• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mass Transfer of Copper(II) in Hollow Fiber Renewal Liquid Membrane with Different Carriers*

    2012-10-31 03:34:52ZHANGWeidong張衛(wèi)東CUIChunhua崔春花andYANGYanqiang楊彥強
    關鍵詞:春花

    ZHANG Weidong (張衛(wèi)東)**, CUI Chunhua (崔春花) and YANG Yanqiang (楊彥強)

    State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    Mass Transfer of Copper(II) in Hollow Fiber Renewal Liquid Membrane with Different Carriers*

    ZHANG Weidong (張衛(wèi)東)**, CUI Chunhua (崔春花) and YANG Yanqiang (楊彥強)

    State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    The extraction ability of organophosphorus extractant D2EHPA (di-2-ethylhexyl phosphoric acid) and hydroximic extractant Lix984N are investigated by the extraction equilibrium experiments. Effects of carrier concentration and organic/aqueous volume ratio on the mass transfer of hollow fiber renewal liquid membrane (HFRLM)are studied. Results show that, in the extracting process, kerosene and n-heptane are more suitable than methyl-isobutyl ketone, butylacetate and benzene as the diluents of D2EHPA or Lix984N. The favorable feed pH is 4.4 for D2EHPA and 2.6 for Lix984N. The mass transfer flux of HFRLM increases with carrier concentration and finally reaches a plateau. The mass transfer flux and the overall transfer coefficient increase with the organic/aqueous volume ratio,reach the maximum and then decrease.

    mass transfer, copper(II), di-2-ethylhexyl phosphoric acid (D2EHPA), Lix984N, carrier

    1 INTRODUCTION

    Heavy metals exist in many effluents discharged from hydrometallurgical and chemical processes [1]. It is necessary to remove and recover these toxic metals for health/economic/environmental reasons [2]. Many methods, such as reverse osmosis [3], ion exchange,and adsorption, have been reported for dilute wastewater treatment. However, some problems, such as low or no selectivity, high investment or operation costs, and membrane fouling, remain unsolved.

    Liquid membranes (LMs), proposed in the 1960s[4], is an efficient and cost-effective method for heavy metal removal and recovery, characterized by simultaneous extraction and stripping processes in the same stage (inner-coupling), non-equilibrium mass transfer,“up-hill” effect and high selectivity. However, for a long time, the instability of supported liquid membrane is still a problem. Hollow fiber flowing liquid membrane [5] and hollow fiber contained liquid membrane [6], proposed at the end of 1980s, overcome the loss and leakage problems in conventional LMs, and avoid the emulsification and de-emulsification steps of emulsion liquid membrane, but the mass transfer resistance increases, due to thicker layers of solvent phase and membrane phase.

    Zhang et al. [7, 8] proposed a new liquid membrane technique, hollow fiber renewal liquid membrane (HFRLM), which significantly improves the performance of liquid membrane system. In order to industrialize the HFRLM technology, a detailed study with different carriers is carried out in this study.

    It has been proved that organophosphorus extractant D2EHPA (di-2-ethylhexyl phosphoric acid)and hydroximic extractant Lix984N are effective extractant for copper(II). Their different functional groups for complexation with copper(II) result in different extraction mechanisms. They are chosen for study in this work. In the extraction equilibrium experiments,D2EHPA/kerosene and Lix984N/kerosene are used as extractants in simulated wastewater with Cu(II), and H2SO4is used as stripping phase. In the HFRLM experiments, the effects of carrier concentration and organic/aqueous volume ratio on the mass transfer are investigated.

    2 EXPERIMENTAL

    2.1 Reagents and apparatus

    Di-2-ethylhexyl phosphoric acid (D2EHPA), from Tianjin Guangfu Chemical Co. Ltd., was of chemical reagent quality with a purity >98.5%. Lix984N, from Cognis Co., was a mixture of Lix860N and Lix84 with 1︰1 (volume ratio). Commercial kerosene, from Tianjin Damao Chemical Reagent Plant, was washed twice with 20% (by volume.) H2SO4to remove aromatics and then with deionized water three times.Copper sulfate anhydrous, from Shanghai Tingxin Chemical Reagent Plant, was an analytical grade reagent with a purity >99.0%. All other chemicals were of analytical grade and without further purification.

    The feed phase, used for D2EHPA, was prepared by dissolving a weighed amount of CuSO4in acetate buffer media, in which the pH value was adjusted as suggested by Komasawa and Otake [9]. The feed phase, used for Lix984N, was prepared by dissolving a weighed amount of CuSO4in deionized water and the pH value was adjusted with H2SO4without buffer.

    The hollow fiber module was self-manufactured with small laboratory scale versions specifically designed for the experimental purpose. The polyvinylidenefluoride (PVDF) hollow fibers were from Tianjin Polytechnic University. Additional information about this module is provided in Table 1.

