综合网| x7x7x7水蜜桃| 国产亚洲精品一区二区www| 最好的美女福利视频网| 日本免费a在线| 精品人妻一区二区三区麻豆 | 少妇熟女aⅴ在线视频| 久久久国产精品麻豆| 天堂网av新在线| 免费电影在线观看免费观看| 久久人妻av系列| 国产不卡一卡二| 又爽又黄无遮挡网站| 男人舔奶头视频| 精品一区二区三区视频在线 | 99久久精品国产亚洲精品| 国产乱人视频| 少妇人妻精品综合一区二区 | 国内揄拍国产精品人妻在线| 欧美另类亚洲清纯唯美| 国产一区二区在线观看日韩 | 午夜福利在线在线| 一级黄片播放器| 国产爱豆传媒在线观看| bbb黄色大片| 日韩欧美 国产精品| 俺也久久电影网| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 白带黄色成豆腐渣| 国产精品 国内视频| 伊人久久精品亚洲午夜| 久久6这里有精品| 亚洲最大成人中文| 亚洲黑人精品在线| av天堂中文字幕网| 久久久久九九精品影院| 久久精品91蜜桃| 国模一区二区三区四区视频| 国产老妇女一区| 18美女黄网站色大片免费观看| 老司机在亚洲福利影院| 午夜福利在线观看吧| 国产黄片美女视频| 久久天躁狠狠躁夜夜2o2o| h日本视频在线播放| 夜夜爽天天搞| 国产视频一区二区在线看| 欧美xxxx黑人xx丫x性爽| 老司机在亚洲福利影院| 久久精品91无色码中文字幕| 国产视频一区二区在线看| 一边摸一边抽搐一进一小说| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 欧美区成人在线视频| 午夜老司机福利剧场| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 国产99白浆流出| 欧美乱妇无乱码| 欧美日韩黄片免| 欧美黑人巨大hd| 欧美一级a爱片免费观看看| 欧美乱色亚洲激情| 午夜视频国产福利| 婷婷六月久久综合丁香| 一级黄片播放器| 欧美日韩黄片免| 91久久精品国产一区二区成人 | 亚洲精品在线美女| 欧美成人性av电影在线观看| 淫妇啪啪啪对白视频| 18禁裸乳无遮挡免费网站照片| 757午夜福利合集在线观看| 国产国拍精品亚洲av在线观看 | 久久久久国产精品人妻aⅴ院| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 美女大奶头视频| 久久九九热精品免费| 婷婷亚洲欧美| 极品教师在线免费播放| 亚洲av成人精品一区久久| 国产伦精品一区二区三区视频9 | 在线播放无遮挡| 国产精品一及| 少妇人妻精品综合一区二区 | 最后的刺客免费高清国语| 中文资源天堂在线| 日韩欧美三级三区| 国产v大片淫在线免费观看| 欧美不卡视频在线免费观看| 久久人人精品亚洲av| 青草久久国产| 欧美一级a爱片免费观看看| 国产av在哪里看| 久久午夜亚洲精品久久| 亚洲专区国产一区二区| 日本a在线网址| 精品久久久久久久人妻蜜臀av| 久久婷婷人人爽人人干人人爱| 国产97色在线日韩免费| 一进一出抽搐gif免费好疼| 日韩亚洲欧美综合| 成年版毛片免费区| 天天添夜夜摸| 色综合婷婷激情| 天堂√8在线中文| 国产高清videossex| 国产午夜精品久久久久久一区二区三区 | 日韩高清综合在线| 日韩欧美在线乱码| www.999成人在线观看| 日本三级黄在线观看| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| 成年女人看的毛片在线观看| 亚洲黑人精品在线| 亚洲一区二区三区不卡视频| 国产精品三级大全| xxx96com| 国产91精品成人一区二区三区| 国产在视频线在精品| 久久99热这里只有精品18| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 在线观看免费午夜福利视频| 此物有八面人人有两片| 精品日产1卡2卡| 国产伦精品一区二区三区视频9 | 男女做爰动态图高潮gif福利片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品爽爽va在线观看网站| 国产伦在线观看视频一区| 欧美zozozo另类| 在线观看免费视频日本深夜| 熟女人妻精品中文字幕| 亚洲精品日韩av片在线观看 | 成人三级黄色视频| 国产在视频线在精品| 一二三四社区在线视频社区8| 18+在线观看网站| 欧美日韩乱码在线| 女同久久另类99精品国产91| 国产成人aa在线观看| 2021天堂中文幕一二区在线观| 国产高潮美女av| 免费搜索国产男女视频| 三级国产精品欧美在线观看| 夜夜夜夜夜久久久久| 一区福利在线观看| 啦啦啦观看免费观看视频高清| 丰满乱子伦码专区| 亚洲国产精品合色在线| 免费观看的影片在线观看| 好男人电影高清在线观看| 