• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高度分散二氧化錳納米纖維的水熱合成和對雙氧水電流檢測

    2012-11-30 10:33:46何賽男胡彩園鄭華均
    物理化學學報 2012年3期
    關(guān)鍵詞:鉀礦二氧化錳雙氧水

    何賽男 胡彩園 肖 鴿 鄭華均,*

    (1浙江大學醫(yī)學院附屬婦產(chǎn)科醫(yī)院,杭州310006;2浙江工業(yè)大學化學工程與材料學院,杭州310014)

    高度分散二氧化錳納米纖維的水熱合成和對雙氧水電流檢測

    何賽男1胡彩園2肖 鴿2鄭華均2,*

    (1浙江大學醫(yī)學院附屬婦產(chǎn)科醫(yī)院,杭州310006;2浙江工業(yè)大學化學工程與材料學院,杭州310014)

    采用水熱還原氧化法合成了高度分散的具有納米纖維結(jié)構(gòu)的鉀礦型二氧化錳,并將其用來制作檢測雙氧水濃度的傳感器.運用X射線衍射(XRD)儀、電子掃描顯微鏡(SEM)、透射電子顯微鏡(TEM)和比表面積(BET)及孔隙度分析儀觀察和表征二氧化錳納米纖維的結(jié)構(gòu)和表面形貌;用電化學工作站(EW)檢測其傳感性能.結(jié)果表明:在pH為7.4的磷酸緩沖溶液中,開路電壓為0.2 V的條件下對0.1%(w,質(zhì)量分數(shù))的二氧化錳納米纖維修飾的玻碳電極(GCE)進行測試,測試結(jié)果為隨著雙氧水的濃度每增加0.1 mmol·L-1,響應(yīng)電流的峰值就增加約1.3 μA,在雙氧水的濃度在0.1-1.5 mmol·L-1范圍內(nèi)得到的線性相關(guān)系數(shù)為0.996,這種電極的高靈敏度和優(yōu)異的電化學活性可能歸因于鉀礦型二氧化錳納米纖維的特殊納米結(jié)構(gòu).這種傳感器有很高的靈敏度和很好的重現(xiàn)性.綜上說明這種廉價并且有很好的電化學活性的材料為設(shè)計新型電極生物傳感器提供了更大可能.

    雙氧水;鉀礦型二氧化錳;玻碳電極;磷酸緩沖溶液;生物傳感器

    1 Introduction

    Recently,considerable attention has been put on the design and development of new biosensor devices as a response to the increasing demand for monitoring systems for life quality improvement.In particular,owing to the important progress in fields of material science and electrochemical engineering, electrochemical sensors appeared very appealing because of their simplicity and interesting performances among the different transduction possibilities.1-3Although great achievements and various electrodes developed for sensing ions in solution,a great amount of research work is still needed to particularly improve their electrochemical activity,and to better understand the equilibrium phenomena leading to the responses.4,5

    Manganese dioxide(MnO2)is very attractive due to its distinctive structures and wide applications in catalysts,ionsieves,and rechargeable batteries,as well as environmental compatibility and cost effectiveness.Recently,research efforts have been made to prepare nanocrystalline MnO2because of its intriguing properties and promising applications.6-11Nanocrystalline MnO2exhibits high electrochemical catalytic activity because of its small size effect and surface effect better than commercial MnO2.Nanostructured MnO2exhibits outstanding catalytic abilities in various oxidation and reduction reactions, and its activity for the oxidation of H2O2was found to have several applications as sensors.In such cases,H2O2is oxidized catalytically on an electrode,leading to the formation of current flow depending on the concentration of H2O2.12-14H2O2is one of the products in a variety of biochemical reactions catalyzed by oxidases such as glucose,choline,and lactic acid.And the detection of H2O2is of interest to many fields,such as clinic, food,pharmaceutical,environmental analyses,and biosensing. Glucose and choline biosensors based on MnO2having activity for the oxidation of H2O2were reported.15-18However,some of the sensors have displayed the drawbacks of low sensitivity, poor selectivity,high cost,and complex procedure.

    Hollandite is microporous and mixed-valence manganese oxides with tunnel structures,and their basic unit structure is made of sheets of MnO6edge-sharing octahedron,so-called octahedral molecular sieve(OMS)materials.Suib and colleagues19-22did excellent and extensive research on these materials.The K+form of hollandite is known as cryptomelane,and it is also a mixed valence.Scientists are particularly interested in the application of OMS materials in electrocatalysis because of the unique tunnel structure and mixed-valence manganese, which results in outstanding catalytic properties for H2O2oxidation if employed as a mediator.

    In this paper,we report a facile hydrothermal method for synthesizing cryptomelane-type α-MnO2nanofibers.We compare the electrocatalytic activity towards the oxidation of H2O2of the cryptomelane-type α-MnO2modified electrodes with the commercial MnO2modified electrodes.The linear range,response time,detection limit,and effect of the content of cryptomelane-type α-MnO2were studied.

    2 Experimental

    2.1 Reagents and apparatus

    KMnO4,MnSO4·H2O,H2O2,MnO2powder,and gelatin were purchased from Sigma-Aldrich.All chemicals and reagents were of analytical grade and used without further purification. Double-distilled water was used for preparation of buffer and standard solutions.H2O2was freshly prepared daily.

