• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers?

    2017-08-30 08:25:38KeqiangHuang黃克強(qiáng)QiujiangGuo郭秋江ChaoSong宋超YaruiZheng鄭亞銳HuiDeng鄧輝YulinWu吳玉林YirongJin金貽榮XiaoboZhu朱曉波andDongningZheng鄭東寧
    Chinese Physics B 2017年9期
    關(guān)鍵詞:東寧玉林

    Keqiang Huang(黃克強(qiáng)),Qiujiang Guo(郭秋江),Chao Song(宋超), Yarui Zheng(鄭亞銳),Hui Deng(鄧輝),Yulin Wu(吳玉林),4, Yirong Jin(金貽榮),Xiaobo Zhu(朱曉波),4,?,and Dongning Zheng(鄭東寧),?

    1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,Chinese Academy of Sciences,Beijing 100190,China

    2 Department of Physics,Zhejiang University,Hangzhou 310027,China

    3 School of Physics,University of Chinese Academy of Sciences,Beijing 100190,China

    4 CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China,Hefei 230026,China

    Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers?

    Keqiang Huang(黃克強(qiáng))1,3,Qiujiang Guo(郭秋江)2,Chao Song(宋超)2, Yarui Zheng(鄭亞銳)1,Hui Deng(鄧輝)1,Yulin Wu(吳玉林)1,4, Yirong Jin(金貽榮)1,Xiaobo Zhu(朱曉波)1,4,?,and Dongning Zheng(鄭東寧)1,3,?

    1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,Chinese Academy of Sciences,Beijing 100190,China

    2 Department of Physics,Zhejiang University,Hangzhou 310027,China

    3 School of Physics,University of Chinese Academy of Sciences,Beijing 100190,China

    4 CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China,Hefei 230026,China

    We have fabricated two types of lumped-element Josephson parameter amplifiers(JPAs)by using a multilayer micro fabrication process involving wet etching of Al films.The first type is a narrow band JPA which shows typical gain above 14 dB in a bandwidth around 35 MHz.The second type is a wideband JPA which is coupled to an input 50 ? transmission line via an impedance transformer that changes the impedance from about 15 ? on the non-linear resonator side to 50 ?on the input transmission line side.The wideband JPA could operate in a 200 MHz range with a gain higher than 14 dB. The amplifiers were used for superconducting qubit readout.The results showed that the signal to noise ratio and hence the readout fidelity were improved significantly.

    Josephson parameter amplifier,multilayer micro-fabrication,qubit state readout

    1.Introduction

    Josephson junction based parametric amplifiers have been studied for decades and are used in a variety of different types of applications,including demonstration of vacuum noise squeezing[1,2]and amplification for extremely sensitive magnetometers.[3]In recent years,the rapid progress of superconducting quantum-bit(qubit)based on Josephson junctions[4–10]has generated renewed interests in Josephson parameter amplifiers(JPA),[9–12]which can provide amplification with near quantum limit noise level and is used as preamplifier for the readout of superconducting qubit quantum states.[13–17]

    The most commonly used readout scheme of superconducting qubits at present is the dispersive readout scheme. It relies on detecting microwave photons coming out from a microwave transmission line.In order to distinguish the quantum state of qubits,a good signal to noise ratio is required.In other words,the added noise of preamplifiers should not degrade the signal to noise ratio substantially.However,for the best available commercial high-electron-mobility transistor(HEMT)amplifier operating at low temperatures, the noise temperature is in the range of 2–5 K,that is larger than the photon energy in the dispersive readout transmission line.Taking this into account,it is highly desirable to introduce amplifiers with lower noise temperature.Josephson parametric amplifiers have been regarded as suitable devices for this purpose.So far,a number of different designs have been suggested and demonstrated in experiments.Apart from high gain,JPAs of larger bandwidth are also needed for multiplex readout.

    In this paper,we report the fabrication and characterization of two types of Josephson parametric amplifiers which operate with different bandwidths.The first one is of a narrow band with a bandwidth about 35 MHz,while the second one is of a wide band with a bandwidth as large as 200 MHz.The amplifiers are used in superconducting qubit readout experiments,the readout fidelity is improved significantly.

    The design of the JPAs we fabricated is similar to the ones reported by Mutus et al.[18]As reported in the literature,the amplifiers are mostly fabricated based on a process using reactive ion etching(RIE)Nb films or inductively coupled plasma (ICP)etching Al films.[18–20]In this work,we fabricate our JPAs using a multilayer micro-fabrication process that is based on wet etch of aluminum films.The wet etching process has the advantage of not requiring the usage of toxic chlorine gas and expensive ICP systems,and is therefore more suitable forsmall scale laboratories.