    2.2 Experimental procedures

    In the experiments of HFRLM, D2EHPA/kerosene and Lix984N/kerosene are used as liquid membrane phase. The hydrophobic fibers are pre-wetted with organic phase more than 10 h for the pores of fibers to be fully filled with organic phase. The stirred mixture of the stripping phase and organic phase is pumped through the lumen side of the module and the feed phase through the shell side in counter-current. The pressures on both sides are controlled by the flow velocity to make a lightly positive pressure on the shell side, in order to prevent the membrane liquid leakage from membrane pores, so that a stable interface is obtained. The experimental process flow diagram is available in our previous work [8].

    2.3 Analysis

    Once a stable state achieved, aqueous samples are taken from the outlet of lumen and shell sides at preset time intervals. The copper(II) concentration of aqueous phase is analyzed with sodium diethyldithiocabamate spectrophotometric method (GB 7474-87,China). A digital precision ionometer (model PXS-450)with a combined glass electrode is used for pH measurements (±0.01 pH).

    The mass transfer coefficient is calculated by the following equation:

    where

    K is the overall mass transfer coefficient, m·s?1; Qfis the flux of feed phase,andare copper(II) concentrations at the inlet and outlet of feed phase and stripping phase, g·m?3, respectively; D and D′ are the distribution coefficient of extraction and back-extraction, respectively.

    The mass transfer flux based on the feed phase can be calculated by

    where J is the mass transfer flux based on the feed phase, g·m?2·h?1.

    3 RESULTS AND DISCUSSION

    3.1 Distribution equilibrium

    In order to better understand the mass transfer mechanism in HFRLM, and therefore to determine the optimal operating condition, liquid-liquid extraction equilibrium experiments are conducted, especially for different diluents and feed pH values.

    The extractive performances of the D2EHPA system and the Lix984N system are tested using various diluents at the initial feed Cu(II) concentration 70 mg·L?1, with the feed pH value 3.52 for D2EHPA and 1.00 for Lix984N as extractants. The diluents used in these experiments include kerosene, n-heptane, methyl-isobutyl ketone (MIBK), butylacetate and benzene. The results are listed in Table 2. The distribution coefficient is higher when kerosene and n-heptane are used as diluents, while MIBK, butylacetate and benzene give poor performance as diluents, especially for Lix984N.

    Table 1 Configuration parameters of hollow fiber membrane and membrane contactor

    Table 2 Effect of diluents on the distribution coefficient at [D2EHPA] 10% (by volume),[Lix984N] 10% (by volume), and T 293.2 K

    It is reported that diluents affects the extraction behavior of the extractant significantly, although they have no extraction ability to metal ions [10]. The solvation effect between diluent and extractant varies with the nature of diluent. The polarity of diluent influences its solvation effect. The stronger the polarity, the stronger the diluent solvation effect, which suggests that the effective concentration of extractant may be reduced and the distribution coefficient decreases. In the following experiments kerosene is used as diluent.

    The feed pH is a key variable as most of researchers have mentioned [11, 12]. The extraction equilibrium experiments with 10%(by volume) extractant concentration (D2EHPA or Lix984N) dissolved in kerosene are conducted at the initial feed Cu(II) concentration of 70 mg·L?1. The result is shown in Table 3.

    Table 3 Effect of feed pH on distribution coefficient at[D2EHPA]=10%, [Lix984N]10%, Cf0=70 mg·L?1,and T=293.2 K

    With D2EHPA/kerosene as extractant, the distribution coefficient increases with the initial feed pH from 3.00 to 4.44, achieves a maximum value at pH of 4.44, and then decreases. The result of D2EHPA agrees well with our previous studies conducted at a higher feed concentration [13].

    With Lix984N/kerosene as extractant, the distribution coefficient increases with the initial feed pH,and reaches a plateau at pH of 2.00. Lix984N, as a chelating extractant with acidic groups OH, reacts with copper(II), forms Cu-Lix984N chelates and releases H+. However, besides the acidic groups, some neutral radicals also participate the chelating reaction,forming a stable chelate structure. As a result, the reaction equilibrium is independence of pH value, although the acidity affects the extraction reaction.Therefore, when using Lix984N as extractant, high extraction capacity can be maintained in a wide pH range of 2.0-4.7.

    In the following experiments, the initial feed pH value of 4.4 for D2EHPA and 2.6 for Lix984N are used.