    Crystallographic information of the as-prepared sample was investigated with X-ray diffraction(XRD)(X?Pert Pro,Holland)with Cu Kαradiation.The structural morphology of the synthesized materials was observed by scanning electron microscopy(SEM,JEOL JSM-6700,Japan)and transmission electron microscopy(TEM,Tecnai G2 F30,Holland).The presence and the contents of potassium ion were confirmed by energy dispersive spectrometer(EDS)(Noran VANTAGE-ES, USA).A Micromeritics ASAP 2010 analyzer was used to measure the N2adsorption isotherms of the samples at liquid N2temperature(-196°C).Prior to the measurement of the surface area,the sample was degassed in vacuum at 250°C for at least 4 h.The BET surface area was determined by the multipoint BET method with the adsorption data in the relative pressure(p/p0)range of 0.0-1.0.Electrochemical measurements were performed with CHI 620B electrochemical workstation (Shanghai Chenhua Instrumental Co.Ltd.).Experiments were carried out at room temperature((25±2)°C).

    2.2 Synthesis of MnO2nanofiber

    KMnO4(1.58 g)and MnSO4·H2O(0.676 g)powders(the mole ratio is 2.5:1)were dissolved in 80 mL distilled water for 8 h with strongly stirring at room temperature.Then,the reaction mixture was loaded into a 100 mL Teflon-lined stainless steel autoclave.The autoclave was sealed and heated in an oven at 150°C for 2 h.When cooled to room temperature,a resulting brown-black precipitate was filtered and rinsed with distilled water,and dried at 100°C overnight.

    2.3 Electrode modification

    Before modification,the bare GCE was polished to mirror smooth with 0.05μm Al2O3slurry,rinsed with water,and then ultrasonicated in water bath.Gelatin was used as a binder and dissolved in 50°C water,mixed with the as-prepared MnO2, which was dispersed in water with the aid of ultrasonic agitation.The contents of MnO2and gelatin in the trim were 0.1% (w)and 1%(w),respectively.After 2 μL of the trim was pipetted to the surface of GCE with microliter syringe,the solvent was evaporated at room temperature.The obtained electrode is denoted as MnO2nanofiber-gelatin/GCE,which was kept in buffer solution for 1 h before use.For comparison,the commercial MnO2powder modified electrodes were also prepared under the same conditions.

    2.4 Amperometric measurement of H2O2

    A conventional three-electrode setup was used.The working electrode was a bare GCE or modified GCE,the auxiliary electrode was a platinum sheet,and the reference electrode was a saturated calomel electrode(SCE).Amperometric experiment was carried out in a H2O2solution holding 50 mL of 0.1 mol· L-1phosphate buffer(pH=7.4,in accordance with acidity versus alkalinity in the physiological environment)with stirring for providing the convective transport.Freshly prepared H2O2was injected by micro-syringe according to test demand.The background current was allowed to decay to a constant value before H2O2solution was added to the cell.The calibration curve was obtained by amperometric responses when adding the same amount of H2O2standard solution into cell.

    3 Results and discussion

    3.1 Characterization of the as-prepared manganese dioxide

    Fig.1 shows SEM and TEM images of the cryptomelanetype manganese dioxide.From Fig.1,a nanosized fibrous morphology can be observed.Fig.1b shows that the as-prepared manganese dioxide is nanofiber with diameters of 30-50 nm and lengths in the range of 2-5 μm.The product has favorable dispersibility,which may be due to stirring for 8 h before loading into autoclave.It can be seen from Fig.1a that some of the nanofibers have shown the tendency to curl,and some of them have grown into a clubbed structure.Fig.2 shows XRD pattern of the as-prepared manganese oxide,and the diffractions of very strong peaks at 2θ of 12.6°,17.9°,28.7°,37.5°,41.9°, 49.9°,60.1°.All the reflection peaks of the products can be indexed as a cryptomelane-type α-MnO2,which is in good agreement with the literature values(JCPDS No.42-1348).The final product is α-MnO2corresponding to the studies reported by Li et al.,23in which they proposed that the proportion of KMnO4to MnSO4influenced the structure and morphology of final product,and concluded that the final product was α-MnO2when the mole ratio of KMnO4to MnSO4was 2.5:1.

    Elemental analysis reveals that the molar compositions for K and Mn cations are 7.18%and 92.82%,respectively,and it is a typical characterization of cryptomelane-type manganese oxide.The specific surface area of the material was determined to be 106 m2·g-1by the BET technique,making it possible that the α-MnO2will have remarkable catalytic performance.

    3.2 Electrochemical characteristics of the modified electrode

    Fig.2 X-ray powder diffraction pattern of cryptomelane-type manganese dioxide

    Fig.3 shows the cyclic voltammograms for hydrogen peroxide with the MnO2nanofiber-gelatin/GCE and MnO2-gelatin/ GCE in different solutions.With bare GCE,no oxidation peak was observed within the applied potential range for 0.1 mmol· L-1H2O2in phosphate buffer solution(curve a).While for MnO2nanofiber-gelatin/GCE and commercial MnO2-gelatin/ GCE in phosphate buffer solution,there is a pair of broad but weak peaks between 0.2 and 0.8 V(curves b and d).It may be assigned to the reduction of MnO2to Mn(II,III)and the reoxidation of Mn(II,III)back to MnO2.24,25It is can be observed that as for the MnO2nanofiber-gelatin/GCE in the presence of 0.1 mmol·L-1H2O2in phosphate buffer solution,the cyclic voltammogram displays a sensitive and high oxidative peak at around 0.7 V(curve c),while the commercial MnO2-gelatin/ GCE displays a low oxidative peak(curve e).The characteristic shape of the cyclic voltammogram within this potential region indicates that the signal is probably due to a parallel catalytic reaction.As soon as MnO2is reduced to lower states by H2O2,it is electro-oxidized back to MnO2at the electrode surface.24Fig.4 shows the cyclic voltammograms of the MnO2nanofiber-gelatin/GCE in phosphate buffer solution(0.1 mol· L-1,pH=7.4)containing different concentrations of H2O2(0.1-0.4 mmol·L-1).It can be seen clearly that with addition of H2O2,the oxidation peak currents gradually increase with 1.3 μA,which implies that cryptomelane-type manganese dioxide would be an excellent material to fabricate sensitive H2O2sensor.

