• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2-苯基苯并噁唑的光解反應(yīng)

    2012-11-30 10:49:00李會學(xué)王曉峰李志鋒朱元成
    物理化學(xué)學(xué)報(bào) 2012年5期
    關(guān)鍵詞:王曉峰開環(huán)天水

    李會學(xué) 王曉峰 李志鋒 朱元成

    (天水師范學(xué)院生命科學(xué)與化學(xué)學(xué)院,新型分子材料設(shè)計(jì)與功能省教育廳重點(diǎn)實(shí)驗(yàn)室,甘肅天水741001)

    2-苯基苯并噁唑的光解反應(yīng)

    李會學(xué)*王曉峰 李志鋒 朱元成

    (天水師范學(xué)院生命科學(xué)與化學(xué)學(xué)院,新型分子材料設(shè)計(jì)與功能省教育廳重點(diǎn)實(shí)驗(yàn)室,甘肅天水741001)

    聚對苯撐苯并二噁唑(PBO)纖維對光較為敏感,在紫外光照射下會發(fā)生降解.本文研究了該纖維的單體2-苯基苯并噁唑(PO)的初級光化學(xué)反應(yīng)機(jī)理.當(dāng)PO分子吸收一個(gè)光子而躍遷到第一激發(fā)態(tài)后,克服25.59 kJ· mol-1能壘而越過過渡態(tài),此時(shí)噁唑環(huán)打開,且兩個(gè)苯環(huán)形成大約90°的二面角而得到產(chǎn)物,該產(chǎn)物可進(jìn)一步與空氣中的水發(fā)生次級反應(yīng).計(jì)算結(jié)果表明在第一激發(fā)態(tài)上噁唑開環(huán)反應(yīng)很容易,但在基態(tài)勢能面并沒有發(fā)現(xiàn)噁唑的開環(huán)路徑.分子中的原子(AIM)的計(jì)算結(jié)果與上述分析過程相吻合.

    理論研究;光解反應(yīng);2-苯基苯并噁唑

    1 Introduction

    Poly[p-phenylene benzobisoxazole](PBO)can be processed into an organic fiber,which exhibits high tensile strength and modulus with a low density,therefore PBO fibers possess outstanding mechanical and thermal properties and can be used as reinforcement materials in advanced composites.Owing to above advantages,this kind of fiber has great potential applications in the fields of aerospace,military industry,and general industry.For example,high performance fibers based on PBO have become prominent in body armor,ropes,cables,and recreational equipment.1-13

    In order to improve the interfacial adhesion of PBO fiber and the tensile strength,the modification of PBO fiber is of great importance.Commonly used method is to introduce polar functional groups in the polymer repeat unit.5,14,15Dang16added-OH to PBO and obtained extremely high modulus/high strength fibers,which is thought to have a bidirectional network of hydrogen bonds in its chemical structure17-19when hy-droxyl attaches to the monomer of polymer PBO.Axial compression bending test showed that the introduction of binary hydroxyl groups into macromolecular chains apparently improved the equivalent bending modulus of the fibers.Hodges et al.20used nonpolar and polar solvents to deal with the fibers, only polar ethanol washing allowed to detect changes in the surface characteristics of PBO as-spun fibers.Kumar et al.21synthesized PBO fiber in the presence of single-wall carbon nanotubes(SWNTs),the tensile strength of the PBO/SWNT fiber containing 10%(mass fraction)SWNTs is about 50%higher than that of the control PBO fibers containing no SWNTs. Ran et al.22,23employed in situ solution spinning of PBO in poly(phosphoric acid)(PPA),when the coagulation time exceeded 30 min,the complex PBO/PPAstructure completely disappeared,and well-oriented PBO crystals were formed.

    However,the anti-ultraviolet aging stability of PBO fiber was poor and the tensile strength of PBO fiber decreased to half its former size after UV exposure for an hour.24,25According to the experimental observation of Fourier transform infrared(FTIR)techniques,the degradation mechanism of PBO was suggested by Chin,26Jackson,27and Kim28et al.Through acid-catalyzed hydrolysis,the benzoxazole ring is opened and the benzamide will be formed with the action of water molecules in the air.Further the breakdown of benzamide groups could lead to the formation of aminophenol and benzoic acid groups.So et al.29prepared several benzoxazole compounds and investigated their extended configurations characterized by optical absorption and emission spectroscopy,and the molecular configuration permited benzoxazole compounds to undergo photoinduced electron transfer in the solid state and generated superoxide in the presence of oxygen.Zhang et al.30found that under irradiation of 254 nm UV light,phenyloxazolyl compounds underwent photolysis promptly to reproduce the transmonomers and formed cis-isomers by trans-cis isomerization. In addition,benzimidazo[2,1-b]benzoxazole was prepared photolytically at 360 nm from 1-(2-benzoxazolyl)benzotriazole.31However,there were few reference about the theoretical study on the optical degradation about PBO,in this paper we employed time dependent density functional theory(TD-DFT)to study the property of the excited state of PBO monomer and elucidated the primary process of photolytic destruction.

    2 Computational details

    It is known that the complete active space self-consistent field(CASSCF)methods are effective for theoretical studies of excited electronic states of molecules and molecular ions,32however,selection of the active space is the crucial step in CASSCF calculations,which is usually a little difficult,in addition,the complete active space is impossible to be selected enough large due to computational cost.For TD-DFT,the linear response approach can be applied to solve the equations. By simply adding the ground state DFT energy to the excitation energy of the selected state,TD-DFT provides a fast and reliable approach to obtain potential energy surfaces for the excited states as a function of the molecular geometry.The work of Scalmani et al.33indicated that the theory of TD-DFT analytical gradients about the excited state energy,not only in the gas phase but also in solution,can be applied to the analysis of UV spectra and to understand photophysical and photochemical pathways.

    Fig.1 Molecular structure diagrams of PBO and PO H atoms are omitted.

    TD-DFT has rapidly emerged as an extremely useful method for studying the excited electronic states of molecules,for many systems,it yields computational accuracy for the electronic excitation energies within tenths of eV,excited state bond lengths within 1%,dipole moments and vibrational frequencies within 5%,not to mention that the computational cost scales very favorably with the number of electrons.34So we adopted TD-DFT to investigate the photolytic mechanism of PO instead of CASSCF method.

