• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    INFINITELY MANY SOLITARY WAVES DUE TO THE SECOND-HARMONIC GENERATION IN QUADRATIC MEDIA?

    2020-04-27 08:02:12ChunhuaWANG王春花
    關(guān)鍵詞:周靜春花

    Chunhua WANG(王春花)

    School of Mathematics and Statistics and Hubei Key Laboratory Mathematical Sciences,Central China Normal University,Wuhan 430079,China

    E-mail:chunhuawang@mail.ccnu.edu.cn

    Jing ZHOU(周靜)

    School of Mathematics and Statistics and Hubei Key Laboratory Mathematical Sciences,Central China Normal University,Wuhan 430079,China

    School of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430000,China

    E-mail:zhouj@mail.scuec.edu.cn

    Abstract In this paper,we consider the following coupled Schr?dinger system with χ(2)nonlinearitieswhich arises from second-harmonic generation in quadratic media.Here V1(x)and V2(x)are radially positive functions,2 ≤ N<6,α >0 and α > β.Assume that the potential functions V1(x)and V2(x)satisfy some algebraic decay at in fi nity.Applying the finite dimensional reduction method,we construct an unbounded sequence of non-radial vector solutions of synchronized type.

    Key words χ(2)nonlinearities;second-harmonic generation;synchronized solution;reduction method

    1 Introduction and Main Result

    In this paper,we consider the following coupled Schr?dinger system with χ(2)nonlinearities

    which arises from second-harmonic generation in quadratic media.Here V1(|x|)and V2(|x|)are positive potential functions,2≤ N<6,α >0 and α > β.

    It is well-known that nonlinear Schr?dinger(NLS)equations appear in many contexts,for example,in photonics,plasmas,foundation of quantum mechanics,optics in nonlinear media or in mean- field theory of Bose-Einstein condensates and so on.Particularly in nonlinear media optic theory,the(NLS)equation appears as an asymptotic limit for a slowly varying dispersive wave envelope propagating in nonlinear medium.The cubic nonlinear Schr?dinger(NLS)equation

    is the base describing the formation and propagation of different type of optical solitons in Kerr-type material[9,24].Here V is a slowly varying envelope of electric field,the realvalued parameter r and χ represent the relative strength and sign of dispersion/di ff raction and nonlinearity,respectively,and z is the propagation distance coordinate.The Laplacian operator ?2can either be ?2/?τ2for temporal solitons where τ is the normalized retarded time,orwhere x=(x1,···,xN)is the spatial coordinate with the spatial dimension N≥1.Here x is in the direction orthogonal to z.Solitary wave solutions to(1.2)and its generations were proved in,for example[5,23].Similar resuts about some Sch?dinger equations,we can refer to[15,26].

    In the mean- field approximation,the system described by the Gross-Pitaevskii equations

    where Lj= ??2+Vjwith j=1,2,μ,ν,ζ and E are real parameters.The model which the propagation of solitons χ(3)in nonlinear fi ber couples based on is equivalent to(1.3).Here ψj(j=1,2)denotes the j-th component of the light beam.This system received a lot of attention both experimentally and theoretically.The standing-wave solutions ψj(j=1,2),which are those of the form ψj=ujeiEtwith uja real-valued function,satisfy

    The existence of solitary waves to(1.4)was well-studied and was explored by many researchers in recent years,for example,[1–4,12,16–19,22,25,27,28].

    Nonlinear optical e ff ects such as Second Harmonic Generation(SHG)were discovered when the optical material has a χ(2)(i.e.,quatratic)nonlinear optical nonlinear response instead of conventional χ(3)material for which(1.2)is based on(see[6,7]).The invention of lasers in 1960s enabled experimental physical scientists to obtain a powerful source of coherent light.It is well-known that the second-order(or quadratic)nonlinearities of optical χ(2)materials are responsible for such e ff ects as the second harmonic generation(SHG).Recent progress in materials with high second-order nonlinearities,including polymeric electro-optical waveguide,has stimulated experimental e ff orts to increase indirectly e ff ective χ(3)nonlinearities taking advantages of cascaded second-order e ff ects.Suppose that we consider a strong parametric interaction of three stationary quasi-plane monochromatic waves with frequencies ωi(i=1,2,3),there is no walk-o ffbetween harmonic waves,the frequencies of interacting waves are matched exactly(ω1+ω2= ω3),and corresponding wave vectors are almost matched(k1ω1+k2ω2? k3ω3= ?k ? ki,where ki=|Ki|and Ki=Ki(ωi)are wave vectors.Then with some conventional normalizations and the assumption that ω1= ω2=,we can obtain the following system of type-I SHG(see[6],p.104)