    3.2 Effect of carrier concentration on HFRLM mass transfer

    Prior to the experiments, hollow fibers within the module are wetted with the organic phase at different carrier concentrations for no less than 10 h, for the pores of the fibers to be fully filled with organic phase.The experiments with varying carrier concentrations(Lix984N or D2EHPA) in kerosene are carried out in single-pass mode. The stirred mixture of liquid membrane phase and the stripping phase [2.0 mol·L?1H2SO4, 1︰20 (volume ratio)] flows through the lumen side at the velocity (ut) of 3.0×10?3m·s?1. The feed phase flows through the shell side of the module at the velocity (us) of 0.7×10?3m·s?1. The result is shown in Fig. 1. The experiments are also conducted at different initial feed concentrations, using Lix984N as carrier, and the result is shown in Fig. 2.

    Figure 1 Effect of carrier concentration on mass transfer flux at Cf0 70 mg·L?1, pH[D2EHPA]=4.44, pH[Lix984N] 2.60,Vo/Vw 0.1, ut 3.0×10?3 m·s?1, us=0.7×10?3 m·s?1, and T 293.2 K■ D2EHPA; ▼ Lix984N

    Figure 2 Effect of carrier (Lix984N) concentration on mass transfer flux with different initial feed concentrations at pH 2.60, Vo/Vw 0.1, ut=3.0×10?3 m·s?1, us 0.7×10?3 m·s?1, and T 293.2 K

    As shown in Fig. 1, there is almost no mass transfer at the carrier concentration of zero. This is due to the fact that the kerosene can not complex with copper(II), which means that there is no facilitated transport. The mass transfer flux increases with carrier concentration and reaches a plateau at 10% (by volume)carrier concentration, either for D2EHPA or Lix984N,because the mass transfer flux of the HFRLM process depends on the facilitated transport capacity of the carrier in the organic phase. With the increase of carrier concentration, the driving force for mass transfer(distribution coefficient) increases, which will enhance the rate of complex reaction between the organic phase and copper(II) in the feed phase. Therefore, the mass transfer flux is higher with higher carrier concentration. However, when the carrier concentration is too high, the viscosity of the membrane phase increases and the transfer flux is controlled by the diffusion rate of the carrier-metal complex [14].

    As shown in Fig. 2, the flux reaches the plateau at 10% (by volume) carrier concentration for 30 mg·L?1and 30% (by volume) carrier concentration for 160 mg·L?1. Also, the transfer flux is lower with lower initial feed concentration. This can be attributed to the mass transfer process being controlled by the diffusion of mental in feed side [15].

    3.3 Effect of organic/aqueous ratio on HFRLM mass transfer

    The organic/aqueous (o/w) volume ratio in the lumen side has great influence on the mass transfer of the hollow fiber renewal liquid membrane process by affecting the flowing liquid membrane and the renewal rate. The experiments are carried out in the Copper(II)-Lix984N system and D2EHPA-2.0 mol·L?1H2SO4system with varying o/w volume ratios in the range of 0-0.15. The result is shown in Fig. 3. Both mass transfer flux and the overall mass transfer coefficient increase with the o/w volume ratio, and reach the maximum at o/w volume ratio of 0.05-0.10, and then decease.

    Figure 3 Effect of o/w volume ratio on mass transfer at Cf0 70 mg·L?1, pH[Lix984N]=2.60, pH[D2EHPA]=4.44, [D2EHPA]10%, [Lix984N]=10%, ut=2.9×10?3 m·s?1, us 0.6×10?3 m·s?1, and T=293.2 K■ JLix984N; ▲ JD2EHPA; □ KLix984N; △ KD2EHPA

    With the o/w volume ratio of 0, the mass transfer process becomes a hollow fiber supported liquid membrane (HFSLM) process. The mass transfer flux and the overall mass transfer coefficient are smaller compared with HFRLM process. There is no organic droplet on the surface of the lumen side, which means no renewal of liquid membrane. Since the operation conditions are similar, the resistances of LM phase and shell side will keep same, and the difference of overall mass transfer coefficient between HFSLM and HFRLM is contributed to lumen side. It indicates that with the renewal effect of HFRLM, the small droplet of organic phase will contact with the lumen stripping bulk, and therefore enlarge the phase contact area. On the other hand, the random collision of droplets provides the surface renewal and increases the mass transfer rate. The result also proves that HFRLM has better mass transfer behavior compared to HFSLM,which makes it a potential technology of LMs.

    With higher renewal rate resulted from increasing the o/w volume ratio, the individual resistance will be reduced further, so that both mass transfer flux and the overall mass transfer coefficient increase. However,when the o/w volume ratio is too large, the thickness of the flowing liquid membrane in the lumen side of the fibers will get thicker, which increases the mass transfer resistance in liquid membrane phase. Also,higher o/w volume ratio means more organic carrier being consumed. Thus, there is a favorable o/w volume ratio in the range of 0.05-0.10.

    ACKNOWLEDGEMENT

    We are grateful to Prof. Xiaolong Lü of Tianjin Polytechnic University for supplying us with PVDF hollow fibers.