    The degradation of PBO occurs in 2-phenylbenzo[d]oxazole (PO)moiety,which is the primary structure of the monomer of PBO.In consideration of calculating difficulty of polymer,especially for excited states,we researched PO instead of PBO, the molecular structures of PO and PBO are shown in Fig.1.In general,fluorescence normally occurs from the zero vibrational level of the first excited state to the ground state and photochemical reaction occurs,so in this paper we only investigated the reaction of PO molecule in the potential energy surface of

    Electronic structure calculations were carried out using Gaussian 09 program.36The geometry of the PO molecule in S0was optimized with B3LYP methods at the 6-31G*basis set level,the geometry of the S1was optimized using three different DFT approaches,(i.e.,B3LYP,B3PW91,and MPW1PW91) with the same basis set.All stationary points were positively identified as minima or first-order saddle points by evaluation of the frequencies and normal modes.Since the accuracy of DFT calculation also depends on the number of points used in the numerical integration in addition to the sources of numerical errors in the Hartree-Fock calculations,fine grids should be employed.In the present calculations,we used the default grid. Three-dimensional molecular orbital(MO)plots were obtained with the GaussView software.Each orbital was displayed with the 0.08 isodensity value and oriented to give the best view.

    3 Results and discussion

    3.1 Structures of ground and excited states

    The ground-state structure(S0)of PO molecule and the atomic numbers are shown in Fig.2.All the atoms are at the same plane and it belongs to Cspoint group.The calculated bond pa-rameters using B3LYP/6-31G*are listed at the second column and the experimental values37are at the third column in Table 1.The calculated results are found to be in agreement with the experimental ones.This indicates that the adopted basis set and functional is feasible to the studied system.

    The geometry of the lowest-excited state S1was optimized using three different DFT approaches(i.e.,B3LYP,B3PW91, and MPW1PW91)with the same basis set 6-31G*,the selected optimized bonds are listed at Table 1.One can see that the parameters of PO are very close to each other in S1,the calculated largest difference of each bond with different DFT approaches is less than 0.01 nm,all the optimized structures of PO in S1still keep the ground-state characters and possess a symmetry plane,and the above results imply that the optimized geometry of S1using B3LYP/6-31G*is relatively reliable.In addition, the calculated Wiberg bond indices using natural bond orbital (NBO)by B3LYP/6-31G*,which are related to the strength of the bonds,38are shown in Table 1 at the fourth column for the S0and the sixth column for the S1as well.All the changes of the bond lengths by B3LYP/6-31G*from S0to S1are listed simultaneously in parenthesis,thepronounced geometrical changes for PO are 7C-24N and 7C-12C bonds.One can see that C=C double bonds of benzene ring in the S0including 1C-2C,12C-14C and 12C-13C are 0.1403,0.1404,and 0.1405 nm,respectively,however all those in S1obtained by TD-B3LYP are elongated and the corresponding data are 0.1437,0.1437,and 0.1441 nm,respectively,accordingly all the Wiberg bond orders(WBO)of S1are smaller than the ones of S0.The above suggests that the strength of all the C=C double bonds are weakened when the S0turns into the S1.Similarly,optical radiation can also elongate the bond lengths of 7C-24N and 7C-23O in oxazole ring,which are 0.1301 and 0.1382 nm in S0,and 0.1365 and 0.1406 nm in S1,respectively, the WBOs of both the bonds decreases after PO molecule absorbs photons and transfers to S1,especially for 7C-24N,the WBO value(1.2652)in S1is 0.3549 less compared with the one(1.6201)in S0,which shows that the change of the electronic density at 7C-24N is the largest before and after the transition.On the contrary,the bond lengths in oxazole ring including 1C-23O,2C-24N,and bridge bond 7C-12C in S0are all larger than ones in S1,relative WBO values increase in S1. The result indicates that the electron distributing in benzene ring and in 7C-24N and 7C-23O of oxazole ring in S0transfers to 1C-23O,2C-24N,and 7C-12C in S1.

    3.2 Frontier molecular orbitals and electronic spectrum

    A sketch of the highest occupied molecular orbital(HOMO), lowest unoccupied molecular orbital(LUMO),and other occupied molecular orbitals involved electron transition are shown in Fig.3.In spite of the HOMO and LUMO locating on the whole molecule,the HOMO mainly spreads on 1C-2C-3C, 24N-7C-23O,and 14C-12C-13C moieties but the LOMO on 2C-24N,23O,and 7C-12C moieties,the HOMO-2 and HOMO-1 are located on benzene ring moiety.

    Fig.2 Structure of PO molecule and the atomic numbers in S0

    Fig.3 Molecular orbitals involved in the photolysis reaction in S0

    Table 1 Selected optimized geometrical parameters and the Wiberg bond orders

    Table 2 Calculated maximum absorption peaks,oscillator strength(f),main contribution,and the dipole moments of the first three excited state

    The maximum absorption peaks,oscillator strength,main contribution of the first three low excited states are calculated by TD-DFT based on the optimized ground state configuration and all the data are listed in Table 2,we can draw the following conclusion from Table 2:firstly these orbitals are π symmetry characters,and so the main UV-visible absorption features are well described as π→π*transitions.Secondly the oscillator strength of S1is the largest,which is proportional to the transition moment and it reflects the transition probability from S0to the excited state,this means that the process of S0→S1is allowed by optical selection rule,the transition process is characterized by electron promotion from the HOMO to the LUMO and are polarized along the molecular plane.The S0dipole moment of PO is 3.803×10-30C·m,the ones of S1and S2are 1.256×10-29and 2.687×10-29C·m,respectively,it means that the charge transfers significantly in the excited state.The calculated S1transition energy is 289 nm which implies that ultraviolet light will damage the molecular structure.The other two excited states are transition forbidden due to the small oscillator strength,the involved molecular orbitals mainly are the HOMO-1 and the HOMO-2,of which both the orbitals are located on the benzene rings.

    3.3 Potential energy surface of S1of PO molecule

    At the B3LYP/6-31G*level,we established the potential energy surface of the photolytic destruction of PO molecule in S1. One elementary channel was explored and the ring-opening reaction takes place at C-O bond in oxazole ring to form a zwitterion structure(Scheme 1).

    3.3.1 Structural parameters ofthe involved species in the S1potential energy surface

    The geometries in S1including reactant,transition and product state are presented in Fig.4.