    3.3 Detection of hydrogen peroxide

    Fig.1 SEM(a,b)and TEM(c)images of cryptomelane-type manganese dioxide

    Fig.3 Cyclic voltammograms of different electrodes in different solutions(a)bare GCE with 0.1 mmol·L-1H2O2in phosphate buffer solution;(b)the MnO2nanofiber-gelatin/GCE electrode in phosphate buffer solution(pH 7.4); (c)the MnO2nanofiber-gelatin/GCE electrode with 0.1 mmol·L-1H2O2in phosphate buffer solution;(d)the commercial MnO2-gelatin/GCE electrode in phosphate buffer solution(pH 7.4);(e)the commercial MnO2-gelatin/GCE electrode with 0.1 mmol·L-1H2O2in phosphate buffer solution. The scan rate is 20 mV·s-1.

    Fig.4 Cyclic voltammograms of MnO2nanofiber-gelatin/GCE in phosphate buffer solution(0.1 mol·L-1,pH 7.4)containing different concentrations of H2O2scan rate:20 mV·s-1;c(H2O2)/(mmol·L-1):(a)0,(b)0.1,(c)0.2,(d)0.3,(e)0.4

    The relationship between the oxidation current and the concentration of H2O2was examined in a phosphate buffer solution(pH=7.4).The solution was stirred to ensure uniform distribution of H2O2in the cell.Fig.5(a,b)displays the amperometric response of MnO2nanofiber-gelatin/GCE and MnO2powder-gelatin/GCE to successive 0.1 mmol·L-1of H2O2at the open circuit potential of 0.2 V.When the same amount of H2O2was injected into the cell,the current was recorded instantly.It can be clearly seen that the MnO2nanofiber electrode exhibited a fast and well-defined current response over a broad concentration range,while the MnO2powder electrode exhibited a low and instable current response.It can be seen that the rising of response current is decreasing when the concentration of H2O2is in the range of 1.7-2.0 mmol·L-1in Fig.5(b),which can be attributed to reaction consumption of H2O2in the cell. Fig.5(c)represents the calibration curve for the determination of H2O2at the MnO2nanofiber-gelatin/GCE.The measured peak current was found to be linearly proportional to the concentration of H2O2in the range of 0.1-1.5 mmol·L-1in the solution with a correlation coefficient of 0.996.Fig.5(b)shows the comparison of current-time recordings of MnO2nanofibergelatin/GCE and MnO2powder-gelatin/GCE.We can conclude that the cryptomelane-type manganese dioxide nanofiber displays high electrocatalytic activity towards the oxidation of H2O2.While the content of cryptomelane-type manganese dioxide also has a very profound effect upon its amperometric response behavior.Fig.6 shows the amperometric response for H2O2with different percentages of cryptomelane-type manganese dioxide in modified GCEs(0.01%,0.05%,0.10%(mass fraction)).The amperometric response of electrode gradually increases with addition of the nanostructured cryptomelanetype manganese dioxide in mixture of MnO2and gelatin and also displays excellent electrocatalytic oxidative activity of the as-prepared cryptomelane-type manganese dioxide compared with some other research.12

    Fig.6 Current-time recording obtained on increasing the H2O2 concentration in 0.1 mmol·L-1step at different percentages of cryptomelane-type manganese oxides modified GCEs at an operating potential of 0.2 VThe scan rate is 20 mV·s-1.The stirring rate is 500 r·min-1.

    3.4 Detection limit,sensibility,reproducibility and stability

    The sensitivity of the sensor to H2O2was calculated to be 39.4 μA·cm-2·mmol-1·L by the slope of Fig.5(c),which is higher than the results in other papers.13,15The detection limit of the sensor was estimated to be 5×10-6mol·L-1by DL=3.3s/k(s is standard deviation,k is the sensitivity,signal to noise ratio (S/N)=3).The response time was 10 s.The reproducibility of the sensor was measured in 0.1 mol·L-1phosphate buffer(pH 7.4)and the relative standard deviation(RSD)of the sensor response to 0.1 mmol·L-1H2O2was 2.5%for seven successive measurements.The sensor was stored dry at 4°C and measured at intervals of one week,it remained about 95%of its original response after one month,which shows a high stability.