    1 Wassink, B.D., Howard, J., “Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride and thiocyanate forms”, Hydrometallurgy, 57, 235-252 (2000).

    2 Kurniawan, T.A., Chan, G.Y.S., Lo, W.H., Babel, S., “Physico-chemical treatment techniques for wastewater laden with heavy metals”, Chem. Eng. J., 118, 83-98 (2006).

    3 Liu, F.N., Zhang, G.L., Meng, Q., Zhang, H.Z., “Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment”, Chin. J. Chem. Eng., 16 (3), 441-445 (2008).

    4 Li, N.N., “Separating hydrocarbons with liquid membranes”, U.S.Pat., 3410794 (1968).

    5 Teramoto, M., Matsuyama, H., Yamashiro, T., “Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier”, J. Membr. Sci., 46, 115-136 (1989b).

    6 Sengupta, A., Basu, R., Sirkar, K.K., “Separation of solutes from aqueous solution by contained liquid membrane”, AIChE J., 34,1698-1798 (1988).

    7 Zhang, W.D., Li, A.M., Li, X.M., Ren, Z.Q., “Principle of liquid membrane and hollow fiber renewal liquid membrane”, Modern Chemical Industry, 25, 66-68 (2005). (in Chinese)

    8 Ren, Z.Q., Zhang, W.D., Liu, Y.M., Dai, Y., Cui, C.H., “New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater”, Chem. Eng. Sci., 62, 6090-6101 (2007).

    9 Komasawa, I., Otake, T., “Kinetic studies of the extraction of divalent metals from nitrate media with bis(2-ethylhexyl)phosphoric acid”, Ind. Eng. Chem. Fundam., 22, 367-371 (1983).

    10 Mohapatra, D., Kim, H.I., Nam, C.W., Park, K.H., “Liquid-liquid extraction of aluminium(III) from mixed sulphate solutions using sodium salts of Cyanex 272 and D2EHPA”, Sep. Purif. Technol., 56,311-318 (2007).

    11 Zhu, Z.Z., Hao, Z.L, Shen, Z.S., Chen, J., “Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors”, J. Membr. Sci., 250, 269-276 (2005).

    12 Gherrou, A., Kerdjoudj, H., Molinari, R., Drioli, E., “Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier”, Sep. Purif.Technol., 28, 235-244 (2002).

    13 Ren, Z.Q., Zhang, W.D., Meng, H.L., Liu, Y.M., Dai, Y., “Extraction equilibria of copper(II) with D2EHPA in kerosene from aqueous solutions in acetate buffer media”, J. Chem. Eng. Data, 52, 438-441(2007).

    14 Shukla, J.P., Sonawane, J.V., Kumar, A., Singh, R.K., “Amine facilitated up-hill transport of plutonium(IV) cation across an immobilized liquid membrane”, Indian J. Chem. Technol., 3, 145-148(1996).

    15 Alguacil, F.J., Alonso, M., “Description of transport mechanism during the elimination of copper(II) from wastewaters using supported liquid membranes and Acorga M5640 as carrier”, Environ.Sci. Technol., 39, 2389-2393 (2005).

    2009-05-18, accepted 2009-10-16.

    * Supported by the Program for New Century Excellent Talents in University (NCET-05-0122) and the National Natural Science Foundation of China (20576008, 20706003).