    where u1is a renormalized slowly varying complex envelope of wave with frequency ω1,u1is the one with frequency ω3,σ,?>0 and1,?2= ±1.In the spatial soliton case1=2=1,while the temporal case all four combinations for1,?2= ±1 are possible.The physically realistic spatial dimensions are N=1 or N=2.Then the chirp-free two-wave(symbiotic)solitons can be found as real-valued solutions of the steady state(=0)equation

    On the other hand,the type II SHG can be described by the following renormalized threewave mixing equation(see[6],p.108)

    and its steady equation is of the following form

    In this paper,we are only concerned with the type-I SHG.In the case N=1,the existence of a non-trivial ground state solution of(1.6)was shown in[31]by using a variational approach.Multi-pulse solutions of(1.6)for N=1 were first observed in numerical simulations(see[31]),and the existence of multi-pulse solutions was analytically proved using singular perturbation theory in[30].

    By contrast with the coupled Schr?dinger system with χ(3)nonlinearities,little attention is given to the the coupled Schr?dinger system with χ(2)nonlinearities.Hence,we will consider a more general problem of studying the wave solutions to the problem

    where ψjare the complex wave functions de fined in RNwhich for solitary waves,i.e.,localized solutions,must also decay at in fi nity.When α1=1,α2>0,β =0,(1.9)is just the case considered in[32]by Zhao,Zhao and Shi.They obtained the existence of ground state solutions for spatial dimension from two to fi ve and the continuous dependence on the parameter and asymptotic behavior of them.Also,applying a new technique of double saddle-node bifurcation they obtained multiple solutions with certain symmetry.

    When N=1 and V1(|x|),V2(|x|)equal to constants in(1.1),(1.1)is very close to a coupled Schr?dinger-KdV system.One can refer to[10,11,13,14]for details.

    Therefore,we consider the case that when α1= α2= α >0 and β is arbitrary,i.e.,(1.1).Since β is arbitrary,our result can be easily extended to cover the case that β =0,which is just the coupled Schr?dinger system(1.6)with χ(2)nonlinearities.Moreover,the motivation for which we consider(1.1)is that we will obtain a non-degeneracy result(see Proposition 2.2 later)which is of vital importance in this paper.

    Furthermore,for the attractive case(that is,α>0)when V1(|x|)=V2(|x|)≡1,it is known that there are special positive solutions with two components being positive constant multipliying of the unique positive solution of the scalar square Schr?dinger equation ??u+u=u2,x∈RN.Thus,two components are in synchronization.This observation prompts the question of whether there are non radial synchronized vector solutions.Under some assumptions for V1(|x|)and V2(|x|)near in fi nity we construct in finitely many non-radial positive solutions for(1.1).

    We suppose that V1(|x|)and V2(|x|)satisfy the following conditions.

    (V1)There exist constants a∈R,s>1,and δ>0,such that as r→ ∞

    (V2)There exist constants b∈ R,t>1,and ?>0,such that as r→ ∞

    Our main result in this paper is as follows.

    Theorem 1.1Let 2 ≤ N<6,α >0 and α > β.Assume that(V1)and(V2)are satis fied.Then system(1.1)has in finitely many non-radial positive solutions.

    Next,we outline the main idea to prove our result.Denote the unique ground state U of

    We will use the unique solution U(x)to construct the solutions for(1.1).Hereafter,for any function V(x)>0,the Sobolev space(RN)is endowed with the standard form

    which is induced by the inner product

    De fine H to be the product spacewith the norm

    Note that the limit system for(1.1)is

    and that

    solves(1.11),provided that α > β,where

    We will use(U1,U2)to construct the solutions for(1.1).Denote

    where 0 is the zero vector in RN?2,r∈[r0k lnk,r1k lnk]for some r1>r0>0.