    2.JPA structure and parameters

    The schematic circuit diagram of our narrow band parameter amplifier is shown in Fig.1(a).The design of the amplifier is based on the approach reported in Ref.[18].The structure of the amplifier is a 50 ? transmission line directly coupled to a non-linear LC resonator that is formed by a lumped capacitance shunted with a SQUID that functions as a current dependent non-linear inductor.An on chip bias line,inductively coupled to the SQUID,provides the microwave pump signal and dc bias field.[3]The inductance of the SQUID is inversely proportional to the SQUID critical current IC.Therefore,we may adjust the resonating frequency by varying the critical current via the dc bias field.The resonating frequency is expressed as f=1/2π((LJ+Ls)C)1/2,[21]where C is the capacitance,Lsis the stray inductance in the circuit,and LJis the Josephson inductance that is related to

    The amplification of Josephson junction based parametric amplifiers is based on the frequency mixing resulted from the nonlinear Josephson inductance.As the energy source,a sufficiently large pump mode is used to modulate the Josephson inductance of the system,in which the nonlinear Josephson junction plays a key role.During this process,the energy of the pump mode is transferred to the small incident signal mode,which results in the parametric amplification of the incident signal.

    The bandwidth of the amplifier is limited by the resonator bandwidth that is inversely proportional to the coupled Q of the resonator to the environment.For a fixed environment impedance Z0(which is typically 50 ? for the transmission line)and resonant frequency ω0,the coupled Q~Z0ω0L.In order to reduce Q,one may either increase L or decrease Z0. In this work,we followed the approach in Ref.[18]and fabricated a wide-band JPA by transforming the environmental impedance Z0with a tapered impedance transformer.This approach leads to increased coupling,lowered Q,and simultaneously increased bandwidth and saturation power.The tapered impedance transformer is realized by shunting a CPW of fixed geometry with a series of parallel plate capacitor cross-overs. As pointed out in Ref.[18],the sections with a cross-over approximate a microstrip transmission line,with much lower local characteristic impedance.By varying the density of the cross-overs,the impedance can be varied smoothly.

    The Josephson parametric amplifiers discussed here can be operated either in a three-wave mixing mode or a four-wave mixing mode.[18]In this work,we chose the three-wave mixing operation mode.In this mode,the signal is fed into the amplifier through the signal-in port while the pump is applied via the bias line along with the dc bias.The amplified output signal is reflected off the amplifier and sent to the next stage amplifier through the signal-out port.In order to separate the signal-in and signal-out ports,a circulator is used.When the frequency and the amplitude of the pump signal are in appropriate ranges,the nonlinear resonator runs in a parametric amplifier regime.[3,11]

    Fig.1.(color online)(a)A schematic diagram of our parameter amplifier.The circle represents the circulator in the measuring circuit.The circulator is used to separate the input signal and output signal.The cylinder represents 50 ? signal input transmission line and on chip flux bias line.The square represents bias T to combine the RF pump and DC bias.(b)The optical micrograph of our Josephson parameter amplifier.The up triangle pad is the signal input pad,the center square is the parallel plate capacitor,and the down turning line is the on chip bias line.

    Fig.2.(color online)(a)An optical micrograph of our wide band Josephson parameter amplifier.The up pad is the signal input pad, and the middle line is the signal transition line.With different density crossovers on the transmission line,the transmission line shows different colors from up to down,the crossover changes the impedance of the transmission line.(b)The Josephson parameter amplifier sampler mounted in a sample box.

    The optical micrograph in Fig.1(b)shows the amplifier made by a multilayer micro-fabrication process.The parallel plate capacitor has an Al/amorphous Si/Al structure,the capacitance C~4 pF.The stray inductance of the SQUID loop is around 20 pH and the unbiased Josephson junction nonlinear inductance is around 70 pH.The resonance frequency is around 8 GHz.

    In Fig.2,we show a photograph of a wide-band JPA device mounted in a sample box.

    3.Sample fabrication process

    We adopted a multilayer micro-fabrication process based on wet etching of Al for amplifier fabrication.In Fig.3,the fabrication process is schematically shown.

    Fig.3.(color online)The schematic diagram of multilayer micro-fabrication process.

    The detailed steps are as follows.In the first step,we clean the high resistance silicon substrates(3000 ?)sequentially in an ultrasonic bath using acetone,alcohol,and deionized water.In each clean,the clean time is about 10 min.In the second step,we deposit 100 nm thick aluminum using an ultra-high vacuum e-beam evaporation system(plasyss 520). In the third step,we use photo lithography(on a Kalsuss MA6 UV aligner)and wet etching to define the capacitor ground electrode,the signal in put and output transmission line,the onchip bias line,the meshed ground plane and position marks. The photo resist used in this step is S1813.For the wet etching process,we use type A solution(http://www.Cemtranse.com). In the fourth step,we grow amorphous silicon as the dielectric layer of the capacitor.The area of the capacitor is again defined by photo lithography and ICP with HBr gas.In the fifth step,we make the top electrode of the capacitor using a lift-off process with LOR5A and S1813 double layer resist mask.

    Finally,we made the SQUID using a double-angle evaporation process.[22]The under-cut mask was made using two layers of resist(zip 520 and PMGI).A test SQUID was also made on the chip to check the junction room temperature resistance to see if the SQUID critical current is appropriated.The junction resistance is linked to the junction critical current by the Ambegaokar–Baratoff relation IC=πΔ/2eRn,where Δ is the superconducting energy gap of the electrode and Rnis the junction normal state resistance.