    跑步,是人生美麗的主題,是心靈快樂的涅槃。人生也就像跑步一樣,需要不斷地去踏足、磨煉、超越,然后勇往直前、堅(jiān)持到底,這樣,才能遙遙領(lǐng)先他人,奔向成功。

    Fig.4 Geometries of the reactant(a),the transition state(b),and the product(c)in S1

    Initially PO will turn into S1after absorbing a photon at 289 nm,it quickly comes to its optimized geometry,like the S0configuration,the geometrical structures of S1are planar as well. When the dihedral angle between the benzene ring and the phenylbenzo[d]-oxazole increases from 0°to 9.19°with elongating 7C-23O bond in oxazole ring to 0.1812 nm,the transition state(TS)structure will be obtained.When the dihedral angle continues to increase to 91.02°,the oxazole ring thoroughly opens and 7C-23O bond length turns into 0.2865 nm,thus the ring-opening product is formed.In this process,the 7C-23O bond order also changes due to the transformation of the PO molecule,the WBO value of 7C-23O shows that the strength of the bond gradually decreases from the reactant to TS,and finally to ring-opening product,all the data are listed in Table 3.The WBO values of 7C-23O of the reactant is 0.9952,which suggests that it is close to a single bond.For transition state,the WBO value of 7C-23O is 0.4895 which implies that the bond has been weakened greatly.However that in the ring-opening product is only 0.0091,it indicates that the bond has been broken completely,the change tendency of WBO value is consistent with the change of the bond strengths along the ring-opening path.Similarly,the WBO values of the 1C-2C,2C-24N,12C-14C,and 12C-13C are also decreased from the reactant to TS,and finally to ring-opening product.Comparatively these bond orders have few changes, which indicate that these bonds are essentially single bonds. On the contrary,the WBO values of 7C-24N are increased along the reacting path,it is 1.5214 for the reactant,1.7106 for TS,and 2.0884 for the product,obviously it ultimately forms double bond.Both the 1C-23O and 7C-12C are also increased,the WBO values are 1.6012 and 1.4078 in S1,respectively,thisisduetotheformationof πbonds inthefinalproduct.

    Scheme 1 Reaction routes for the ring-opening channel in S1

    Table 3 Selected optimized geometrical parameters and the Wiberg bond orders of the reactant,the transition state,and the product in S1

    Fig.5 Charge distribution(e)of ring-opening product of PO The charges on O and N atoms are-0.524e and-0.551e,respectively.

    On the other hand,one can obtain useful information based on the distribution of the charge.The each atomic charge distribution of ring-opening product of PO is shown in Fig.5.The negative charge within the moiety of benzene with oxygen and nitrogen atom is-0.68e.Most negative charges distribute on oxygen and nitrogen atoms.The other moiety has 0.68e positive charge and almost the half concentrates on bridge C atom. The above indicates the product is a zwitterion structure.

    3.3.2 Potential energy surface of the ring-opening

    reaction in S1

    The calculated total energy and relative energy values of the involved species in S1are listed in Table 4.The first excited energy(FEE/eV)refers to the transition energy from the ground state to the first excited state in the same geometry.

    For the ring-opening reaction,we selected the optimized reactant in S1as the standard of relative energy,thus the TS is only 25.59 kJ·mol-1higher than the reactant,in other words,the energy barrier of the process is considerably low,which suggests that the ring-opening reaction is easy to process to process after PO absorbs one photon.The relative potential energysurface for the reaction in S1is shown in Fig.6.A saddle point is found and possesses an imaginary frequence(352i cm-1),the imaginary vibration model of the transition state corresponds to 7C-23O stretching vibration and points to the reactant and the product,this illuminates that stationary points locate the right reaction channel.

    Table 4 Total energies(ET),the first excited energy(FEE),relative energies(ER),and dipole moment for various species

    In addition,we attempted to find a reactively ring-opening path in S0of PO molecule,however,it can not been hit.In order to investigate the structural change in ground state,we have done a relaxed scan about the bond length of 7C-23O, which perform the optimization of the geometry at each point, the curve graph is shown in Fig.7.With the increase of the bond length from 0.138 to 0.348 nm,the energy of the respective geometry gradually increases,too.The inflection point does not appear which indicates the ring-opening reaction is very difficult in ground state.

    3.4 Potential energy surface of triplet state(T1)of PO molecule

    Fig.6 Schematic potential energy surface of the reaction in S1

    Fig.7 Schematic scan potential energy surface of the 7C-23O bond length in S0

    3.5 Atoms in Molecules(AIM)analysis

    In AIM analysis,the topological properties of the scalar field electron density(ρ(rC))can be described by the numbers and the categories of the critical points.A critical point is the spatial position where the first derivative of the ρ(rC)is zero, according to the critical point?s curvature obtained by calculating the second derivative of the ρ(rC),the type of the critical point can be defined.The Hessian matrix of electron density is composed by nine secondary derivatives of ρ(rC)in three dimensions.The three eigenvalues(λ1,λ2,and λ3)can be acquired by performing a diagonalized operator on Hessian matrix.The sum of the three eigenvalues is equal to Laplacian of the electron density(?2ρ(rC)=λ1+λ2+λ3).Among the three eigenvalues, if two of them are negative and the other is positive,the corresponding critical point is designated as the bond critical point (BCP)and marked as(3,-1),indicating the linkage between the two atoms.If two of them are positive and the other is negative, the corresponding critical point is designated as the ring critical point(RCP),and marked as(3,+1),indicating the existence of the ring structure.In general,the ρ(rC)of a BCP is related to the strength of the bond:the larger the ρ(rC)is,the stronger the bond will be;the smaller the ρ(rC)is,the weaker the bond will be.The?2ρ(rC)of a BCP reflects the characteristic of the bond.If?2ρ (rC)<0,BCPcharges will be concentrated,and the more negative the?2ρ(rC)is,the more covalent the property is;if?2ρ(rC)>0, BCPcharges will be dispersed,and the more positive the?2ρ(rC) is,themoreionicthepropertyis.39-41

    Fig.8 Schematic potential energy surface of the reaction in T1

    Table 5 Electron densities and laplacians of various complexes in S1at bond critical points along the reaction coordinate calculated at the B3LYP/6-31G*level within theAIM theory