    4 Conclusions

    In this paper,we obtained a nanostructured cryptomelanetype manganese dioxide with diameters of 30-50 nm and lengths in the range 2-5 μm through a hydrothermal reduction route and had super dispersibility.We demonstrated that the GCE modified with the nanostructured cryptomelane-type manganese dioxide can offer low-potential amperometric detection for H2O2.The oxidation peak current increases 1.3 μA with addition of 0.1 mmol·L-1H2O2based on the MnO2-gelatin/GCE electrode,in which the percentage of cryptomelane-type manganese dioxide is 0.1%,which is attributed to well-structured of cryptomelane-type manganese oxide.Its low-potential detection and applicability in neutral solution indicate great promise for the design of amperometric biosensors.In view of its sensitivity,low detection limit,simplicity,and low cost of construction,theGCE modified with thenanostructured cryptomelane-type manganese dioxide exhibits great prospects for future biosensor work.

    (1) Eftekhari,A.Microchim.Acta 2003,141,15.

    (2) Huo,H.Y.;Luo,H.Q.;Li,N.B.Microchim.Acta 2009,167, 195.

    (3) Zhang,Y.;Kang,T.F.;Wan,Y.W.;Chen,S.Y.Microchim.Acta 2009,165,307.

    (4) Martinez,M.T.;Lima,A.S.;Bocchi,N.;Teixeira,M.F.S. Talanta 2009,80,519.

    (5) Teixeira,M.F.D.S.;Fatibello-Filho,O.;Ferracin,L.C.; Rocha-Filho,R.C.;Bocchib,N.Sensors and Actuators B 2000, 67,96.

    (6) Xiao,T.D.;Strutt,P.R.;Benaissa,M.;Chen,H.;Kear,B.H. Nanostruct.Mater.1998,10,1051.

    (7)Wang,X.;Li,Y.D.J.Am.Chem.Soc.2001,124,2880.

    (8)Wang,X.;Li,Y.D.Chem.Commun.2002,764.

    (9) Xiong,Y.J.;Xie,Y.;Li,Z.Q.;Wu,C.Z.Chem.Eur.J.2003,9, 1645.

    (10) Han,L.;Ni,J.P.;Zhang,L.M.;Yue,B.H.;Shen,S.S.;Zhang, H.;Lu,W.C.Acta Phys.-Chim.Sin.2011,27,743.[韓 玲,倪紀朋,張良苗,岳寶華,申杉杉,張 浩,陸文聰.物理化學學報,2011,27,743.]

    (11) Sun,Z.;Liu,K.Y.;Zhang,H.F.;Li,A.S.;Xu,X.C.Acta Phys.-Chim.Sin.2009,25,1991.[孫 哲,劉開宇,張海峰,李傲生,徐小存.物理化學學報,2009,25,1991.]

    (12) Lin,Y.H.;Cui,X.L.;Li,L.Y.Electrochem.Commun.2004,7, 166.

    (13) Yao,S.J.;Yuan,S.;Xu,J.H.;Wang,Y.;Luo,J.L.;Hu,S.S. Appl.Clay Sci.2006,33,35.

    (14) ?ljuki?,B.;Compton,R.G.Electroanalysis 2007,19,1275.

    (15) Cui,X.L.;Liu,G.D.;Lin,Y.H.Nanomedicine 2005,1,130.

    (16) Hocevar,S.B.;Ogorevc,B.;Schachl,K.;Kalcher,K. Electroanalysis 2004,16,20.

    (17) Chen,J.;Zhang,W.D.;Ye,J.S.Electrochem.Commun.2008, 10,1268.

    (18) Bai,Y.H.;Du,Y.;Xu,J.J.;Chen,H.Y.Electrochem.Commun. 2007,9,2611.

    (19) Tian,Z.;Tong,W.;Wang,J.;Duan,N.;Krishnan,V.V.;Suib,S. L.Science 1999,276,926.

    (20) Xia,G.G.;Yin,Y.G.;Willis,W.S.;Wang,J.Y.;Suib,S.L. J.Catal.1999,185,91.

    (21) Son,Y.C.;Makwana,V.D.;Howell,A.R.;Suib,S.L.Angew. Chem.Int.Edit.2001,40,4280.

    (22) Liu,J.;Makwana,V.;Cai,J.;Suib,S.L.;Aindow,M.J.Phys. Chem.B 2003,107,9185.

    (23)Wang,X.;Li,Y.D.Chem.Eur.J.2003,9,306.

    (24) Emir,T.;Kalcher,K.;Schachl,K.;Komersova,A.;Bartos,M.; Moderegg,H.;Svancara,I.;Vytras,K.Anal.Lett.2001,34, 2633.

    (25) Yin,L.;Chou,J.;Chung,W.;Sun,T.;Hsiung,K.;Hsiung,S. Sensors and Actuators B 2001,76,187.

    October 14,2011;Revised:December 6,2011;Published on Web:December 21,2011.?

    .Email:zhenghj@zjut.edu.cn;Tel:+86-13957175665.

    Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2Nanofibers

    HE Sai-Nan1HU Cai-Yuan2XIAO Ge2ZHENG Hua-Jun2,*
    (1Women?s Hospital,School of Medicine,Zhejiang University,Hangzhou 310006,P.R.China;2College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310014,P.R.China)

    A high dispersed nanofiber cryptomelane-type manganese dioxide was synthesized by a facile hydrothermal reduction route.The morphological characterization was examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The structure and electrochemical properties of the synthesized manganese dioxide were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET)surface area analyses,and an electrochemical workstation(EW).A glassy carbon electrode(GCE)modified with the nanostructured cryptomelane-type manganese dioxide was investigated for amperometric detection of hydrogen peroxide(H2O2)in phosphate buffer solution with a pH 7.4 at an open circuit potential of 0.2 V.The oxidation peak current was found to increase by 1.3 μA with the addition of 0.1 mmol·L-1H2O2based on a MnO2nanofiber-gelatin/GCE electrode.The amperometric signals are linearly proportional to the H2O2concentration in the range 0.1-1.5 mmol·L-1with a correlation coefficient of 0.996 using the GCE modified with 0.1%(w,mass fraction)cryptomelane-type manganese oxides.The sensor is sensitive and its significant electrocatalytic activity results from the nanostructure of the cryptomelane-type manganese oxides.In addition,the sensor has a good reproducibility,a low detection limit,simplicity,and a low cost of construction.These results demonstrate that this material with high electrocatalytic activity offers great promise as a new class ofnanostructured electrodes forbiosensors.