    4.Sample characterization and properties analysis

    For the characterization of JPAs,a fabricated Josephson parametric amplifier sample was mounted in an aluminum sample box and measured in a cryogen-free dilution refrigerator with a base temperature around 20 mK.The amplifier was operated in the phase preserving mode for the dispersive readout of Xmon qubits which were capacitively coupled to a transmission line through λ/4 coplanar waveguide resonators(CPW).The amplifier was connected to the qubit readout transmission line and the output of the amplifier was further amplified by a HEMT cryogenic amplifier operated at around 3 K,followed by a room temperature microwave amplifier.

    Before the measurement,we have measured the phase component of S21versus the dc flux bias and signal frequency, where a periodic structure is observed due to the change of the SQUID critical current with the external magnetic flux.By varying the dc-flux,we can tune the resonant frequency of the nonlinear resonator into the regime for qubit readout.In Fig.4, we show the modulation curve of the phase component for the wide-band JPA sample we made.The solid green line is the guide line to the modulation curve of the SQUID.

    Fig.4.(color online)The phase component of S21 versus dc flux bias and signal frequency of our wide-band JPA sample.

    Firstly,we present the results of a narrow-band JPA device.During the measurements,we recorded the S21signal of the qubit readout transmission line.In Fig.5(a),we show the data with the Josephson parametric amplifier on and off,respectively,obtained for fixed pump frequency and amplitude and fixed dc bias.It is obvious that the signal is amplified.In Fig.5(b),the difference of the two S21curves is shown,representing the dependence of the gain on the frequency.The range with the gain higher than 14 dB is about 35 MHz.

    In order to further demonstrate the effectiveness of the amplifier for qubit readout,we present the data for different qubit states in Fig.6.In the dispersive readout scheme of the qubit,each qubit is coupled to a readout transmission line via a resonator.By varying the coupling resonator characteristic frequency,it is possible to readout multiple qubits by using one transmission line.

    Fig.5.(color online)(a)The response of S21 of the quantum chip with Josephson parameter amplifier pump on and off.(b)Josephson parameter amplifier gain-bandwidth plot,the bandwidth with gain more than 14 dB is about 35 MHz.

    The readout of the qubit state is based on the JC model that describes a system containing a two-level atom(qubit) coupled to a resonator.At the large detuning where the qubit and cavity frequency detuning Δ=ωq?ωris much larger than the coupling rate g,the system Hamiltonian is Hdisp=The second part of the Hamiltonian shows that the resonator frequency is shifted by±χ depending on the qubit state operator σz.[7]It is therefore clear that the change of the qubit from the|0〉state to the|1〉state would lead to the change of the resonant frequency.In other words,the resonant peak appeared in the S21curve would shift accordingly.In a practical measurement system,the signal is usually demodulated into in-phase(I)and quadrature(Q)components.In Fig.6,we show the data in the I–Q plane.The red and blue dots represent data points taken for qubits prepared at|0〉and|1〉states,respectively.In this case,we repeated the measurement for 3000 times.In Figs.6(a)and 6(b),we show the data taken with the JPA on and off,respectively.Clearly, when the JPA is on,the separation of the two data point clouds representing the quantum states|0〉and|1〉is larger.The large separation allows faster readout and improved measurement fidelity.[17,23]

    Fig.6.(color online)(a),(b)I–Q clouds for the qubit states measured with the JPA pump off and on.The color point represents the single short read out state|0〉(blue)or|1〉(red).The clouds represent the signal scatter by the noise.The bigger black points represent the average centers of the cloud points.The position of the bigger black point represents the position of the state without noise.The dash line connected the center represents the projection axes.The distance of the center represents the relative separation of readout states|0〉and|1〉.(c),(d)The histograms of the readout points with JPA pump off and on,the outlines are Gaussian fits to the histograms and used to estimate the separation fidelity and measurement fidelity.We also estimate the JPA noise temperature by comparing the readout results with JPA off and on.

    Fig.7.(color online)(a),(c)The frequency dependence of gain and noise;(b),(d)the signal power dependence of gain and noise.

    For the wide-band device,we performed similar measurements.In Figs.7(a)and 7(c),we show the frequency dependence of gain and noise.The results show that the frequency range with amplification above 14 dB is obviously increased as compared to the data shown in Fig.5(a).The estimated JPA noise temperature is around the quantum limit level,[18,24,25]as indicated by the solid red line in Fig.7(c).By monitoring the gain as a function of the input signal power,we found that the saturation power of the JPA is around?115 dB. The wide-band JPA has been used in a number of quantum measurements.[26,27]

    5.Conclusion

    We have fabricated and characterized a narrow band and a wide band Josephson parametric amplifier.The devices consist of lumped elements and were made using a multilayer micro-fabrication process that is based on wet etch of aluminum films.The wet etching process has the advantage of not requiring the usage of toxic chlorine gas and expensive ICP systems.We believe that the process is therefore more suitable for small scale laboratories.For the narrow band JPA,the frequency band with gain larger than 14 dB is 35 MHz,while the wide band JPA shows over a 200 MHz range.The noise temperature of the JPAs is near the quantum limit.We used the JPA as pre-amplifier to readout superconducting qubit.The results show that the signal to noise ratio is improved significantly,and hence the measurement fidelity is improved.

    Acknowledgments

    We thank Prof.Haohua Wang for providing the initial designs and for the guidance in measurements.The data were taken at Haohua Wang’s Lab in Zhejiang University.