    Remark 1.2System(1.11)possesses a symmetry that if(U1,U2)is a solution of(1.11),so is(?U1,U2).

    Denote

    where U1xj(x)=U1(x?xj),U2xj(x)=U2(x?xj).

    Set x=(x′,x′′)∈ R2× RN?2.De fine

    Similarly,we de fine HV2.

    It is not difficult to check that(U1r,U2r)is in HV1×HV2.

    In order to prove Theorem 1.1,we only need to check the following result.

    Theorem 1.3Assume that the same conditions as those in Theorem 1.1 hold.Then there exists an integer k0>0,such that for any integer k≥k0,(1.1)has a solution(u1k,u2k)of the form

    where(?k,ψk)∈(RN)×(RN),rk∈ [r0klnk,r1k lnk]for some constants r1>r0>0 and as k→+∞,

    In Theorem 1.3,we construct in finitely many non-radial positive solutions(u1k,u2k)for system(1.1).The existence of synchronized solutions of(1.1)are guaranteed by the constructions,since the essential supports of the two components u1kand u2kare both placed in the same locations.It is easy for us to see that the larger the k is,the more synchronized these components are.

    Set Uκbe the unique solution of the following problem

    It is well-known that Uκis non-degenerate and Uκ=U(|x|),<0.

    Remark 1.4It follows from Theorem 1.3 that system(1.1)has solutions with a large number of bumps near in fi nity.Thus,the energy of these solutions can be very large.

    In the sequel,we will apply the finite dimensional reduction method to prove our main result.Since there is no small parameter in system(1.1),here we adopt the main idea introduced by[29],by using k,the number of the bumps of the solutions,as a parameter in the construction of spike solutions for(1.1).To our best knowledge,it is the first time to apply the finite dimensional reduction method to study(1.1).Our result exhibits a new phenomenon for the coupled Schr?dinger system with χ(2)nonlinearities.

    The structure of this paper is as follows.In Section 2,we do some preliminaries,speci fi cally we do the finite dimensional reduction.We will prove our main result in Section 3.In the sequel,for simplicity of notations we writeRf to mean the Lebesgue integral of f(x)in RN.

    2 Some Preliminaries

    In this section,we mainly do some preliminaries for section 3 to prove the main result.In fact,we mainly carry out the finite dimensional reduction.Let

    where ε>0 is a small constant.

    Note that the energy functional corresponding to(1.1)is

    Then I∈C2(H,R)and its critical points are solutions of(1.1).

    De fine

    Set

    We can expand J(?,ψ)as follows:

    where

    and

    In order to get a critical point(?,ψ) ∈ E of J(?,ψ),we need to examine each term in the expansion(2.2).

    It is easy to con fi rm that

    is a bounded bi-linear functional in E.Hence,there exists a bounded linear operator L from E to E,such that

    By the analysis above,we can obtain the following result.

    Lemma 2.1There exists a constant C>0,independent of k,such that for any r∈Dk,

    In order to show the invertibility of L in E, first we need the following non-degenerate result which is of great interest independently.

    Proposition 2.2For any α >0 and α > β,(U1,U2)is non-degenerate for system(1.11)in H1(RN)× H1(RN)in the sense that the kernel is given by span{(η(α,β))|i=2,···,N+1},where η(α,β)6=0.

    ProofBy using the same arguments in[3],we consider the weighted eigenvalue problem in λ:??φ+φ = λUφ.There is a sequence of eigenvalues 1= λ1< λ2= λ3= ···= λN+1=2< λN+2≤ ···with associated eigenfunctions φksatisfyingRRNUφiφjdx=0 for i 6=j.Denote φi=for i=2,3,···,N+1,then,for α > β,the linearization of equation(1.11)at(U1,U2)may write as follows

    where

    First we need to get the following estimates which will be used later.

    Lemma 2.3For any p ≥ 1,there is a θ>0,such that

    ProofSince the proof of this lemma is similar to Lemma A.1 in[21],here we omit it.

    Now,we prove the operator L is invertible in E.