    ** To whom correspondence should be addressed. E-mail: zhangwd@mail.buct.edu.cn

    猜你喜歡
    春花
    春花
    幼兒100(2024年9期)2024-03-27 05:45:22
    春花依然盛開
    北極光(2020年1期)2020-07-24 09:03:54
    最美夕陽紅
    金秋(2020年2期)2020-06-03 12:50:50
    INFINITELY MANY SOLITARY WAVES DUE TO THE SECOND-HARMONIC GENERATION IN QUADRATIC MEDIA?
    春花之戀
    青年歌聲(2019年2期)2019-12-09 12:59:29
    又見春花遍地開
    心聲歌刊(2018年4期)2018-09-26 06:54:08
    讓汽車開到終點不停車
    北方人(2016年4期)2016-05-14 02:36:44
    美麗春花
    99精品欧美一区二区三区四区| 国产亚洲一区二区精品| 精品久久久精品久久久| 久久久久久久精品精品| 黑人巨大精品欧美一区二区mp4| 中文字幕制服av| 欧美激情 高清一区二区三区| 欧美精品一区二区大全| 热99re8久久精品国产| 免费久久久久久久精品成人欧美视频| 欧美日韩国产mv在线观看视频| 另类精品久久| 久久中文看片网| a级毛片在线看网站| 成年女人毛片免费观看观看9 | 国产一区二区激情短视频 | 女人被躁到高潮嗷嗷叫费观| 久久久水蜜桃国产精品网| 久久久久国内视频| 久久热在线av| 欧美成人午夜精品| 亚洲成av片中文字幕在线观看| 亚洲精品自拍成人| 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 18禁观看日本| 黑丝袜美女国产一区| 午夜老司机福利片| 亚洲av片天天在线观看| 99国产极品粉嫩在线观看| 岛国毛片在线播放| 国产熟女午夜一区二区三区| 亚洲欧美日韩高清在线视频 | 精品乱码久久久久久99久播| 国产精品成人在线| 国产日韩一区二区三区精品不卡| 国产无遮挡羞羞视频在线观看| 亚洲视频免费观看视频| tocl精华| 91精品国产国语对白视频| 欧美 日韩 精品 国产| 美女高潮喷水抽搐中文字幕| 欧美人与性动交α欧美精品济南到| 91老司机精品| 亚洲精品国产av蜜桃| 日本黄色日本黄色录像| 热99re8久久精品国产| 国产免费视频播放在线视频| av在线app专区| 久久精品人人爽人人爽视色| 亚洲伊人久久精品综合| 色婷婷久久久亚洲欧美| 亚洲视频免费观看视频| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频 | 国产欧美日韩精品亚洲av| 大香蕉久久成人网| 啦啦啦在线免费观看视频4| 丝袜在线中文字幕| 亚洲av电影在线进入| 人人妻人人澡人人看| 窝窝影院91人妻| 另类精品久久| 亚洲人成77777在线视频| 三级毛片av免费| av在线播放精品| 在线亚洲精品国产二区图片欧美| 亚洲性夜色夜夜综合| 日本撒尿小便嘘嘘汇集6| 大片免费播放器 马上看| 久久人人97超碰香蕉20202| 日韩熟女老妇一区二区性免费视频| 操出白浆在线播放| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 男女之事视频高清在线观看| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说| 精品亚洲乱码少妇综合久久| kizo精华| 国产亚洲精品久久久久5区| 欧美日韩成人在线一区二区| bbb黄色大片| 一本—道久久a久久精品蜜桃钙片| 男女高潮啪啪啪动态图| 女人爽到高潮嗷嗷叫在线视频| 激情视频va一区二区三区| 999久久久精品免费观看国产| 一区二区av电影网| 大码成人一级视频| 久久午夜综合久久蜜桃| 91九色精品人成在线观看| 亚洲专区国产一区二区| 丰满饥渴人妻一区二区三| 精品人妻1区二区| kizo精华| av超薄肉色丝袜交足视频| 中文字幕人妻熟女乱码| 精品一区二区三区四区五区乱码| 国产精品久久久久久精品古装| 午夜视频精品福利| 亚洲伊人色综图| 丁香六月天网| 美女午夜性视频免费| av视频免费观看在线观看| 欧美激情 高清一区二区三区| 亚洲精品美女久久av网站| 最近最新中文字幕大全免费视频| 最新的欧美精品一区二区| 麻豆国产av国片精品| 午夜成年电影在线免费观看| 亚洲成人免费电影在线观看| videosex国产| 一级片'在线观看视频| 亚洲专区国产一区二区| 在线精品无人区一区二区三| 国产97色在线日韩免费| 韩国高清视频一区二区三区| 久久久水蜜桃国产精品网| 国产一区二区在线观看av| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 亚洲激情五月婷婷啪啪| 男男h啪啪无遮挡| 