    [1]Yurke B 1987 J.Opt.Soc.Am.B-Opt.Phys.4 1551

    [2]Yurke B,Corruccini L R,Kaminsky P G,Rupp L W,Smith A D,Silver A H,Simon R W and Whittaker E A 1989 Phys.Rev.A 39 2519

    [3]Hatridge M,Vijay R,Slichter D H,Clarke J and Siddiqi I 2011 Phys. Rev.B 83 134501

    [4]Mooij J E,Orlando T P,Levitov L,Tian L,van der Wal C H and Lloyd S 1999 Science 285 1036

    [5]Lucero E,Barends R,Chen Y,Kelly J,Mariantoni M,Megrant A, O’Malley P,Sank D,Vainsencher A,Wenner J,White T,Yin Y,Cleland A N and Martinis J M 2012 Nat.Phys.8 719

    [6]You J Q,Tsai J S and Nori F 2003 Phys.Rev.B 68 024510

    [7]Koch J,Yu T M,Gambetta J,Houck A A,Schuster D I,Majer J,Blais A,Devoret M H,Girvin S M and Schoelkopf R J 2007 Phys.Rev.A 76 19

    [8]Reed M D,DiCarlo L,Johnson B R,Sun L,Schuster D I,Frunzio L and Schoelkopf R J 2010 Phys.Rev.A 105 173601

    [9]Barends R,Kelly J,Megrant A,Sank D,Jeffrey E,Chen Y,Yin Y, Chiaro B,Mutus J,Neill C,O’Malley P,Roushan P,Wenner J,White T C,Cleland A N and Martinis J M 2013 Phys.Rev.Lett.111 5

    [10]Zhong Y P,Li C Y,Wang H H and Chen Y 2013 Chin.Phys.B 22 110313

    [11]Levenson-Falk E M,Vijay R and Siddiqi I 2011 Appl.Phys.Lett.98 3

    [12]Castellanos-Beltran M A,Irwin K D,Hilton G C,Vale L R and Lehnert K W 2008 Nat.Phys.4 929

    [13]Siddiqi I,Vijay R,Pierre F,Wilson C M,Metcalfe M,Rigetti C,Frunzio L and Devoret M H 2004 Phys.Rev.Lett.93 4

    [14]Reed M D,DiCarlo L,Johnson B R,Sun L,Schuster D I,Frunzio L and Schoelkopf R J 2010 Phys.Rev.Lett.105 4

    [15]Mallet F,Ong F R,Palacios-Laloy A,Nguyen F,Bertet P,Vion D and Esteve D 2009 Nat.Phys.5 791

    [16]Lin Z R,Inomata K,Oliver W D,Koshino K,Nakamura Y,Tsai J S and Yamamoto T 2013 Appl.Phys.Lett.103 4

    [17]Jeffrey E,Sank D,Mutus J Y,White T C,Kelly J,Barends R,Chen Y, Chen Z,Chiaro B,Dunsworth A,Megrant A,O’Malley P J J,Neill C, Roushan P,Vainsencher A,Wenner J,Cleland A N and Martinis J M 2014 Phys.Rev.Lett.112 5

    [18]Mutus J Y,White T C,Jeffrey E,Sank D and Martinis J M 2013 Appl. Phys.Lett.103 122602

    [19]Yamamoto T,Inomata K,Watanabe M,Matsuba K,Miyazaki T,Oliver W D,Nakamura Y and Tsai J S 2008 Appl.Phys.Lett.93 3

    [20]Bergeal N,Schackert F,Metcalfe M,Vijay R,Manucharyan V E,Frunzio L,Prober D E,Schoelkopf R J,Girvin S M and Devoret M H 2010 Nature 465 64

    [21]Barone A and Paterno G 1982 Phaysics and Applications of the Josephson Effect(New York:Wiley)

    [22]Wu Y L,Deng H,Yu H F,Xue G M,Tian Y,Li J,Chen Y F,Zhao Shi P and Zheng D N 2013 Chin.Phys.B 22 060309

    [23]Sank D T 2014 Fast,Accurate State Measurement in Superconducting Qubits(Ph.D.Dissertation)(Santa Barbara:University of California)

    [24]Clerk A A,Devoret M H,Girvin S M,Marquardt F and Schoelkopf R J 2010 Rev.Mod.Phys.82 1155

    [25]Caves C M 1982 Phys.Rev.D 26 1817

    [26]Song C,Xu K,Liu W X,Yang C,Zheng S B,Deng H,Xie Q,Huang K Q,Guo Q J,Zhang L B,Zhang P F,Xu D,Zheng D N,Zhu X B,Wang H,Chen Y A,Lu C Y,Han S Y and Pan J W 2017 arXiv:170310302 [quant-ph]

    [27]Zheng Y,Song C,Chen M C,Xia B X,Liu W X,Guo Q J,Zhang L B, Xu D,Deng H,Huang K Q,Wu Y L,Yan Z G,Zheng D N,Lu L,Pan J W,Wang H,Lu C Y and Zhu X B 2017 Phys.Rev.Lett.118 210504

    15 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/094203

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.91321208,11374344,11404386,11574380,and 11674376),the Ministry of Science and Technology of China(Grant Nos.2014CB921401 and 2016YFA0300601),and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300).