    Lemma 2.4There exists a constant ρ>0,independent of k,satisfying that for any r∈Dk,

    ProofWe argue it by contradiction.Suppose that there are k→∞,rk∈Dk,and(u1k,u2k)∈E with

    and k(u1k,u2k)k2=k.

    Recall that

    By symmetry,we have

    Especially,

    and

    where ok(1)→0 as k→∞.Set(x)=u1k(x?x1),(x)=u2k(x?x1),then for any R>0,since dist(x1,??1)=rsin≥ C lnk→ +∞,BR(x1)? ?1,i.e.,

    One can get

    So we suppose that there exist u1,u2∈H1(RN),such that as k→+∞,

    Hence,we have

    So,u1and u2satisfy

    Now,we claim that(u1,u2)satis fies

    Indeed,we set

    and

    Inserting(2.8),(2.9),(2.10)into(2.5),we have

    However,since u1and u2are even in xi,i=2,···,N,(2.11)holds for any function(?,ψ)∈(BR(0))×(BR(0)),which is odd in xi,i=2,···,N.Hence,(2.11)holds for any(?,ψ) ∈(BR(0))×(BR(0))∩.Using the density of(BR(0))×(BR(0))in H1(RN)×H1(RN),we see

    We see that(U1,U2)=(μU,γU)and U solves(1.10).It is easy to check that(2.12)holds forTherefore,(2.12)is true for(?,ψ)∈ H1(RN)×H1(RN).

    So,we have proved that(u1,u2)satis fies(2.7).

    From Proposition 2.2,(U1,U2)is non-degenerate.Since the space of functions we considered is even in xi(i=2,···,N),the kernel of(U1,U2)is given by the one dimensionalThus we see thatfor some C,which implies that(u1,u2)=(0,0),since(u1,u2)satis fies(2.7).

    Consequently,

    Now using Lemma 2.3,we obtain

    Thus,

    Inserting(2.13),(2.14)into(2.6),we have

    which is impossible for large R.

    As a result,we get a contradiction.

    Now we come to the main result of this section.

    Proposition 2.5There exists an integer k0>0,such that for each k≥k0,there is a C1map from Dkto HV1×HV2:(?,ψ)=(?(r),ψ(r)),r=|x1|satisfying(?,ψ)∈ E,and

    Furthermore,there exists a positive constant C,such that

    In order to apply the contraction mapping theorem to prove Proposition 2.5, first we have to obtain the following three lemmas.

    Lemma 2.6There is a constant C>0 independent of k such that

    ProofBy direct calculation,we find that for any(?,ψ)∈ E,

    and similarly,

    Lemma 2.7There exists a constant C>0 independent of k,such that

    provided k≥k0for some integer k0>0.

    ProofNotice that

    Now,we estimate

    By symmetry and using the fact U1xi≤U1x1,U2xi≤U2x1,x∈?1and Lemma 2.3,we have

    where we have used the fact that

    Similarly,we can get

    Finally,since U1=,we obtain

    Hence,

    Now we are in position to prove Proposition 2.5.

    Proof of Proposition 2.5We will use the contraction theorem to prove it.By Lemma 2.7,h(?,ψ)is a bounded bi-linear functional in E.We may get by Reisz theorem that there is an hk∈E,such that

    So, finding a critical point for J(?,ψ)is equivalent to solving

    By Lemma 2.4,L is invertible.Hence,(2.17)can be revised as

    Let

    where τ>0 is small.Next,we verify that A is a contraction map from S to itself.In fact,for any(?,ψ)∈ S,by Lemmas 2.6 and 2.7,for k large,we have

    and for any(?1,ψ1),(?2,ψ2)∈ S,

    Then,we obtain the result from the contracting mapping theorem.Finally,by(2.18),we have

    3 Proof of Our Main Result

    In this section,we mainly prove our result.

    First we expand the energy I(U1r,U2r),where

    Lemma 3.1There exists a small constant τ>0 satisfying

    ProofIt is not difficult to get

    Then,we discuss each term in(3.1).By Lemma 2.3 and the knowledge of symmetry,we have

    where τ>0 is a small constant.Similarly,we can estimate

    From Lemma 2.3,we have

    and

    Hence,we have

    For α > β,using the expression of U1x1and U2x1,it is easy to see that D+ βH>0.