丝袜喷水一区| 香蕉国产在线看| 啦啦啦在线免费观看视频4| 十八禁高潮呻吟视频| 亚洲欧美精品自产自拍| 看免费av毛片| 国产在线观看jvid| 两性夫妻黄色片| 午夜成年电影在线免费观看| 9热在线视频观看99| 精品人妻在线不人妻| 久久性视频一级片| 精品卡一卡二卡四卡免费| av免费在线观看网站| 久久精品aⅴ一区二区三区四区| 国产有黄有色有爽视频| 亚洲av男天堂| 黄网站色视频无遮挡免费观看| 一二三四社区在线视频社区8| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区久久| 欧美变态另类bdsm刘玥| 精品国产乱码久久久久久小说| 一本久久精品| 午夜福利,免费看| 亚洲欧美成人综合另类久久久| 一本久久精品| 欧美黄色片欧美黄色片| 亚洲免费av在线视频| 美女国产高潮福利片在线看| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区四区五区乱码| 97精品久久久久久久久久精品| 久久久久精品人妻al黑| 各种免费的搞黄视频| 一级黄色大片毛片| 99精国产麻豆久久婷婷| 久久人人爽av亚洲精品天堂| 久久久国产欧美日韩av| 欧美日韩视频精品一区| www日本在线高清视频| 人妻 亚洲 视频| 波多野结衣一区麻豆| 午夜日韩欧美国产| 国产欧美日韩一区二区三 | 久久午夜综合久久蜜桃| 狠狠精品人妻久久久久久综合| 肉色欧美久久久久久久蜜桃| 午夜免费鲁丝| tube8黄色片| 视频在线观看一区二区三区| 热re99久久国产66热| 久久国产精品男人的天堂亚洲| 国产黄色免费在线视频| 天天躁日日躁夜夜躁夜夜| av视频免费观看在线观看| av福利片在线| 久久国产精品影院| 最近中文字幕2019免费版| 久久久国产一区二区| 丰满饥渴人妻一区二区三| 亚洲性夜色夜夜综合| 一级毛片电影观看| 午夜福利视频在线观看免费| 欧美成狂野欧美在线观看| 一区二区三区乱码不卡18| 精品人妻在线不人妻| 日韩有码中文字幕| 狂野欧美激情性bbbbbb| 久久久国产精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一二三区在线看| av有码第一页| 国产高清videossex| 久久久久久人人人人人| 久久99一区二区三区| 人人澡人人妻人| 97在线人人人人妻| 制服诱惑二区| 热99国产精品久久久久久7| 在线永久观看黄色视频| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美视频二区| 亚洲精品中文字幕一二三四区 | 国产亚洲一区二区精品| 国产成人精品无人区| 淫妇啪啪啪对白视频 | 国产国语露脸激情在线看| 欧美精品啪啪一区二区三区 | www.熟女人妻精品国产| 国产日韩欧美亚洲二区| 国产欧美日韩一区二区精品| 国产精品一区二区精品视频观看| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产一区二区精华液| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影观看| 9热在线视频观看99| 亚洲中文av在线| 国产亚洲午夜精品一区二区久久| 日本五十路高清| 丝袜人妻中文字幕| a级毛片黄视频| av有码第一页| 久久人人爽av亚洲精品天堂| 80岁老熟妇乱子伦牲交| 久久这里只有精品19| 久久国产精品影院| 大型av网站在线播放| 看免费av毛片| 国产伦理片在线播放av一区| av网站在线播放免费| 久久久久久久国产电影| a在线观看视频网站| 丰满少妇做爰视频| 美女高潮到喷水免费观看| 欧美国产精品一级二级三级| 国产日韩欧美在线精品| 少妇人妻久久综合中文| 飞空精品影院首页| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 少妇被粗大的猛进出69影院| 欧美黄色淫秽网站| 好男人电影高清在线观看| 一级片免费观看大全| 黑人操中国人逼视频| 欧美黑人欧美精品刺激| 欧美国产精品一级二级三级| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码| 久久久久久久大尺度免费视频| 交换朋友夫妻互换小说| 亚洲自偷自拍图片 自拍| 欧美黑人欧美精品刺激| 成人影院久久| 久久久精品免费免费高清| 极品人妻少妇av视频| 亚洲精品在线美女| a在线观看视频网站| 亚洲va日本ⅴa欧美va伊人久久 | av在线播放精品| 国产精品久久久人人做人人爽| 免费不卡黄色视频| 亚洲精品国产av蜜桃| 国产黄色免费在线视频| av不卡在线播放| 亚洲中文av在线| 91大片在线观看| 国产又爽黄色视频| 各种免费的搞黄视频| 999久久久国产精品视频| 国产黄色免费在线视频| www日本在线高清视频| 成人亚洲精品一区在线观看| 一区二区三区四区激情视频| 人人妻,人人澡人人爽秒播| 性色av乱码一区二区三区2| 