    ?Corresponding author.E-mail:xbzhu16@ustc.edu.cn

    ?Corresponding author.E-mail:dzheng@aphy.iphy.ac.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    東寧玉林
    王玉林作品
    Hardware for multi-superconducting qubit control and readout*
    馬玉林書法作品選(2幅)
    寧波市海曙東寧工具有限公司
    An Analysis of the Difficulties and Learning Methods of English Grammar in Senior High Schools
    Tunable coupling between Xmon qubit and coplanar waveguide resonator?
    邱玉林藝術(shù)作品欣賞
    Unit 6 Travelling around Asia Listening and speaking
    趙玉林藏石欣賞
    寶藏(2017年10期)2018-01-03 01:53:27
    我們的作品
    午夜影院在线不卡| 国产精品不卡视频一区二区| av.在线天堂| 国产1区2区3区精品| xxx大片免费视频| 国产精品国产三级专区第一集| 寂寞人妻少妇视频99o| 伦理电影大哥的女人| av有码第一页| 国产淫语在线视频| 精品一品国产午夜福利视频| tube8黄色片| 国产一区二区三区综合在线观看| 视频区图区小说| 国产日韩欧美亚洲二区| 日韩欧美精品免费久久| 少妇人妻 视频| 男的添女的下面高潮视频| 成人毛片60女人毛片免费| 1024视频免费在线观看| 亚洲激情五月婷婷啪啪| 国产一区二区三区av在线| 视频区图区小说| 十分钟在线观看高清视频www| 一本色道久久久久久精品综合| 欧美中文综合在线视频| av又黄又爽大尺度在线免费看| 王馨瑶露胸无遮挡在线观看| 欧美av亚洲av综合av国产av | 欧美最新免费一区二区三区| 999久久久国产精品视频| 国产精品.久久久| 一区福利在线观看| 少妇的逼水好多| 亚洲欧美成人精品一区二区| 亚洲国产精品999| 国产白丝娇喘喷水9色精品| 欧美xxⅹ黑人| 91国产中文字幕| 久久久久精品久久久久真实原创| 久久久久视频综合| www.熟女人妻精品国产| 国产精品久久久久久av不卡| 国产 精品1| 欧美精品高潮呻吟av久久| 夫妻性生交免费视频一级片| 各种免费的搞黄视频| 婷婷色综合www| 男女午夜视频在线观看| kizo精华| 欧美bdsm另类| 又黄又粗又硬又大视频| 一区福利在线观看| 欧美精品一区二区大全| 成人18禁高潮啪啪吃奶动态图| 免费黄色在线免费观看| 深夜精品福利| 免费播放大片免费观看视频在线观看| 亚洲欧美清纯卡通| 另类亚洲欧美激情| 1024视频免费在线观看| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 成人亚洲精品一区在线观看| 久久久久久伊人网av| 丰满少妇做爰视频| 精品一区二区三卡| av网站免费在线观看视频| 一边亲一边摸免费视频| 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 免费高清在线观看视频在线观看| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| 一区二区av电影网| 亚洲精品国产一区二区精华液| 波多野结衣av一区二区av| 日韩中文字幕视频在线看片| 日本wwww免费看| 亚洲av男天堂| 一本—道久久a久久精品蜜桃钙片| 欧美精品av麻豆av| 国产一区二区 视频在线| 久久人人爽av亚洲精品天堂| 亚洲国产最新在线播放| 日本欧美视频一区| 亚洲欧美一区二区三区黑人 | 韩国高清视频一区二区三区| 岛国毛片在线播放| 少妇人妻久久综合中文| 国产精品嫩草影院av在线观看| 美女午夜性视频免费| 成人毛片a级毛片在线播放| 中国三级夫妇交换| 99久国产av精品国产电影| 精品国产一区二区三区四区第35| 电影成人av| 91久久精品国产一区二区三区| 久久人人爽人人片av| 久久国产精品男人的天堂亚洲| 久久人妻熟女aⅴ| 日韩三级伦理在线观看| 欧美精品亚洲一区二区| 亚洲在久久综合| 99香蕉大伊视频| 啦啦啦视频在线资源免费观看| 久久久久久人人人人人| 99国产综合亚洲精品| 爱豆传媒免费全集在线观看| 少妇 在线观看| 久久亚洲国产成人精品v| 91aial.com中文字幕在线观看| 亚洲,一卡二卡三卡| 99久久人妻综合| 欧美激情高清一区二区三区 | 日韩免费高清中文字幕av| 一级爰片在线观看| 青草久久国产| 啦啦啦视频在线资源免费观看| 