    Hydrogen peroxide;Cryptomelane-type manganese dioxide;Glassy carbon electrode; Phosphate buffer solution;Biosensor

    10.3866/PKU.WHXB201112214

    O646

    The project was supported by the National Natural Science Foundation of China(20973156).

    國家自然科學基金(20973156)資助項目

    猜你喜歡
    鉀礦二氧化錳雙氧水
    探究催化劑的作用創(chuàng)新實驗設(shè)計
    柴達木盆地南里灘地區(qū)鹵水鉀礦水文地質(zhì)與水化學特征及其開采前景分析
    錳礦石中二氧化錳的快速測定
    二氧化錳超薄納米片在活性炭表面的負載及其超電容性能研究
    我國發(fā)現(xiàn)首個深層鹵水鉀礦
    新西部(2016年7期)2016-09-07 17:33:54
    活化鉀礦的鉀釋放動力學研究
    富錸渣雙氧水浸出液錸鉬分離工藝研究
    雙氧水裝置氧化殘液精制的研究及應(yīng)用
    電解二氧化錳表面包覆鉍鎳和鉍鎳錳復合物
    鐵(Ⅲ)配合物催化雙氧水氧化降解聚丙烯酰胺
    一区二区三区高清视频在线| 精品人妻视频免费看| 黄色配什么色好看| 青春草视频在线免费观看| 成人亚洲精品av一区二区| 国产淫片久久久久久久久| 中文精品一卡2卡3卡4更新| 最近最新中文字幕免费大全7| av网站免费在线观看视频 | 美女国产视频在线观看| 美女黄网站色视频| 国产精品人妻久久久影院| 街头女战士在线观看网站| 国产午夜精品久久久久久一区二区三区| 亚洲av国产av综合av卡| 亚洲真实伦在线观看| 成人国产麻豆网| 偷拍熟女少妇极品色| 午夜激情福利司机影院| 在线播放无遮挡| 日韩,欧美,国产一区二区三区| 免费看a级黄色片| 久久久精品94久久精品| 天堂俺去俺来也www色官网 | 久久久国产一区二区| 婷婷色综合www| 又爽又黄a免费视频| .国产精品久久| 又大又黄又爽视频免费| 夫妻午夜视频| 午夜激情福利司机影院| 特级一级黄色大片| 亚洲欧美一区二区三区黑人 | 在线播放无遮挡| 婷婷色麻豆天堂久久| 国产精品日韩av在线免费观看| 午夜爱爱视频在线播放| 精品一区二区三卡| 在线观看av片永久免费下载| 青春草亚洲视频在线观看| 欧美xxxx性猛交bbbb| 啦啦啦韩国在线观看视频| 国产免费福利视频在线观看| 国产亚洲午夜精品一区二区久久 | 成人午夜精彩视频在线观看| freevideosex欧美| 在线观看美女被高潮喷水网站| 人妻系列 视频| 国产精品人妻久久久久久| 一区二区三区高清视频在线| 99九九线精品视频在线观看视频| 女的被弄到高潮叫床怎么办| 国产精品一区二区在线观看99 | 99热这里只有是精品在线观看| 国产成人午夜福利电影在线观看| 国产真实伦视频高清在线观看| 国产综合精华液| 超碰97精品在线观看| 内射极品少妇av片p| 亚洲自拍偷在线| 在线观看美女被高潮喷水网站| 啦啦啦啦在线视频资源| 少妇熟女aⅴ在线视频| 美女主播在线视频| 能在线免费看毛片的网站| 老师上课跳d突然被开到最大视频| 三级男女做爰猛烈吃奶摸视频| 黄片wwwwww| 男女国产视频网站| 我要看日韩黄色一级片| 亚洲高清免费不卡视频| 免费观看的影片在线观看| 免费观看性生交大片5| 啦啦啦中文免费视频观看日本| 嫩草影院新地址| 亚洲va在线va天堂va国产| 精品人妻熟女av久视频| 一级av片app| 精品人妻一区二区三区麻豆| 夜夜爽夜夜爽视频| 国产成人一区二区在线| av福利片在线观看| 边亲边吃奶的免费视频| 国产av在哪里看| 国产精品国产三级国产av玫瑰| 舔av片在线| 女人被狂操c到高潮| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 丝瓜视频免费看黄片| 欧美最新免费一区二区三区| 高清av免费在线| 久久精品夜色国产| 九草在线视频观看| 亚洲国产欧美在线一区| 三级国产精品片| 欧美激情国产日韩精品一区| 男人舔女人下体高潮全视频| 男女视频在线观看网站免费| 精品人妻一区二区三区麻豆| 亚洲第一区二区三区不卡| 久久久国产一区二区| 99热6这里只有精品| 欧美人与善性xxx| 美女主播在线视频| 久久久久九九精品影院| 国产精品人妻久久久久久| 亚洲欧美精品专区久久| 一二三四中文在线观看免费高清| 又黄又爽又刺激的免费视频.