    Hence,we complete the proof.

    Now,we will apply the results obtained in Section 2 and Lemma 3.1 to prove our main result.

    Proof of Theorem 1.3Let(?r,ψr)=(?(r),ψ(r))be the map obtained in Proposition 2.5.De fine F(r)=I(Vr+?r,Wr+ψr), ?r∈ Dk.Using the same arguments used in Proposition 2 in[8]or Proposition 3 in[20],we can easily check that for k sufficiently large,if r is a critical point of F(r),then(U1r+?r,U2r+ψr)is a critical point of I.

    It follows from Lemma 2.1 and Lemma 2.6 that

    So by Lemma 3.1 we have

    We prove the theorem only for the case s=t,since the other case is similar.Suppose s=t,then

    Note that α > β and(D+ βH)>0.Let Dkbe de fined in(2.1).De fine

    Next we discuss the following maximization problem

    Suppose that(3.7)has a maximizerin Dk,we will verifyis an interior point of Dk.

    We check that the function

    By direct computation,we have

    Hence,the function

    has a maximum point

    Therefore,it deduces from the expression of F1(r)that the maximizeris an interior point of Dk,if we choose ε>0 small in(2.1).

    At last,we claim that u1rk=U1rk+?rkand u2rk=U2rk+ψrkare positive.

    In fact,by regularity theory,We may obtain that(?rk,ψrk)tends to zero in L∞-norm as k → ∞.Assume that(u1rk)?=max{?u2rk,0},(u1rk)?=max{?u2rk,0},then we get that(u1rk)?and(u2rk)?tend to zero as k → ∞.If u1rk<0,then U1rk(x)≤ ??rk(x)=o(1)as k → ∞.Then,U2rk=μγU1rk→ o(1),as k → ∞.From hI′(u1rk,u2rk),((u1rk)?,0)i=0,we have that

    Hence,(u1rk)?=0.We have u1rk=(u1rk)+≥ 0.Then,by the strong maximum principle,u1rk>0.

    Next,we prove that u2rk>0.

    If α > β >0,we prove it by contradiction argument.Assume that there exists x0such thatThen ?u2rk(x)|x=x0≤0.It follows that

    If α >0 and β ≤ 0,we also prove it by contradiction argument.Assume that there exists x0such thatObserving that u2rk(x0)=o(1),as k→ ∞,then?u2rk(x)|x=x0≥0.So we have

    as k→∞,which also contradicts to

    AcknowledgementsThe authors sincerely thank Prof.S.Peng for his helpful discussions and suggestions.