精品人妻一区二区三区麻豆| 一级,二级,三级黄色视频| 黑人欧美特级aaaaaa片| 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| xxxhd国产人妻xxx| 国产色婷婷99| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频| 1024香蕉在线观看| 国产麻豆69| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 国产欧美日韩综合在线一区二区| 亚洲一区中文字幕在线| 大香蕉久久网| 十分钟在线观看高清视频www| a级毛片黄视频| 亚洲国产精品999| 亚洲av成人精品一二三区| 日韩免费高清中文字幕av| 午夜福利乱码中文字幕| 久久精品国产自在天天线| 人妻人人澡人人爽人人| 国产毛片在线视频| 最近最新中文字幕免费大全7| 下体分泌物呈黄色| 国产在线视频一区二区| 美女国产视频在线观看| 韩国高清视频一区二区三区| 久久人妻熟女aⅴ| 国产亚洲最大av| 亚洲国产欧美日韩在线播放| 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 香蕉精品网在线| 黑丝袜美女国产一区| 午夜激情久久久久久久| 激情视频va一区二区三区| 欧美激情极品国产一区二区三区| 各种免费的搞黄视频| 国产精品免费大片| 性少妇av在线| 午夜激情久久久久久久| 一边亲一边摸免费视频| av国产久精品久网站免费入址| 一区二区三区激情视频| 国产色婷婷99| 亚洲人成77777在线视频| 69精品国产乱码久久久| 丰满乱子伦码专区| 国产精品久久久久成人av| 三上悠亚av全集在线观看| 午夜福利乱码中文字幕| 大话2 男鬼变身卡| 女人精品久久久久毛片| 亚洲精品久久午夜乱码| 国产深夜福利视频在线观看| 在线观看免费日韩欧美大片| 亚洲一区中文字幕在线| 久久精品人人爽人人爽视色| 成人18禁高潮啪啪吃奶动态图| av线在线观看网站| 久久99蜜桃精品久久| 亚洲国产欧美网| 一区二区日韩欧美中文字幕| 精品一区二区三区四区五区乱码 | 波多野结衣一区麻豆| 精品卡一卡二卡四卡免费| 18禁观看日本| 亚洲国产日韩一区二区| 欧美日韩视频高清一区二区三区二| 免费人妻精品一区二区三区视频| 国产在线视频一区二区| 亚洲精品美女久久av网站| 国产淫语在线视频| 天天躁夜夜躁狠狠躁躁| 亚洲欧美日韩另类电影网站| 免费日韩欧美在线观看| 中国国产av一级| 亚洲欧美成人综合另类久久久| 日日啪夜夜爽| 午夜激情av网站| 日韩中文字幕欧美一区二区 | 2022亚洲国产成人精品| 亚洲精品日韩在线中文字幕| 伊人亚洲综合成人网| 一级黄片播放器| 丰满饥渴人妻一区二区三| 亚洲国产精品国产精品| av在线app专区| 蜜桃在线观看..| 制服丝袜香蕉在线| 中国三级夫妇交换| 精品久久久精品久久久| 国产日韩欧美亚洲二区| 老司机影院毛片| 最新中文字幕久久久久| 啦啦啦在线免费观看视频4| 欧美亚洲日本最大视频资源| 亚洲视频免费观看视频| 亚洲精品日韩在线中文字幕| 久久久精品94久久精品| 麻豆乱淫一区二区| 赤兔流量卡办理| 精品久久久久久电影网| 国产精品蜜桃在线观看| 亚洲av国产av综合av卡| 久久久久网色| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区| 国产亚洲精品第一综合不卡| 69精品国产乱码久久久| 日韩中文字幕欧美一区二区 | 日韩视频在线欧美| 精品一区二区免费观看| 蜜桃国产av成人99| 婷婷色麻豆天堂久久| 一级毛片我不卡| 99国产精品免费福利视频| 久久久久视频综合| 亚洲少妇的诱惑av| 成人国产麻豆网| 在线免费观看不下载黄p国产| 成人亚洲欧美一区二区av| 国产精品女同一区二区软件| 成年女人在线观看亚洲视频| 日韩中文字幕视频在线看片| 极品少妇高潮喷水抽搐| 一区二区av电影网| 欧美 日韩 精品 国产| 边亲边吃奶的免费视频| 2021少妇久久久久久久久久久| 亚洲在久久综合| 色哟哟·www| 十八禁高潮呻吟视频| 久久精品亚洲av国产电影网| 亚洲欧美一区二区三区国产| 欧美激情高清一区二区三区 | 亚洲国产欧美日韩在线播放| 久久99精品国语久久久| 中文字幕精品免费在线观看视频| 国产成人精品在线电影| 国产成人免费无遮挡视频| 日本91视频免费播放| 日本免费在线观看一区| 美女福利国产在线| 欧美变态另类bdsm刘玥| 26uuu在线亚洲综合色| 丝袜脚勾引网站| 夫妻性生交免费视频一级片| 91精品国产国语对白视频| 久久毛片免费看一区二区三区| 国产精品亚洲av一区麻豆 | 高清视频免费观看一区二区| 午夜久久久在线观看| 男女午夜视频在线观看| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| 日韩一本色道免费dvd| 