| 91久久精品电影网| 偷拍熟女少妇极品色| 久久久久久久大尺度免费视频| av福利片在线观看| 一级片'在线观看视频| 最近2019中文字幕mv第一页| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 三级国产精品片| 人妻制服诱惑在线中文字幕| 国产成人免费观看mmmm| 99热6这里只有精品| 国产成人freesex在线| 国产伦精品一区二区三区视频9| 丰满少妇做爰视频| 久久亚洲国产成人精品v| 哪个播放器可以免费观看大片| 一个人免费在线观看电影| 蜜桃久久精品国产亚洲av| 精品国产露脸久久av麻豆 | 亚洲精品乱码久久久v下载方式| 人体艺术视频欧美日本| 国产亚洲最大av| 男人狂女人下面高潮的视频| 国产午夜福利久久久久久| 亚洲国产欧美人成| 亚洲图色成人| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 丝瓜视频免费看黄片| 国产免费福利视频在线观看| 观看美女的网站| 亚洲美女搞黄在线观看| 国内少妇人妻偷人精品xxx网站| 国产精品女同一区二区软件| 国产乱人偷精品视频| av在线蜜桃| 激情 狠狠 欧美| 女的被弄到高潮叫床怎么办| 日韩人妻高清精品专区| 嫩草影院入口| 精品久久久久久久人妻蜜臀av| 国产真实伦视频高清在线观看| 美女内射精品一级片tv| 精品久久久久久久人妻蜜臀av| av国产免费在线观看| 精品久久久精品久久久| 美女被艹到高潮喷水动态| av播播在线观看一区| 男女视频在线观看网站免费| 亚洲精品一二三| 免费播放大片免费观看视频在线观看| 国内精品宾馆在线| 岛国毛片在线播放| 久久久久久国产a免费观看| 亚洲精品中文字幕在线视频 | 91在线精品国自产拍蜜月| 日日啪夜夜爽| 2021天堂中文幕一二区在线观| 在线观看免费高清a一片| 国产免费又黄又爽又色| 亚洲精品,欧美精品| 色播亚洲综合网| 青春草视频在线免费观看| 国产真实伦视频高清在线观看| 18禁裸乳无遮挡免费网站照片| 国产伦精品一区二区三区四那| 日韩中字成人| 一级黄片播放器| 成人亚洲精品一区在线观看 | 日韩一本色道免费dvd| 免费观看性生交大片5| 亚洲av成人精品一区久久| 国产av在哪里看| videossex国产| 日韩欧美一区视频在线观看 | 国产色婷婷99| 亚洲av成人精品一二三区| 好男人在线观看高清免费视频| 国产伦一二天堂av在线观看| 中文精品一卡2卡3卡4更新| 亚洲成人一二三区av| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 亚洲在线自拍视频| 久久精品国产自在天天线| 简卡轻食公司| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级 | 又爽又黄无遮挡网站| 欧美三级亚洲精品| 午夜福利视频精品| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 韩国av在线不卡| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区 | 欧美极品一区二区三区四区| 成人毛片a级毛片在线播放| 久久精品久久精品一区二区三区| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆| 中文乱码字字幕精品一区二区三区 | 亚洲av福利一区| 韩国高清视频一区二区三区| 高清视频免费观看一区二区 | 国模一区二区三区四区视频| 亚洲不卡免费看| 欧美人与善性xxx| 精品国产露脸久久av麻豆 | 搡老妇女老女人老熟妇| 亚洲成人一二三区av| 久久亚洲国产成人精品v| 亚洲精品亚洲一区二区| 国产男人的电影天堂91| 久久国内精品自在自线图片| 国产精品久久久久久精品电影| 亚洲av电影在线观看一区二区三区 | 国产精品女同一区二区软件| 麻豆乱淫一区二区| 亚洲欧美成人精品一区二区| 精品人妻偷拍中文字幕| 一级a做视频免费观看| 国产成人aa在线观看| 免费少妇av软件| 精品人妻偷拍中文字幕| 欧美性猛交╳xxx乱大交人| 天堂影院成人在线观看| 日韩中字成人| 又爽又黄无遮挡网站| 永久免费av网站大全| 亚洲欧美日韩卡通动漫| 国产伦理片在线播放av一区| 成人特级av手机在线观看| 精品久久久久久久久久久久久| 国产亚洲5aaaaa淫片| 国产在视频线精品| 人人妻人人澡人人爽人人夜夜 | 精品国内亚洲2022精品成人| 久久久久久久久大av| 超碰97精品在线观看| 大话2 男鬼变身卡| 最近手机中文字幕大全| 国产成人freesex在线| 亚洲欧洲日产国产| 亚洲国产精品国产精品| 免费播放大片免费观看视频在线观看| 亚洲精品456在线播放app| 国产免费一级a男人的天堂| 亚洲aⅴ乱码一区二区在线播放| 天堂av国产一区二区熟女人妻| 日本wwww免费看| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 午夜免费激情av| 十八禁网站网址无遮挡 | 国产白丝娇喘喷水9色精品| 嫩草影院精品99| 国产精品麻豆人妻色哟哟久久 | 免费观看精品视频网站| 最近最新中文字幕免费大全7| 中文字幕制服av| 国产精品国产三级专区第一集| 国内精品宾馆在线| 你懂的网址亚洲精品在线观看| 成人午夜高清在线视频| 麻豆成人av视频| 九色成人免费人妻av| 亚洲av电影不卡..