    The electronic densities of the 7C-23O,7C-24N,7C-12C,and 1C-23O bonds in the potential energy surface of S1at the bond critical point and their Laplacian are given in Table 5.The ρ(rC)of 7C-23O is reduced from the reactant(0.2654 e·a0-3,a0is the atomic unit of length which is called Bohr and equals 0.529×10-10m)to TS state(0.1099 e·a0-3),however,the ρ(rC)of the product can not be obtained by default of the program,it indicates that the strength of the bond is so weak that hardly existence of electron between the bond;on the contrary, the ρ(rC)of 7C-24N,and 1C-23O are increased in turn along reaction path(i.e.,from the reactant to TS state,finally to the product),it shows that these bonds are to be strengthened,the results is corresponding to those from WBOs mentioned above;the ρ(rC)of 7C-12C bond in TS state is slight smaller than those of the reactant and the product,however,the change is so small that it can almost be ignored.All the Laplacian of the electron density,?2ρ(rC),are negative,it implies that these bonds belong to covalent property;the?2ρ(rC)of the 1C-23O,and 7C-24N bonds are decreased along the reacting path,indicating that the electronic charge is from concentrating in the bond to distributing on two atomic nucleus. The?2ρ(rC)of the 7C-12C bond is increased along the reacting path,indicating that the electronic charge is concentrated in the internuclear region,resulting in the more strong covalent bonds.In addition,there are the three calculated RCP(3,+1) for the reactant,which correspond to two benzene rings and one oxazole ring,however,for the transition state and the product,there are only the two calculated(3,+1)points corresponding to two benzene rings,the topological properties of these compounds are in good agreement with those discussed in WBOs and the photolytic mechanism.

    4 Conclusions

    The primary photochemistry process of PBO was investigated at the B3LYP/6-31G*level.After PO molecule absorbs a photon and turns into S1,firstly the molecule overcomes the en-ergy barrier of 25.59 kJ·mol-1to get to the transition state,then the oxazole ring is opened at C-O bond and both the benzene rings form about 90°angle to obtain the product,which is the base for further addition reaction with water.In order to improve the light stability of PBO fiber,it is necessary to add some anti-ultraviolet radiation material.

    Acknowledgments: We thank Prof.SHI Qiang for the support and guidance in this work.Parts of the calculations were performed on the computer workstation of SHI Qiang group in Institute of Chemistry, ChineseAcademy of Sciences.

    (1)Fu,Q.;Zhang,H.;Song,B.;Liu,X.;Zhuang,Q.;Han,Z. J.Appl.Polym.Sci.2011,121,1734.

    (2)Hu,X.D.;Jenkins,S.E.;Min,B.G.;Polk,M.B.;Kumar,S. Macromol.Mater.Eng.2003,288,823.

    (3) Jiang,J.M.;Zhu,H.J.;Li,G.;Jin,J.H.;Yang,S.L.J.Appl. Polym.Sci.2008,109,3133.

    (4)Li,J.;Chen,X.;Li,X.;Cao,H.;Yu,H.;Huang,Y.Polym.Int. 2006,55,456.

    (5)Li,X.;Huang,Y.;Cao,H.;Liu,L.J.Appl.Polym.Sci.2007, 105,893.

    (6)Lin,H.;Zhuang,Q.;Cheng,J.;Liu,Z.;Han,Z.J.Appl.Polym. Sci.2007,103,3675.

    (7) So,Y.H.Polym.Int.2006,55,127.

    (8)Wang,L.;Meng,Y.Z.;Wang,S.J.;Hay,A.S.J.Polym.Sci. Part A:Polym.Chem.2004,42,1779.

    (9) Jin,J.;Yang,S.;Li,G.;Zhu,H.;Jiang,J.Preparing Ultraviolet-ResistantPBO FiberComprisesHeating4,6Bi-Aminoresorcinol Hydrochloride,TerephthalicAcid,Phosphorus Pentoxide and PolyphosphoricAcid to Dissolve andAdding Nanometer Titanium Dioxide and PolyphosphoricAcid.CN Patent 101215732-A,2008

    (10) Qian,J.;Zhang,Y.;Li,X.;Zhuang,Q.;Zhang,P.;Yin,X.High-Pressure Spinning for Preparing Polybenzoxazole(Pbo)Fiber ComprisesAdding PolyphosphoricAcid,Phosphorus Pentoxide, 4,6-Aminoresorcinol Hydrochloride,and TerephthalicAcid into Prepolymerization Kettle and Polymerizing.CN Patent 101824662-A,2010.

    (11)Zhang,C.;Huang,Y.;Meng,L.;Lu,X.;Huang,S.High Pressure Nitrogen Storage Bottle Made of PBO Fiber and Carbon Fiber Composite Material and Its Preparation Method. CN Patent 1948816-A,2007.

    (12)Zhang,C.H.;Huang,Y.D.;Zhao,Y.D.Mater.Chem.Phys. 2005,92,245.

    (13)Zhang,T.;Hu,D.Y.;Jin,J.H.;Yang,S.L.;Li,G.;Jiang,J.M. Eur.Polym.J.2009,45,302.

    (14)Fukumaru,T.;Fujigaya,T.;Nakashima,N.Polym.Chem.2012, 3,369.

    (15) Park,S.J.;Seo,M.K.;Lee,J.R.J.Colloid Interface Sci.2003, 268,127.

    (16)Dang,T.D.Polym.Mater.Sci.Eng.1990,62,86.

    (17) Takahashi,Y.Macromolecules 2002,35,3942.

    (18) Takahashi,Y.Macromolecules 2003,36,8652.

    (19) Zhang,T.;Yang,S.L.;Hu,D.Y.;Jin,J.H.;Li,G.;Jiang,J.M. Polym.Bull.2009,62,247.

    (20)Hodges,C.S.;Neville,F.;Konovalov,O.;Hammond,R.B.; Gidalevitz,D.;Hamley,I.W.Langmuir 2006,22,8821.

    (21) Kumar,S.;Dang,T.D.;Arnold,F.E.;Bhattacharyya,A.R.; Min,B.G.;Zhang,X.;Vaia,R.A.;Park,C.;Adams,W.W.; Hauge,R.H.;Smalley,R.E.;Ramesh,S.;Willis,P.A. Macromolecules 2002,35,9039.