国产av国产精品国产| 他把我摸到了高潮在线观看 | 国产精品久久久久久精品电影小说| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 日韩熟女老妇一区二区性免费视频| 欧美久久黑人一区二区| 久久亚洲国产成人精品v| av网站在线播放免费| 男女午夜视频在线观看| 亚洲国产av新网站| 韩国精品一区二区三区| 国产成人av教育| 久久久精品区二区三区| 18在线观看网站| av不卡在线播放| 国产一区二区三区在线臀色熟女 | 国内毛片毛片毛片毛片毛片| 精品国产国语对白av| 国产精品二区激情视频| 国产日韩一区二区三区精品不卡| 18禁国产床啪视频网站| 中国国产av一级| 精品一品国产午夜福利视频| 91麻豆av在线| 国产成人系列免费观看| 两人在一起打扑克的视频| 久久久久久久国产电影| 女警被强在线播放| 亚洲专区中文字幕在线| 国产国语露脸激情在线看| 国产精品久久久久久精品古装| 又大又爽又粗| 亚洲三区欧美一区| 大香蕉久久成人网| 秋霞在线观看毛片| 超色免费av| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 国产免费视频播放在线视频| 成人免费观看视频高清| 99久久综合免费| 精品少妇黑人巨大在线播放| 黄色怎么调成土黄色| 91麻豆精品激情在线观看国产 | 精品人妻熟女毛片av久久网站| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 亚洲欧洲日产国产| 人妻 亚洲 视频| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 日本撒尿小便嘘嘘汇集6| 成人国产一区最新在线观看| 一区二区av电影网| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 欧美日韩亚洲高清精品| 99久久国产精品久久久| 自线自在国产av| 欧美日韩福利视频一区二区| 中文字幕制服av| 免费观看a级毛片全部| 欧美日韩黄片免| 超色免费av| 日韩一区二区三区影片| 91国产中文字幕| 狂野欧美激情性bbbbbb| 亚洲人成电影观看| 婷婷色av中文字幕| 亚洲天堂av无毛| 丰满饥渴人妻一区二区三| 亚洲人成电影观看| 蜜桃国产av成人99| 精品熟女少妇八av免费久了| 天天躁夜夜躁狠狠躁躁| 日韩一卡2卡3卡4卡2021年| av线在线观看网站| 女人精品久久久久毛片| 国产一区有黄有色的免费视频| 十分钟在线观看高清视频www| 人人妻,人人澡人人爽秒播| 精品一区二区三区四区五区乱码| 涩涩av久久男人的天堂| 一本色道久久久久久精品综合| 精品人妻一区二区三区麻豆| 欧美黄色淫秽网站| 精品国产一区二区三区四区第35| 欧美国产精品一级二级三级| a级片在线免费高清观看视频| www.熟女人妻精品国产| 亚洲,欧美精品.| 国产一区二区 视频在线| 蜜桃在线观看..| av天堂久久9| 国产精品久久久人人做人人爽| 一级毛片电影观看| 深夜精品福利| 国产1区2区3区精品| 视频区欧美日本亚洲| 丝袜美足系列| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久 | 美国免费a级毛片| 久久女婷五月综合色啪小说| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 老熟妇乱子伦视频在线观看 | 国产免费一区二区三区四区乱码| 91av网站免费观看| a 毛片基地| 麻豆av在线久日| 日韩一区二区三区影片| 久9热在线精品视频| 欧美 日韩 精品 国产| 久久香蕉激情| 亚洲专区中文字幕在线| 成人国语在线视频| 午夜免费观看性视频| 午夜成年电影在线免费观看| 久久av网站| 啦啦啦中文免费视频观看日本| 岛国毛片在线播放| 咕卡用的链子| 欧美在线一区亚洲| 精品少妇一区二区三区视频日本电影| 久久精品亚洲av国产电影网| 欧美日韩亚洲高清精品| 亚洲av男天堂| av欧美777| 成人影院久久| 19禁男女啪啪无遮挡网站| 黄色毛片三级朝国网站| 老司机影院毛片| 一本久久精品| 一级片免费观看大全| 欧美成人午夜精品| 麻豆国产av国片精品| 好男人电影高清在线观看| 亚洲伊人久久精品综合| 亚洲第一av免费看| 久久久久精品国产欧美久久久 | 欧美另类一区| 十八禁网站免费在线| 免费一级毛片在线播放高清视频 | 亚洲免费av在线视频| 美女午夜性视频免费| 男女国产视频网站| 亚洲欧美日韩另类电影网站| 欧美成狂野欧美在线观看| 久久久久久久国产电影| 国产成人欧美在线观看 | 国产深夜福利视频在线观看| 成人国产av品久久久| 亚洲精品久久成人aⅴ小说| 国产人伦9x9x在线观看| 大香蕉久久网| 亚洲va日本ⅴa欧美va伊人久久 | 久久精品国产综合久久久| 欧美日韩亚洲综合一区二区三区_| 欧美国产精品va在线观看不卡| 国产精品久久久久久人妻精品电影 | 亚洲av男天堂| 日韩精品免费视频一区二区三区| 