    猜你喜歡
    周靜春花
    春花
    幼兒100(2024年9期)2024-03-27 05:45:22
    蒙脫石中元素雜質(zhì)鉛的質(zhì)量控制
    設(shè)計(jì)的文脈 第一季 周靜:MIX的設(shè)計(jì)哲學(xué)主張
    Louisiana Purchase
    春花依然盛開(kāi)
    北極光(2020年1期)2020-07-24 09:03:54
    Dynamically Tunable and High-Contrast Graphene-Based Terahertz Electro-Optic Modulator?
    又見(jiàn)春花遍地開(kāi)
    心聲歌刊(2018年4期)2018-09-26 06:54:08
    讓汽車(chē)開(kāi)到終點(diǎn)不停車(chē)
    “周靜童話世界研討會(huì)”在北京舉行
    “周靜童話世界研討會(huì)”在北京舉行
    日日摸夜夜添夜夜添av毛片| 亚洲五月天丁香| 久久精品国产亚洲网站| 久久久久久久久中文| 三级男女做爰猛烈吃奶摸视频| 蜜臀久久99精品久久宅男| 深夜精品福利| 国产精品嫩草影院av在线观看| 又爽又黄a免费视频| 黄色一级大片看看| 久久精品国产亚洲av香蕉五月| a级毛片a级免费在线| 国产片特级美女逼逼视频| 国产又黄又爽又无遮挡在线| 久久精品91蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 99九九线精品视频在线观看视频| a级毛色黄片| 麻豆一二三区av精品| 两个人的视频大全免费| 久久久精品94久久精品| 国产精品美女特级片免费视频播放器| 人妻丰满熟妇av一区二区三区| 九九在线视频观看精品| 久久久久久久久大av| 国产精品久久久久久av不卡| 亚洲第一电影网av| 欧美三级亚洲精品| 亚洲精品粉嫩美女一区| 亚洲欧美中文字幕日韩二区| 在线国产一区二区在线| 18禁黄网站禁片免费观看直播| 在线观看美女被高潮喷水网站| 久久精品国产亚洲网站| 人妻制服诱惑在线中文字幕| 精华霜和精华液先用哪个| 免费观看人在逋| 桃色一区二区三区在线观看| 亚洲成av人片在线播放无| 日韩人妻高清精品专区| 俄罗斯特黄特色一大片| 成年免费大片在线观看| 日本熟妇午夜| 国产蜜桃级精品一区二区三区| 国产精品久久久久久av不卡| 欧美国产日韩亚洲一区| 精品熟女少妇av免费看| 国产精品日韩av在线免费观看| 国产淫片久久久久久久久| 人妻丰满熟妇av一区二区三区| 寂寞人妻少妇视频99o| 波多野结衣高清作品| 日本一二三区视频观看| 国产精品野战在线观看| 国产三级在线视频| 色播亚洲综合网| 校园春色视频在线观看| 国产视频一区二区在线看| 亚洲av.av天堂| 天天躁日日操中文字幕| 国产高清三级在线| 国产午夜福利久久久久久| 日韩欧美三级三区| 51国产日韩欧美| 午夜免费男女啪啪视频观看 | 女人被狂操c到高潮| 91狼人影院| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 日本一二三区视频观看| 亚洲中文日韩欧美视频| 日日啪夜夜撸| 亚洲av熟女| 蜜桃久久精品国产亚洲av| 黄色日韩在线| 亚洲内射少妇av| 国产麻豆成人av免费视频| 真人做人爱边吃奶动态| 3wmmmm亚洲av在线观看| 最后的刺客免费高清国语| 中文字幕人妻熟人妻熟丝袜美| 中文亚洲av片在线观看爽| 美女黄网站色视频| 久久精品夜色国产| 国产精品国产高清国产av| 日韩精品有码人妻一区| 欧美成人一区二区免费高清观看| 青春草视频在线免费观看| 91久久精品电影网| 一夜夜www| 午夜福利成人在线免费观看| 日本黄色视频三级网站网址| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 99久久九九国产精品国产免费| 亚洲美女视频黄频| 麻豆成人午夜福利视频| 亚洲无线观看免费| 日韩欧美一区二区三区在线观看| 男人和女人高潮做爰伦理| 免费观看精品视频网站| 人人妻人人澡欧美一区二区| 亚洲精品影视一区二区三区av| 国产在视频线在精品| 永久网站在线| 露出奶头的视频| 啦啦啦啦在线视频资源| 在线观看66精品国产| 国产精品免费一区二区三区在线| 美女 人体艺术 gogo| 国产午夜精品论理片| 亚洲精品成人久久久久久| 99久久无色码亚洲精品果冻| 精品人妻一区二区三区麻豆 | 日日摸夜夜添夜夜爱| 日本三级黄在线观看| 熟女电影av网| 女生性感内裤真人,穿戴方法视频| 秋霞在线观看毛片| 婷婷亚洲欧美| 哪里可以看免费的av片| 国产单亲对白刺激| 成年女人看的毛片在线观看| 亚洲性夜色夜夜综合| 女人被狂操c到高潮| 国产白丝娇喘喷水9色精品| 久久精品国产清高在天天线| 