    (22) Ran,S.;Burger,C.;Fang,D.;Zong,X.;Chu,B.;Hsiao,B.S.; Ohta,Y.;Yabuki,K.;Cunniff,P.M.Macromolecules 2002,35, 9851.

    (23) Ran,S.;Burger,C.;Fang,D.;Zong,X.;Cruz,S.;Chu,B.; Hsiao,B.S.;Bubeck,R.A.;Yabuki,K.;Teramoto,Y.;Martin, D.C.;Johnson,M.A.;Cunniff,P.M.Macromolecules 2001, 35,433.

    (24) Walsh,P.J.;Hu,X.;Cunniff,P.;Lesser,A.J.J.Appl.Polym. Sci.2006,102,3517.

    (25) Walsh,P.J.;Hu,X.;Cunniff,P.;Lesser,A.J.J.Appl.Polym. Sci.2006,102,3819.

    (26) Chin,J.;Forster,A.;Clerici,C.;Sung,L.;Oudina,M.;Rice,K. Polym.Degrad.Stab.2007,92,1234.

    (27)Jackson,P.F.;Morgan,K.J.;Turner,A.M.J.Chem.Soc. Perkin Trans.2 1972,1582.

    (28)Kim,Y.J.;Einsla,B.R.;Tchatchoua,C.N.;McGrath,J.E. High Perform.Polym.2005,17,377.

    (29)So,Y.H.;Zaleski,M.J.;Murlick,C.;Ellaboudy,A. Macromolecules 1996,29,2783.

    (30)Zhang,W.;Shen,G.;Zhuang,J.;Zheng,P.;Ran,X. J.Photochem.Photobiol.A 2002,147,25.

    (31) Martineau,A.;Dejongh,D.C.J.Anal.Appl.Pyrolysis 1983,5, 39.

    (32)Roos,B.O.Adv.Chem.Phys.1987,399.

    (33)Scalmani,G.;Frisch,M.J.;Mennucci,B.;Tomasi,J.;Cammi, R.;Barone,V.J.Chem.Phys.2006,124,094107.

    (34)Wu,C.;Tretiak,S.;Chernyak,V.Y.Chem.Phys.Lett.2007, 433,305.

    (35)Rohatgi-Mukherjee,K.Fundamentals of Photochemistry;Wiley Eastern:New Delhi,1978.

    (36) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09, RevisionA.01;Gaussian Inc.:Wallingford,CT,2009.

    (37) Starikova,Z.;Obodovskaya,A.;Bolotin,B.J.Struct.Chem. 1982,23,105.

    (38) Wiberg,K.Tetrahedron 1968,24,1083.

    (39) Sosa,G.L.;Peruchena,N.M.;Contreras,R.H.;Castro,E.A. J.Mol.Struct.-Theochem 2002,577,219.

    (40)Li,Z.F.;Zhu,Y.C.;Zuo,G.F.;Tang,H.A.;Li,H.Y.Acta Phys.-Chim.Sin.2010,26,429. [李志鋒,朱元成,左國防,唐慧安,李紅玉.物理化學(xué)學(xué)報(bào),2010,26,429.]

    (41) Yuan,K.;Liu,Y.Z.;Zhu,Y.C.;Zhang,J.Acta Phys.-Chim. Sin.2008,24,2065. [袁 焜,劉艷芝,朱元成,張 繼.物理化學(xué)學(xué)報(bào),2008,24,2065.]

    January 6,2012;Revised:March 5,2012;Published on Web:March 6,2012.

    Photolysis Reaction of 2-Phenylbenzo[d]oxazole

    LI Hui-Xue*WANG Xiao-Feng LI Zhi-Feng ZHU Yuan-Cheng
    (Key Laboratory for New Molecule Design and Function of Gansu Education Department,College of Life Science and Chemistry, Tianshui Normal University,Tianshui 741001,Gansu Province,P.R.China)

    The temperature-resilient,high tensile-strength fiber poly[p-phenylene benzobisoxazole] (PBO)is light-unstable and it degrades under ultraviolet radiation.In this paper we study the photolytic mechanism of the PBO monomer,2-phenylbenzo[d]oxazole(PO).Following absorption of a photon and excitation into the first excited state(S1),the molecule overcomes an energy barrier of 25.59 kJ·mol-1to enter the transition state;the oxazole ring is then opened and both benzene rings form a dihedral angle of about 90°to obtain the product,which undergoes further addition reaction with water.Calculations reveal that ring-opening is easily achieved in the potential surface of S1.However,the pathway through which the oxazole ring opens in the ground state remains obscure.The topological properties of these compounds are in good agreement with the expected bond orders and the photolytic mechanism.

    Theoretical study;Photolysis reaction;2-Phenylbenzo[d]oxazole

    10.3866/PKU.WHXB201203062

    O641

    ?Corresponding author.Email:li_hx2001@126.com;Tel:+86-15097274526.

    The project was supported by the Research Fund of Tianshui Normal University for Young College Teachers,China(TSA1116).天水師范學(xué)院中青年教師科研基金資助項(xiàng)目(TSA1116).