久久久国产成人精品二区| 久久精品国产亚洲av香蕉五月| 天堂网av新在线| 国产一区二区三区在线臀色熟女| 欧美不卡视频在线免费观看| 一本一本综合久久| 日本与韩国留学比较| 亚洲久久久久久中文字幕| 97超视频在线观看视频| 18+在线观看网站| 99国产精品一区二区蜜桃av| 亚洲中文字幕一区二区三区有码在线看| 午夜激情欧美在线| 一区福利在线观看| 精品国内亚洲2022精品成人| 免费观看人在逋| 变态另类成人亚洲欧美熟女| 国产成人aa在线观看| 亚洲精品日韩av片在线观看 | 久久精品国产自在天天线| 国产色爽女视频免费观看| 丰满乱子伦码专区| 成年版毛片免费区| 成人av在线播放网站| 亚洲欧美日韩无卡精品| 久久人妻av系列| or卡值多少钱| 无限看片的www在线观看| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 69av精品久久久久久| 网址你懂的国产日韩在线| 欧美在线一区亚洲| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 国产av麻豆久久久久久久| 亚洲18禁久久av| 国产在线精品亚洲第一网站| 宅男免费午夜| 黑人欧美特级aaaaaa片| 一进一出好大好爽视频| 制服人妻中文乱码| 午夜免费观看网址| 午夜福利成人在线免费观看| 窝窝影院91人妻| 免费高清视频大片| 国产在线精品亚洲第一网站| 亚洲片人在线观看| 亚洲久久久久久中文字幕| 亚洲国产精品sss在线观看| 国内精品久久久久久久电影| ponron亚洲| 免费观看的影片在线观看| 久久精品91蜜桃| 桃红色精品国产亚洲av| 九九在线视频观看精品| 欧美xxxx黑人xx丫x性爽| 亚洲专区国产一区二区| 一本久久中文字幕| av中文乱码字幕在线| 国产在视频线在精品| 中文字幕熟女人妻在线| 国产视频一区二区在线看| 免费在线观看亚洲国产| 国产91精品成人一区二区三区| 亚洲午夜理论影院| 最后的刺客免费高清国语| av天堂在线播放| 久久久久精品国产欧美久久久| 十八禁网站免费在线| 精品国内亚洲2022精品成人| 欧美在线一区亚洲| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 免费av不卡在线播放| 亚洲精品久久国产高清桃花| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久com| 亚洲中文字幕日韩| 欧美色视频一区免费| 又粗又爽又猛毛片免费看| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩无卡精品| 99热这里只有精品一区| 他把我摸到了高潮在线观看| 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 日日摸夜夜添夜夜添小说| 国产精品自产拍在线观看55亚洲| 一个人看视频在线观看www免费 | 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 综合色av麻豆| 在线播放无遮挡| 免费看美女性在线毛片视频| 99国产精品一区二区三区| 一个人观看的视频www高清免费观看| 在线a可以看的网站| 欧美乱妇无乱码| 午夜福利高清视频| 免费在线观看亚洲国产| 91av网一区二区| 级片在线观看| 亚洲精品粉嫩美女一区| 99久久99久久久精品蜜桃| 亚洲av熟女| 日本成人三级电影网站| 给我免费播放毛片高清在线观看| 国产爱豆传媒在线观看| 亚洲一区高清亚洲精品| 一区福利在线观看| 亚洲av成人精品一区久久| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 久久亚洲真实| 999久久久精品免费观看国产| 国产淫片久久久久久久久 | 手机成人av网站| 日韩高清综合在线| 久久久久久人人人人人| 国产97色在线日韩免费| 日本 av在线| 亚洲在线观看片| 舔av片在线| 白带黄色成豆腐渣| 给我免费播放毛片高清在线观看| 午夜免费成人在线视频| 国产在线精品亚洲第一网站| 丝袜美腿在线中文| av天堂在线播放| 午夜精品一区二区三区免费看| 欧美在线一区亚洲| 日本五十路高清| 国产在视频线在精品| 日本a在线网址| 97碰自拍视频| 精品一区二区三区av网在线观看| 亚洲黑人精品在线| 欧美日本亚洲视频在线播放| 99精品在免费线老司机午夜| 欧美xxxx黑人xx丫x性爽| 国产成人系列免费观看| 成人精品一区二区免费| 国产亚洲av嫩草精品影院| 国内揄拍国产精品人妻在线| 亚洲无线观看免费| 好男人在线观看高清免费视频| 九九久久精品国产亚洲av麻豆| 欧美+日韩+精品| 无人区码免费观看不卡| 99精品欧美一区二区三区四区|