在线观看| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| 日韩欧美 国产精品| videossex国产| 成人高潮视频无遮挡免费网站| 久久久精品94久久精品| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| 午夜免费激情av| 国产白丝娇喘喷水9色精品| 亚洲av一区综合| 中文字幕av在线有码专区| 国产精品人妻久久久影院| 色尼玛亚洲综合影院| 国产真实伦视频高清在线观看| 欧美xxxx性猛交bbbb| 亚洲av日韩在线播放| 最后的刺客免费高清国语| 亚洲欧美日韩东京热| 久久久精品欧美日韩精品| 欧美97在线视频| 亚洲国产精品专区欧美| 久久久久久久久久久丰满| 亚洲国产精品sss在线观看| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕| 亚洲精品第二区| 国产精品一区二区性色av| 亚洲综合精品二区| 最近中文字幕2019免费版| 国产免费视频播放在线视频 | 国产亚洲精品久久久com| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 日韩欧美一区视频在线观看 | 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 伦精品一区二区三区| 国产精品爽爽va在线观看网站| 成人一区二区视频在线观看| 又粗又硬又长又爽又黄的视频| 成年av动漫网址| 美女大奶头视频| 韩国高清视频一区二区三区| 亚洲自拍偷在线| 国产视频内射| 久久99蜜桃精品久久| 99热6这里只有精品| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 三级国产精品欧美在线观看| 久久久久精品性色| 国产一级毛片七仙女欲春2| 亚洲精品国产av成人精品| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 黄色配什么色好看| 少妇猛男粗大的猛烈进出视频 | 日本wwww免费看| 亚洲精品国产av蜜桃| 婷婷色综合大香蕉| 中文字幕免费在线视频6| 国产一区二区在线观看日韩| 亚洲国产成人一精品久久久| 日韩不卡一区二区三区视频在线| 亚洲久久久久久中文字幕| 日韩伦理黄色片| 国产单亲对白刺激| 国产不卡一卡二| 中文字幕亚洲精品专区| 国内揄拍国产精品人妻在线| 亚洲不卡免费看| 最新中文字幕久久久久| 欧美高清性xxxxhd video| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app| 日韩欧美精品v在线| 麻豆av噜噜一区二区三区| av在线观看视频网站免费| 99热全是精品| 国产精品无大码| 免费看av在线观看网站| 亚洲精品成人久久久久久| 国产一级毛片在线| 亚洲欧洲国产日韩| 伊人久久国产一区二区| 黑人高潮一二区| 成人美女网站在线观看视频| 亚洲一级一片aⅴ在线观看| 午夜久久久久精精品| 国产 亚洲一区二区三区 | 蜜桃久久精品国产亚洲av| 男女下面进入的视频免费午夜| 欧美日韩亚洲高清精品| 久久99热这里只有精品18| 直男gayav资源| 亚洲国产av新网站| 国产 一区 欧美 日韩| 国产成人91sexporn| 国产在视频线在精品| 免费av毛片视频| 在线观看人妻少妇| 日韩av免费高清视频| 天堂网av新在线| 久久精品夜夜夜夜夜久久蜜豆| 最近2019中文字幕mv第一页| 麻豆成人av视频| 哪个播放器可以免费观看大片| 一级毛片我不卡| 18+在线观看网站| 亚洲精品色激情综合| 国产精品久久久久久久久免| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| 观看免费一级毛片| 中文欧美无线码| 男人和女人高潮做爰伦理| 白带黄色成豆腐渣| 我要看日韩黄色一级片| 夜夜爽夜夜爽视频| 亚洲av成人精品一二三区| 日本黄色片子视频| 国产免费一级a男人的天堂| 少妇猛男粗大的猛烈进出视频 | 亚洲最大成人中文| 一级毛片电影观看| 国产大屁股一区二区在线视频| 免费观看a级毛片全部| 高清欧美精品videossex| 岛国毛片在线播放| 能在线免费看毛片的网站| 成年女人看的毛片在线观看| 国产麻豆成人av免费视频| 国产av在哪里看| 91精品国产九色| 日韩不卡一区二区三区视频在线| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久影院| 国产欧美日韩精品一区二区| 免费看美女性在线毛片视频| 国产精品.