亚洲精品国产av成人精品| 欧美激情极品国产一区二区三区| 丰满迷人的少妇在线观看| 国产免费又黄又爽又色| 最近最新中文字幕免费大全7| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 欧美人与性动交α欧美软件| 香蕉丝袜av| 国产av国产精品国产| h视频一区二区三区| 日本色播在线视频| 妹子高潮喷水视频| 免费高清在线观看视频在线观看| 在线免费观看不下载黄p国产| 国产免费福利视频在线观看| 一本大道久久a久久精品| 大香蕉久久网| 国产成人免费无遮挡视频| 深夜精品福利| 国产精品女同一区二区软件| 久久av网站| 久久久精品94久久精品| 欧美变态另类bdsm刘玥| 少妇人妻 视频| 国产老妇伦熟女老妇高清| 亚洲精品在线美女| 国产免费视频播放在线视频| 久久久久久免费高清国产稀缺| 久久久久久久国产电影| www.自偷自拍.com| 成年动漫av网址| 久久久精品免费免费高清| 久久这里有精品视频免费| 人妻一区二区av| 免费观看在线日韩| 超色免费av| 精品国产一区二区久久| 亚洲国产av影院在线观看| 亚洲欧美成人综合另类久久久| 一二三四中文在线观看免费高清| 午夜精品国产一区二区电影| 狠狠婷婷综合久久久久久88av| 国产亚洲最大av| 欧美在线黄色| 777米奇影视久久| 免费黄频网站在线观看国产| 日韩三级伦理在线观看| 天天影视国产精品| av又黄又爽大尺度在线免费看| 97在线人人人人妻| 中国三级夫妇交换| 亚洲第一av免费看| av又黄又爽大尺度在线免费看| 精品亚洲成a人片在线观看| 精品一区二区三区四区五区乱码 | 一边亲一边摸免费视频| 久久这里有精品视频免费| 国产男人的电影天堂91| 在线观看免费视频网站a站| 精品午夜福利在线看| 少妇精品久久久久久久| 国产男人的电影天堂91| 免费少妇av软件| 亚洲一级一片aⅴ在线观看| 乱人伦中国视频| 国产国语露脸激情在线看| 纯流量卡能插随身wifi吗| 美女主播在线视频| 女的被弄到高潮叫床怎么办| 日韩不卡一区二区三区视频在线| 久久精品国产鲁丝片午夜精品| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 最黄视频免费看| 国产一级毛片在线| 五月伊人婷婷丁香| 18禁观看日本| 搡女人真爽免费视频火全软件| 久久久久久久大尺度免费视频| 观看av在线不卡| 国产精品久久久久久精品古装| 日本av免费视频播放| 国产精品久久久久久精品古装| 如日韩欧美国产精品一区二区三区| 久久久久精品性色| 岛国毛片在线播放| 男人添女人高潮全过程视频| 一级毛片黄色毛片免费观看视频| av国产精品久久久久影院| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 国产精品久久久久久精品古装| 精品人妻熟女毛片av久久网站| 又粗又硬又长又爽又黄的视频| 在线亚洲精品国产二区图片欧美| 看十八女毛片水多多多| 爱豆传媒免费全集在线观看| 在线观看www视频免费| www.av在线官网国产| 99久久中文字幕三级久久日本| 亚洲一区中文字幕在线| 黄色一级大片看看| 国产精品 欧美亚洲| 亚洲美女搞黄在线观看| 亚洲av中文av极速乱| 丰满少妇做爰视频| 亚洲国产精品999| 午夜激情久久久久久久| 九九爱精品视频在线观看| 1024视频免费在线观看| av电影中文网址| 亚洲久久久国产精品| 大片电影免费在线观看免费| 伊人久久大香线蕉亚洲五| 午夜日本视频在线| 亚洲av综合色区一区| 免费观看a级毛片全部| 999久久久国产精品视频| 国产麻豆69| 丁香六月天网| 亚洲综合色网址| 午夜免费观看性视频| 国产亚洲最大av| 午夜福利,免费看| 日本av手机在线免费观看| 国产成人精品福利久久| 午夜老司机福利剧场| 亚洲第一区二区三区不卡| 男人爽女人下面视频在线观看| 纵有疾风起免费观看全集完整版| 欧美精品亚洲一区二区| 欧美精品一区二区免费开放| 纯流量卡能插随身wifi吗| 免费播放大片免费观看视频在线观看| 老女人水多毛片| 成年女人毛片免费观看观看9 | 久久99热这里只频精品6学生| 国产欧美亚洲国产| 欧美日韩国产mv在线观看视频| 免费观看av网站的网址| 一二三四在线观看免费中文在| av在线观看视频网站免费| 妹子高潮喷水视频| 亚洲国产av新网站| 在线观看一区二区三区激情| 国产精品三级大全| 国产精品不卡视频一区二区| 久久精品久久精品一区二区三区| 最近中文字幕2019免费版| 免费日韩欧美在线观看| 男女边摸边吃奶| tube8黄色片| 亚洲一码二码三码区别大吗| 九色亚洲精品在线播放| 永久网站在线| 一级毛片我不卡| 精品国产乱码久久久久久男人| 女性被躁到高潮视频| 天天躁夜夜躁狠狠久久av| 性色av一级| 视频区图区小说| 波多野结衣av一区二区av| 国产激情久久老熟女| 日韩在线高清观看一区二区三区| 免费观看无遮挡的男女| 婷婷色麻豆天堂久久| 国产成人aa在线观看| 国产黄频视频在线观看| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 国产精品.