    猜你喜歡
    王曉峰開環(huán)天水
    天水嬸與兩岸商貿(mào)
    TOEPLITZ OPERATORS WITH POSITIVE OPERATOR-VALUED SYMBOLS ON VECTOR-VALUED GENERALIZED FOCK SPACES ?
    天水地區(qū)的『秦與戎』
    重返絲綢之路—從天水到青海湖
    美食(2018年10期)2018-10-18 08:10:58
    轉(zhuǎn)速開環(huán)恒壓頻比的交流調(diào)速系統(tǒng)的分析與仿真研究
    電子測試(2018年1期)2018-04-18 11:52:24
    摩拜單車CEO王曉峰談與ofo合并:不覺得有可能
    《天水之鏡像》
    一種溫和環(huán)醚開環(huán)成雙酯的新方法
    基于開環(huán)補(bǔ)償?shù)娘w機(jī)偏航角控制系統(tǒng)設(shè)計(jì)及仿真
    那撒氣的130萬紅包:說好是“姑父”怎會變生父
    人妻人人澡人人爽人人| 涩涩av久久男人的天堂| 80岁老熟妇乱子伦牲交| 午夜福利网站1000一区二区三区| www.色视频.com| 成人漫画全彩无遮挡| 黄色视频在线播放观看不卡| 青春草视频在线免费观看| 免费av不卡在线播放| 这个男人来自地球电影免费观看 | 最近的中文字幕免费完整| 在线观看一区二区三区激情| 亚洲经典国产精华液单| 亚洲精品乱码久久久久久按摩| 人成视频在线观看免费观看| 国产精品三级大全| 少妇熟女欧美另类| 亚洲久久久国产精品| 亚洲精品久久久久久婷婷小说| 免费久久久久久久精品成人欧美视频 | 母亲3免费完整高清在线观看 | 国产成人精品无人区| 亚洲av.av天堂| 丝袜美足系列| 午夜福利视频在线观看免费| 99视频精品全部免费 在线| 九九久久精品国产亚洲av麻豆| 国精品久久久久久国模美| 欧美3d第一页| 女人久久www免费人成看片| 国产一区二区三区av在线| 国产视频首页在线观看| 少妇人妻精品综合一区二区| 午夜免费男女啪啪视频观看| 免费人妻精品一区二区三区视频| 欧美少妇被猛烈插入视频| 丝袜脚勾引网站| 大又大粗又爽又黄少妇毛片口| 成年美女黄网站色视频大全免费 | 国产精品人妻久久久久久| 精品人妻偷拍中文字幕| 制服人妻中文乱码| 人妻系列 视频| 欧美变态另类bdsm刘玥| 日本av免费视频播放| 9色porny在线观看| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 亚洲综合色惰| 国产片特级美女逼逼视频| 天天影视国产精品| 亚洲精品自拍成人| 日韩av免费高清视频| 五月天丁香电影| 国产免费又黄又爽又色| 伊人亚洲综合成人网| 免费久久久久久久精品成人欧美视频 | 午夜福利视频精品| 少妇精品久久久久久久| 中文天堂在线官网| 丰满迷人的少妇在线观看| 国产乱来视频区| 在线播放无遮挡| 婷婷色麻豆天堂久久| 男女国产视频网站| 欧美3d第一页| 老司机影院毛片| 久久久久久久久大av| 日韩欧美精品免费久久| 日韩视频在线欧美| av在线观看视频网站免费| av天堂久久9| 国产亚洲一区二区精品| 日韩熟女老妇一区二区性免费视频| 免费播放大片免费观看视频在线观看| 午夜老司机福利剧场| 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 各种免费的搞黄视频| 大香蕉97超碰在线| 久久毛片免费看一区二区三区| 亚洲精品视频女| 18禁在线播放成人免费| av线在线观看网站| 永久免费av网站大全| 午夜激情久久久久久久| 久久久精品区二区三区| 黄色一级大片看看| 精品久久蜜臀av无| a级毛片黄视频| 午夜免费观看性视频| 亚洲激情五月婷婷啪啪| 在线观看国产h片| 日本黄色片子视频| .国产精品久久| 七月丁香在线播放| 久久精品夜色国产| 欧美激情极品国产一区二区三区 | 老熟女久久久| 大陆偷拍与自拍| 99久久中文字幕三级久久日本| 国产精品久久久久成人av| 久久精品国产亚洲av天美| 国产av精品麻豆| 黑人高潮一二区| 精品一区二区三区视频在线| 欧美激情 高清一区二区三区| 中文欧美无线码| 久久 成人 亚洲| 国产乱人偷精品视频| 国产有黄有色有爽视频| 精品一区在线观看国产| 国产欧美日韩一区二区三区在线 | 日本欧美国产在线视频| 国产不卡av网站在线观看| 汤姆久久久久久久影院中文字幕| 99久久综合免费| 午夜福利视频在线观看免费| 大香蕉久久成人网| 丰满少妇做爰视频| 免费看不卡的av| 国产精品成人在线| 久久青草综合色| 亚洲国产色片| 国产乱人偷精品视频| 老司机影院毛片| 自拍欧美九色日韩亚洲蝌蚪91| 水蜜桃什么品种好| 伦理电影大哥的女人| 亚洲av男天堂| 久久人人爽人人片av| 在线精品无人区一区二区三| 色婷婷av一区二区三区视频| a级毛片黄视频| 少妇被粗大的猛进出69影院 | 午夜激情福利司机影院| 男女无遮挡免费网站观看| 日韩人妻高清精品专区| 热re99久久国产66热| 午夜福利视频在线观看免费| 国产精品无大码| 91久久精品国产一区二区成人| 97在线人人人人妻| 99国产综合亚洲精品| 高清av免费在线| 99热全是精品| 国产精品久久久久久久电影| 黑人猛操日本美女一级片| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 国产精品国产三级国产av玫瑰| 丝袜脚勾引网站| 亚洲久久久国产精品| 亚洲国产av影院在线观看| 久久久久网色| 国产成人freesex在线| 桃花免费在线播放| 最近的中文字幕免费完整| 亚洲精品美女久久av网站| 26uuu在线亚洲综合色| 黑人猛操日本美女一级片| 久久青草综合色| 大香蕉久久网| 黑丝袜美女国产一区| 又大又黄又爽视频免费| 18禁在线无遮挡免费观看视频| 十八禁高潮呻吟视频| 国产av精品麻豆| 日韩中文字幕视频在线看片| 国产 精品1| 成人午夜精彩视频在线观看| 大话2 男鬼变身卡| 国产精品人妻久久久影院| 国内精品宾馆在线| 97在线人人人人妻| 在线看a的网站| 日韩强制内射视频| 飞空精品影院首页| av有码第一页| 交换朋友夫妻互换小说| 久久久久视频综合| 中文乱码字字幕精品一区二区三区| 国产成人精品一,二区| 边亲边吃奶的免费视频| 国产精品欧美亚洲77777| 综合色丁香网| 纯流量卡能插随身wifi吗| 久久国产精品大桥未久av| 