国产日韩一区二区三区精品不卡| 欧美日韩中文字幕国产精品一区二区三区 | 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 在线观看一区二区三区激情| 成人手机av| 亚洲精品国产av蜜桃| 三级毛片av免费| 在线观看人妻少妇| 高清在线国产一区| 国产在线视频一区二区| 99久久99久久久精品蜜桃| 亚洲七黄色美女视频| 国产精品一区二区精品视频观看| 麻豆国产av国片精品| 十八禁高潮呻吟视频| 国产亚洲欧美精品永久| 久久中文看片网| 丁香六月欧美| 免费观看av网站的网址| 久热爱精品视频在线9| 两性夫妻黄色片| 亚洲av成人不卡在线观看播放网 | 国产一卡二卡三卡精品| 99国产精品99久久久久| 精品免费久久久久久久清纯 | 免费在线观看视频国产中文字幕亚洲 | 王馨瑶露胸无遮挡在线观看| 国产成人精品久久二区二区91| 亚洲熟女毛片儿| 最黄视频免费看| 一个人免费看片子| 久久午夜综合久久蜜桃| 国产精品一区二区在线观看99| 免费在线观看视频国产中文字幕亚洲 | 人妻人人澡人人爽人人| 午夜福利在线观看吧| 老司机靠b影院| 性少妇av在线| 他把我摸到了高潮在线观看 | 久久久久久久国产电影| 日韩有码中文字幕| 免费在线观看影片大全网站| 亚洲五月婷婷丁香| 日韩中文字幕欧美一区二区| 嫁个100分男人电影在线观看| 侵犯人妻中文字幕一二三四区| a在线观看视频网站| 欧美日韩精品网址| 欧美亚洲 丝袜 人妻 在线| 丰满饥渴人妻一区二区三| 在线观看免费日韩欧美大片| 日韩 亚洲 欧美在线| 母亲3免费完整高清在线观看| 美女国产高潮福利片在线看| 欧美激情高清一区二区三区| 黑人操中国人逼视频| 天天添夜夜摸| 亚洲av成人一区二区三| 午夜福利免费观看在线| 国产成人a∨麻豆精品| 国产精品九九99| 黄色a级毛片大全视频| 欧美黑人欧美精品刺激| 午夜免费鲁丝| 国产一区二区三区综合在线观看| 久久青草综合色| 十八禁网站网址无遮挡| 日本av手机在线免费观看| 男女床上黄色一级片免费看| 人人妻人人添人人爽欧美一区卜| 精品乱码久久久久久99久播| 黑人欧美特级aaaaaa片| 高清视频免费观看一区二区| 精品国产乱子伦一区二区三区 | 91老司机精品| 国产在线视频一区二区| 亚洲色图综合在线观看| 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 天堂中文最新版在线下载| 女性被躁到高潮视频| 天堂中文最新版在线下载| 9热在线视频观看99| 精品国产乱码久久久久久小说| 男人添女人高潮全过程视频| 国精品久久久久久国模美| 大型av网站在线播放| 久久久久久久大尺度免费视频| av网站在线播放免费| 国产欧美亚洲国产| 丝袜脚勾引网站| 久久精品久久久久久噜噜老黄| 日韩精品免费视频一区二区三区| 国产免费视频播放在线视频| av超薄肉色丝袜交足视频| 好男人电影高清在线观看| 夫妻午夜视频| 欧美日韩中文字幕国产精品一区二区三区 | 国精品久久久久久国模美| 99国产精品一区二区蜜桃av | 又紧又爽又黄一区二区| 日本撒尿小便嘘嘘汇集6| 宅男免费午夜| 国产亚洲精品一区二区www | 欧美精品一区二区大全| 三上悠亚av全集在线观看| 国产亚洲欧美精品永久| 女人久久www免费人成看片| 亚洲欧美精品综合一区二区三区| 日韩制服骚丝袜av| 欧美午夜高清在线| 国产在视频线精品| 国产一区二区三区av在线| 啦啦啦免费观看视频1| 精品国产乱子伦一区二区三区 | 蜜桃国产av成人99| 2018国产大陆天天弄谢| 欧美日韩中文字幕国产精品一区二区三区 | 啦啦啦视频在线资源免费观看| 国产福利在线免费观看视频| 91字幕亚洲| 成人影院久久| 免费观看av网站的网址| 每晚都被弄得嗷嗷叫到高潮| 欧美另类亚洲清纯唯美| 亚洲av电影在线进入| 亚洲三区欧美一区| 老司机午夜福利在线观看视频 | 精品免费久久久久久久清纯 | 国产日韩欧美视频二区| 亚洲精品乱久久久久久| 在线天堂中文资源库| 亚洲精品一卡2卡三卡4卡5卡 | 午夜视频精品福利| √禁漫天堂资源中文www| 国产精品自产拍在线观看55亚洲 | 丝袜脚勾引网站| 国产麻豆69| 国产伦理片在线播放av一区| 欧美精品啪啪一区二区三区 | 性色av一级| 成人三级做爰电影| 91成年电影在线观看| 国产又爽黄色视频| 美女福利国产在线| 国产精品偷伦视频观看了| 欧美精品高潮呻吟av久久| 一级毛片女人18水好多| 一级,二级,三级黄色视频| 国产亚洲av片在线观看秒播厂| 国产99久久九九免费精品| 久久久久久久久久久久大奶| 新久久久久国产一级毛片| 久久99热这里只频精品6学生| a级毛片在线看网站| 免费黄频网站在线观看国产| 精品少妇久久久久久888优播| 交换朋友夫妻互换小说| 精品人妻一区二区三区麻豆| 久久久久久久精品精品| 老鸭窝网址在线观看| 亚洲精品国产av蜜桃| 久久影院123| 欧美在线一区亚洲| 涩涩av久久男人的天堂| 国产av国产精品国产|