久久久| 国产精品久久视频播放| 永久网站在线| 午夜激情欧美在线| 美女主播在线视频| 老女人水多毛片| 床上黄色一级片| 18+在线观看网站| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 99久久精品国产国产毛片| 国产精品综合久久久久久久免费| 美女高潮的动态| 在线观看一区二区三区| 国产亚洲av片在线观看秒播厂 | 直男gayav资源| 黑人高潮一二区| a级一级毛片免费在线观看| 激情 狠狠 欧美| 亚洲欧美日韩东京热| 好男人视频免费观看在线| 国产熟女欧美一区二区| 国产成人aa在线观看| 91aial.com中文字幕在线观看| 成年av动漫网址| 在线免费观看的www视频| 午夜免费观看性视频| 久久久精品欧美日韩精品| 久久鲁丝午夜福利片| 好男人视频免费观看在线| 国内精品美女久久久久久| 97精品久久久久久久久久精品| 伊人久久国产一区二区| 一级片'在线观看视频| 国产精品不卡视频一区二区| 少妇猛男粗大的猛烈进出视频 | 黑人高潮一二区| 午夜视频国产福利| 最近中文字幕高清免费大全6| 亚洲成人av在线免费| 精品欧美国产一区二区三| 2022亚洲国产成人精品| 九九爱精品视频在线观看| 日韩大片免费观看网站| 免费看不卡的av| 国精品久久久久久国模美| 亚洲成人av在线免费| 精品一区二区三区视频在线| 国产黄频视频在线观看| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 国产精品不卡视频一区二区| 国产精品久久久久久av不卡| 一区二区三区高清视频在线| 91精品国产九色| 亚洲av男天堂| 天堂av国产一区二区熟女人妻| 搡老妇女老女人老熟妇| 在线a可以看的网站| 在线免费十八禁| 少妇人妻一区二区三区视频| 国产亚洲av片在线观看秒播厂 | 国产 一区 欧美 日韩| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 天天躁日日操中文字幕| 人妻夜夜爽99麻豆av| 亚洲一区高清亚洲精品| 久久久久久伊人网av| 国产在线男女| 在线观看免费高清a一片| 人妻夜夜爽99麻豆av| 麻豆av噜噜一区二区三区| 在线观看一区二区三区| 黄色欧美视频在线观看| 校园人妻丝袜中文字幕| 肉色欧美久久久久久久蜜桃 | 日韩电影二区| av在线播放精品| 国产精品久久久久久久电影| 国产乱来视频区| 婷婷六月久久综合丁香| 亚洲丝袜综合中文字幕| 女人十人毛片免费观看3o分钟| 亚洲欧美一区二区三区黑人 | 菩萨蛮人人尽说江南好唐韦庄| 免费人成在线观看视频色| 综合色丁香网| 国产一级毛片七仙女欲春2| 美女高潮的动态| 国产成人免费观看mmmm| 在线播放无遮挡| 成人无遮挡网站| 日韩av在线免费看完整版不卡| 国产91av在线免费观看| 国产精品三级大全| 看十八女毛片水多多多| 国产人妻一区二区三区在| 亚洲熟女精品中文字幕| 亚洲在线自拍视频| 日本爱情动作片www.在线观看| 欧美xxⅹ黑人| 国产v大片淫在线免费观看| 国产精品国产三级国产av玫瑰| 国产伦理片在线播放av一区| 久久久久九九精品影院| 街头女战士在线观看网站| 最近最新中文字幕大全电影3| 99九九线精品视频在线观看视频| 国产熟女欧美一区二区| 成人鲁丝片一二三区免费| 七月丁香在线播放| 国产伦在线观看视频一区| 美女cb高潮喷水在线观看| 亚洲成人精品中文字幕电影| 男女那种视频在线观看| 视频中文字幕在线观看| 日本黄大片高清| 婷婷色av中文字幕| 黑人高潮一二区| 99re6热这里在线精品视频| 午夜免费激情av| 中文欧美无线码| 久久久久久久亚洲中文字幕| 视频中文字幕在线观看| 我的老师免费观看完整版| 亚洲国产成人一精品久久久| 亚洲国产欧美人成| 老司机影院毛片| 国产精品一二三区在线看| 亚洲av.av天堂| 亚洲精品一二三| 久久久久九九精品影院| 精品人妻视频免费看| 成人综合一区亚洲| 国产高清有码在线观看视频| 1000部很黄的大片| 免费黄网站久久成人精品| 国产亚洲午夜精品一区二区久久 | 久久久久久久久大av| 尾随美女入室| 精品欧美国产一区二区三| 久久精品国产自在天天线| 国产在线男女| 一本久久精品| 免费观看a级毛片全部| 欧美潮喷喷水| av卡一久久| 2022亚洲国产成人精品| 国产高清三级在线| 国精品久久久久久国模美| 纵有疾风起免费观看全集完整版 | av播播在线观看一区| 天堂网av新在线| 少妇猛男粗大的猛烈进出视频 | 国产精品女同一区二区软件| 国产免费福利视频在线观看| 久久久久久久国产电影| 淫秽高清视频在线观看| 亚洲国产高清在线一区二区三| 99久国产av精品| 床上黄色一级片| 久久久久久久久久人人人人人人| 啦啦啦啦在线视频资源| 国产av不卡久久| 人人妻人人澡人人爽人人夜夜 | 久久热精品热| videos熟女内射| 久久99热这里只频精品6学生| 国产永久视频网站| 老师上课跳d突然被开到最大视频| 综合色丁香网| ponron亚洲| 极品少妇高潮喷水抽搐| 亚洲av一区综合| av网站免费在线观看视频 | 少妇丰满av| 午夜免费男女啪啪视频观看| 国产亚洲av嫩草精品影院| 亚洲精品成人久久久久久| 亚洲人成网站在线观看播放| 免费观看的影片在线观看| 男人舔女人下体高潮全视频| 日韩在线高清观看一区二区三区| 春色校园在线视频观看| 在线观看一区二区三区| 尾随美女入室| 亚洲欧美中文字幕日韩二区| 亚洲av.av天堂| 看免费成人av毛片| 99热这里只有是精品在线观看| 777米奇影视久久| 欧美最新免费一区二区三区| 国产单亲对白刺激|