男女边摸边吃奶| 亚洲国产av影院在线观看| 午夜福利视频精品| 一级爰片在线观看| 免费观看在线日韩| 日韩av免费高清视频| 欧美日韩av久久| 国产不卡av网站在线观看| 亚洲av国产av综合av卡| 久久久国产一区二区| 男男h啪啪无遮挡| 中文字幕免费在线视频6| 国产在线视频一区二区| 国产成人精品无人区| 国产精品国产三级国产av玫瑰| 一级毛片我不卡| 极品少妇高潮喷水抽搐| 国产男女超爽视频在线观看| 亚洲欧洲国产日韩| 91久久精品国产一区二区成人| 亚洲精品乱码久久久v下载方式| 女人久久www免费人成看片| 又大又黄又爽视频免费| 精品少妇内射三级| 久久久久久人妻| 色94色欧美一区二区| 亚洲美女视频黄频| 超碰97精品在线观看| 中文字幕人妻丝袜制服| 国产免费视频播放在线视频| 亚洲精品一二三| 极品人妻少妇av视频| 一边摸一边做爽爽视频免费| 肉色欧美久久久久久久蜜桃| 在线观看免费高清a一片| 久热这里只有精品99| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 岛国毛片在线播放| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩卡通动漫| 日韩成人伦理影院| 亚洲内射少妇av| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 美女福利国产在线| 一个人看视频在线观看www免费| 亚洲精品色激情综合| 999精品在线视频| 亚洲精品aⅴ在线观看| 男男h啪啪无遮挡| 亚洲精品一二三| 亚洲精品色激情综合| 久久久久久久大尺度免费视频| 欧美精品人与动牲交sv欧美| 大香蕉97超碰在线| 亚洲经典国产精华液单| 亚洲色图综合在线观看| 亚洲国产精品999| 国产一区亚洲一区在线观看| 狠狠精品人妻久久久久久综合| 中文天堂在线官网| 一本一本综合久久| 精品国产露脸久久av麻豆| 精品少妇久久久久久888优播| 日韩精品免费视频一区二区三区 | √禁漫天堂资源中文www| 亚洲少妇的诱惑av| 久久精品久久久久久噜噜老黄| 欧美xxxx性猛交bbbb| 看十八女毛片水多多多| 欧美日韩视频高清一区二区三区二| 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 91精品国产九色| 男的添女的下面高潮视频| 精品卡一卡二卡四卡免费| 国产毛片在线视频| 久久ye,这里只有精品| 国产精品麻豆人妻色哟哟久久| 五月伊人婷婷丁香| 韩国av在线不卡| 日本黄大片高清| 国产精品久久久久久av不卡| 久久精品国产亚洲av涩爱| 少妇的逼好多水| 乱码一卡2卡4卡精品| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 汤姆久久久久久久影院中文字幕| 51国产日韩欧美| 欧美日韩一区二区视频在线观看视频在线| 精品国产国语对白av| 亚洲在久久综合| 国产视频首页在线观看| av视频免费观看在线观看| 久久久久视频综合| 国产色爽女视频免费观看| 久久久久精品久久久久真实原创| 久热久热在线精品观看| 欧美精品一区二区免费开放| 久久99热6这里只有精品| av网站免费在线观看视频| 亚洲综合精品二区| videosex国产| 国产免费视频播放在线视频| 精品酒店卫生间| 亚洲国产精品一区三区| 日韩成人伦理影院| 欧美性感艳星| 高清视频免费观看一区二区| 国产精品一区二区在线不卡| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 成人午夜精彩视频在线观看| 欧美国产精品一级二级三级| 两个人免费观看高清视频| av又黄又爽大尺度在线免费看| 亚洲精品乱码久久久v下载方式| 亚洲色图 男人天堂 中文字幕 | 成年av动漫网址| 中文欧美无线码| 午夜激情福利司机影院| 亚洲精品视频女| a 毛片基地| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| 亚洲经典国产精华液单| 99久久综合免费| 九草在线视频观看| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 中国国产av一级| 久久这里有精品视频免费| 亚洲av福利一区| 丁香六月天网| 国产精品国产三级国产av玫瑰| 99久久人妻综合| 视频区图区小说| 国产欧美日韩一区二区三区在线 | 久久久国产欧美日韩av| av免费在线看不卡| 国产亚洲精品第一综合不卡 | 一级毛片我不卡| 国产精品一区二区在线观看99| 国产高清有码在线观看视频| 免费大片黄手机在线观看| 视频中文字幕在线观看| 欧美日本中文国产一区发布| 中文字幕av电影在线播放| 99国产精品免费福利视频| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 久久久久久久精品精品| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 精品久久久久久久久av| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| av专区在线播放| 国产精品免费大片| 国产午夜精品一二区理论片| 亚洲国产精品一区三区| 国产探花极品一区二区| 日日摸夜夜添夜夜爱| 黄色配什么色好看| 大片免费播放器 马上看| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 国产在线视频一区二区| 91久久精品国产一区二区成人| 九草在线视频观看| 大片免费播放器 马上看| 亚洲经典国产精华液单| 插阴视频在线观看视频| 日韩成人伦理影院| 国产成人免费观看mmmm| 午夜福利影视在线免费观看| 免费大片18禁| av在线app专区| 国产极品粉嫩免费观看在线 | 中文字幕av电影在线播放| h视频一区二区三区| 久久精品国产自在天天线| 在现免费观看毛片| 不卡视频在线观看欧美| 日韩av免费高清视频| 国产在线一区二区三区精| a 毛片基地| 国产免费现黄频在线看| 免费av中文字幕在线| 精品一区二区三卡| 色吧在线观看| 妹子高潮喷水视频| 久久久亚洲精品成人影院| 一级毛片我不卡| 另类亚洲欧美激情| 亚洲精品色激情综合| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 国精品久久久久久国模美| 日韩视频在线欧美| 久久久久精品久久久久真实原创| 99热6这里只有精品| 日本免费在线观看一区| 日韩成人av中文字幕在线观看| 免费人成在线观看视频色| 亚洲国产av影院在线观看| 丰满饥渴人妻一区二区三| 午夜福利在线观看免费完整高清在| 久久97久久精品| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站| 晚上一个人看的免费电影| 久久免费观看电影| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 国产精品欧美亚洲77777| 另类亚洲欧美激情| 最近中文字幕高清免费大全6| 国产精品.