久久久| 又黄又粗又硬又大视频| 18在线观看网站| 久久久久久久大尺度免费视频| 美女国产视频在线观看| 久热这里只有精品99| 在线观看美女被高潮喷水网站| 日韩熟女老妇一区二区性免费视频| 亚洲综合精品二区| 亚洲av中文av极速乱| 香蕉精品网在线| 七月丁香在线播放| 少妇的逼水好多| 91在线精品国自产拍蜜月| 看十八女毛片水多多多| 亚洲一区中文字幕在线| 如日韩欧美国产精品一区二区三区| 国产深夜福利视频在线观看| 国产亚洲欧美精品永久| 亚洲在久久综合| 咕卡用的链子| 一级,二级,三级黄色视频| 久热久热在线精品观看| 一本色道久久久久久精品综合| 少妇的逼水好多| 国精品久久久久久国模美| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品第二区| 美女主播在线视频| 国产xxxxx性猛交| 黑人欧美特级aaaaaa片| 国产精品av久久久久免费| 最近手机中文字幕大全| 国产成人精品久久二区二区91 | 男人舔女人的私密视频| 亚洲av福利一区| 1024香蕉在线观看| 久久午夜福利片| 精品福利永久在线观看| 18禁动态无遮挡网站| 国产一区亚洲一区在线观看| 熟女av电影| 国产免费一区二区三区四区乱码| 日韩av不卡免费在线播放| 如何舔出高潮| 中文字幕色久视频| 人妻一区二区av| 午夜老司机福利剧场| 亚洲激情五月婷婷啪啪| 九九爱精品视频在线观看| 2018国产大陆天天弄谢| 看免费成人av毛片| 免费日韩欧美在线观看| 日本色播在线视频| 国产又爽黄色视频| 日本爱情动作片www.在线观看| 国产有黄有色有爽视频| 韩国高清视频一区二区三区| 女人精品久久久久毛片| 黄片小视频在线播放| 欧美日韩国产mv在线观看视频| 日韩一本色道免费dvd| 狠狠精品人妻久久久久久综合| 午夜激情久久久久久久| 在线天堂中文资源库| 久久久久网色| 中文字幕人妻熟女乱码| 久久精品熟女亚洲av麻豆精品| 午夜免费鲁丝| 最近最新中文字幕大全免费视频 | 一级黄片播放器| 亚洲国产av影院在线观看| 午夜福利一区二区在线看| 国产成人a∨麻豆精品| 国产精品 国内视频| 狠狠精品人妻久久久久久综合| 日韩av免费高清视频| 成年人免费黄色播放视频| 亚洲精品日本国产第一区| 国产一区二区三区av在线| 在线观看一区二区三区激情| 日本爱情动作片www.在线观看| 国产成人精品久久久久久| 成人二区视频| 777米奇影视久久| 日韩,欧美,国产一区二区三区| av不卡在线播放| 波多野结衣一区麻豆| 日韩视频在线欧美| 啦啦啦视频在线资源免费观看| 交换朋友夫妻互换小说| 中文字幕亚洲精品专区| 国产亚洲午夜精品一区二区久久| 大香蕉久久网| 一二三四在线观看免费中文在| 日韩制服骚丝袜av| 久久亚洲国产成人精品v| 春色校园在线视频观看| 亚洲熟女精品中文字幕| 男女无遮挡免费网站观看| 黑人欧美特级aaaaaa片| 国产一区二区激情短视频 | 欧美精品人与动牲交sv欧美| 日本猛色少妇xxxxx猛交久久| 久久狼人影院| 中文字幕最新亚洲高清| 少妇的逼水好多| 欧美另类一区| 亚洲,欧美,日韩| 观看美女的网站| 尾随美女入室| 最近中文字幕高清免费大全6| 成年人免费黄色播放视频| 久久国内精品自在自线图片| 国产成人精品久久久久久| 老司机亚洲免费影院| 日本-黄色视频高清免费观看| 国产精品嫩草影院av在线观看| a级毛片在线看网站| 亚洲欧美中文字幕日韩二区| 亚洲色图 男人天堂 中文字幕| videos熟女内射| 欧美精品国产亚洲| 久久亚洲国产成人精品v| 午夜福利视频精品| 国产av码专区亚洲av| 欧美国产精品va在线观看不卡| 成人毛片a级毛片在线播放| 激情视频va一区二区三区| 国产成人91sexporn| 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 丁香六月天网| 激情五月婷婷亚洲| 亚洲第一青青草原| 久久 成人 亚洲| 成人亚洲精品一区在线观看| av女优亚洲男人天堂| 免费观看a级毛片全部| 黑人巨大精品欧美一区二区蜜桃| 亚洲av.av天堂| h视频一区二区三区| 欧美日韩视频高清一区二区三区二| 看十八女毛片水多多多| 在线 av 中文字幕| 男人操女人黄网站| 极品少妇高潮喷水抽搐| 欧美日韩亚洲国产一区二区在线观看 | 在现免费观看毛片| 只有这里有精品99| 国产精品久久久久久久久免| av免费在线看不卡| 免费少妇av软件| 看免费av毛片| 国产有黄有色有爽视频| 97人妻天天添夜夜摸| 哪个播放器可以免费观看大片| 日日啪夜夜爽| 制服人妻中文乱码| 国产精品.久久久| 热99国产精品久久久久久7| 国产精品偷伦视频观看了|