久久久| 99九九在线精品视频| 全区人妻精品视频| 国产黄色视频一区二区在线观看| 久久99蜜桃精品久久| 欧美日韩亚洲高清精品| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 久久久国产一区二区| 少妇的逼水好多| 国产日韩一区二区三区精品不卡 | 少妇人妻 视频| 乱码一卡2卡4卡精品| 欧美精品国产亚洲| 日日摸夜夜添夜夜添av毛片| 91久久精品国产一区二区成人| 欧美日韩综合久久久久久| 在现免费观看毛片| 国产精品国产三级专区第一集| 狂野欧美激情性bbbbbb| 91国产中文字幕| 中文字幕亚洲精品专区| 亚洲一级一片aⅴ在线观看| 黄色欧美视频在线观看| a级毛片免费高清观看在线播放| 亚洲国产精品999| 啦啦啦视频在线资源免费观看| 成人亚洲欧美一区二区av| 我要看黄色一级片免费的| av网站免费在线观看视频| 亚洲欧美一区二区三区国产| 伊人亚洲综合成人网| 久久99热6这里只有精品| av福利片在线| 国产一区有黄有色的免费视频| 高清av免费在线| 亚洲欧美成人精品一区二区| 91精品国产国语对白视频| 中文字幕人妻丝袜制服| 久久人人爽人人片av| 欧美人与性动交α欧美精品济南到 | 亚洲怡红院男人天堂| 亚洲欧美一区二区三区国产| 五月伊人婷婷丁香| 在线亚洲精品国产二区图片欧美 | 国产又色又爽无遮挡免| 免费观看无遮挡的男女| 日本-黄色视频高清免费观看| 九色亚洲精品在线播放| 一区在线观看完整版| 亚洲少妇的诱惑av| 亚洲欧洲日产国产| 久久久久国产网址| 2021少妇久久久久久久久久久| 久久久久久久久久久久大奶| 亚洲国产欧美日韩在线播放| 色吧在线观看| 亚洲精品一二三| 卡戴珊不雅视频在线播放| 欧美xxⅹ黑人| 啦啦啦啦在线视频资源| 美女国产视频在线观看| 赤兔流量卡办理| 亚洲,一卡二卡三卡| 国产有黄有色有爽视频| 97精品久久久久久久久久精品| 欧美人与性动交α欧美精品济南到 | 国产亚洲欧美精品永久| 麻豆成人av视频| 亚洲婷婷狠狠爱综合网| 欧美精品一区二区大全| 国产精品蜜桃在线观看| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 69精品国产乱码久久久| 一个人免费看片子| 18禁在线播放成人免费| 99国产综合亚洲精品| 亚洲人与动物交配视频| 国产国语露脸激情在线看| 日本欧美视频一区| 午夜免费鲁丝| 免费观看av网站的网址| 99热这里只有是精品在线观看| 少妇人妻 视频| 成年女人在线观看亚洲视频| xxxhd国产人妻xxx| 亚洲av日韩在线播放| 久久久精品区二区三区| av免费在线看不卡| 久久亚洲国产成人精品v| 精品少妇内射三级| 91午夜精品亚洲一区二区三区| 三上悠亚av全集在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产av影院在线观看| 午夜免费观看性视频| 日日爽夜夜爽网站| 中文天堂在线官网| 亚洲人成网站在线播| 少妇的逼好多水| 亚洲精品美女久久av网站| 亚洲四区av| 日本av免费视频播放| 老女人水多毛片| 亚洲av电影在线观看一区二区三区| 国产男女超爽视频在线观看| 99热全是精品| 桃花免费在线播放| 午夜福利,免费看| 最近手机中文字幕大全| 一区二区三区精品91| 乱码一卡2卡4卡精品| 久久影院123| 欧美最新免费一区二区三区| 97精品久久久久久久久久精品| 少妇人妻 视频| 赤兔流量卡办理| 美女福利国产在线| 亚洲精品视频女| 伊人久久国产一区二区| 青春草亚洲视频在线观看| 99国产综合亚洲精品| 国产视频内射| 一本—道久久a久久精品蜜桃钙片| 欧美激情 高清一区二区三区| 人妻人人澡人人爽人人| 黄片无遮挡物在线观看| 日本欧美视频一区| 亚洲,一卡二卡三卡| 成人毛片a级毛片在线播放| 国产爽快片一区二区三区| 有码 亚洲区| 伦理电影大哥的女人| 国产 精品1| 午夜福利影视在线免费观看| 精品人妻偷拍中文字幕| 精品亚洲乱码少妇综合久久| 制服人妻中文乱码| 熟女电影av网| 国产一级毛片在线| 国产亚洲欧美精品永久| 看十八女毛片水多多多| 99热全是精品| 国产精品国产三级国产av玫瑰| 久久久久久久久久成人| 在线 av 中文字幕| 国产国语露脸激情在线看| 另类亚洲欧美激情| 日韩免费高清中文字幕av| 如日韩欧美国产精品一区二区三区 | 全区人妻精品视频| 国产一级毛片在线| 一级a做视频免费观看| 免费av不卡在线播放| 青春草国产在线视频| 爱豆传媒免费全集在线观看| 成年人免费黄色播放视频| 国产 精品1| 日本vs欧美在线观看视频| 色5月婷婷丁香| 日韩亚洲欧美综合| 精品国产乱码久久久久久小说| 80岁老熟妇乱子伦牲交| 一本久久精品| 男人操女人黄网站| h视频一区二区三区| 精品国产国语对白av| 街头女战士在线观看网站| 国产日韩欧美在线精品| 少妇猛男粗大的猛烈进出视频| 久久久午夜欧美精品| tube8黄色片| 免费观看无遮挡的男女| 亚洲精品久久久久久婷婷小说| 日本91视频免费播放| 国产黄片视频在线免费观看| 母亲3免费完整高清在线观看 | 一本一本综合久久| 成人国产麻豆网| 日日摸夜夜添夜夜添av毛片| 久久久久网色| 少妇人妻久久综合中文| 午夜福利,免费看| 亚洲国产精品成人久久小说| 亚洲国产av新网站| 亚洲久久久国产精品| 欧美精品亚洲一区二区| 女人精品久久久久毛片| 免费看光身美女| 免费黄色在线免费观看| 国产精品国产三级国产av玫瑰| 黄色一级大片看看| 99热这里只有是精品在线观看| 久久人人爽人人爽人人片va| 免费高清在线观看日韩| 婷婷成人精品国产| 丰满乱子伦码专区| 国产免费福利视频在线观看| 亚洲美女搞黄在线观看| 免费大片18禁| a级毛片在线看网站|