韩国av在线不卡| 成人高潮视频无遮挡免费网站| 亚洲美女视频黄频| 在线免费十八禁| 搡老熟女国产l中国老女人| 日韩中字成人| 好男人在线观看高清免费视频| 国产在线男女| 日本 av在线| 毛片女人毛片| 伦精品一区二区三区| 色噜噜av男人的天堂激情| 日韩欧美精品免费久久| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 午夜激情欧美在线| 亚洲成人av在线免费| 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| 波野结衣二区三区在线| 欧美性猛交黑人性爽| 国产单亲对白刺激| 1000部很黄的大片| 日韩av在线大香蕉| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| 久久九九热精品免费| 国产激情偷乱视频一区二区| 搡老岳熟女国产| 最后的刺客免费高清国语| 日日摸夜夜添夜夜添小说| 亚洲成人精品中文字幕电影| 国产精品嫩草影院av在线观看| 日韩在线高清观看一区二区三区| 在线免费观看的www视频| 亚洲人与动物交配视频| 小说图片视频综合网站| 欧美性感艳星| 午夜视频国产福利| 亚洲电影在线观看av| a级毛片免费高清观看在线播放| 国产精品伦人一区二区| 亚洲电影在线观看av| 中文字幕熟女人妻在线| 亚洲不卡免费看| 12—13女人毛片做爰片一| 日韩欧美免费精品| 精品久久久噜噜| 自拍偷自拍亚洲精品老妇| 午夜福利在线观看吧| 美女被艹到高潮喷水动态| 91av网一区二区| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 亚洲国产欧美人成| 级片在线观看| 深夜a级毛片| 插阴视频在线观看视频| 在线播放无遮挡| 婷婷六月久久综合丁香| 美女高潮的动态| 九九在线视频观看精品| 一区二区三区四区激情视频 | 国产午夜福利久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| av在线播放精品| 又黄又爽又刺激的免费视频.| 久久欧美精品欧美久久欧美| 亚洲精品国产av成人精品 | 欧美成人a在线观看| 大又大粗又爽又黄少妇毛片口| 久久人人精品亚洲av| videossex国产| 成人精品一区二区免费| 免费不卡的大黄色大毛片视频在线观看 | 观看免费一级毛片| 亚洲精品一区av在线观看| 成人无遮挡网站| 久久久欧美国产精品| 久久婷婷人人爽人人干人人爱| 简卡轻食公司| 在线观看免费视频日本深夜| 日本免费a在线| 天堂网av新在线| www日本黄色视频网| 久久久国产成人免费| 国内精品一区二区在线观看| 乱人视频在线观看| 美女被艹到高潮喷水动态| 在线观看一区二区三区| 亚洲成a人片在线一区二区| 在线天堂最新版资源| 国产精品女同一区二区软件| 啦啦啦观看免费观看视频高清| 亚洲国产精品sss在线观看| 精品欧美国产一区二区三| 人妻制服诱惑在线中文字幕| 听说在线观看完整版免费高清| av黄色大香蕉| 色噜噜av男人的天堂激情| 国产成人aa在线观看| 亚洲经典国产精华液单| 天美传媒精品一区二区| 亚洲欧美成人精品一区二区| 亚洲av成人av| 又爽又黄a免费视频| 亚洲乱码一区二区免费版| 春色校园在线视频观看| 精品福利观看| 午夜亚洲福利在线播放| 在线播放无遮挡| 国产一区亚洲一区在线观看| 99久久成人亚洲精品观看| 国产精品福利在线免费观看| 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 少妇猛男粗大的猛烈进出视频 | 欧美又色又爽又黄视频| 别揉我奶头~嗯~啊~动态视频| 老熟妇乱子伦视频在线观看| 一夜夜www| 免费一级毛片在线播放高清视频| 深夜精品福利| 中文在线观看免费www的网站| 国产精品福利在线免费观看| 非洲黑人性xxxx精品又粗又长| 欧美日韩综合久久久久久| 美女xxoo啪啪120秒动态图| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 亚洲不卡免费看| 日本与韩国留学比较| 日本欧美国产在线视频| 在线a可以看的网站| 美女xxoo啪啪120秒动态图| 亚洲三级黄色毛片| 国产伦精品一区二区三区视频9| 精品人妻熟女av久视频| 尾随美女入室| 日韩欧美一区二区三区在线观看| 亚洲av美国av| 床上黄色一级片| 国产成人aa在线观看| av在线亚洲专区| 日韩精品有码人妻一区| 亚洲av免费高清在线观看| 成人精品一区二区免费| 欧美日韩在线观看h| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 级片在线观看| 免费av毛片视频| 亚洲精品456在线播放app| 国产三级中文精品| 日韩 亚洲 欧美在线| 亚洲中文字幕日韩| 亚洲va在线va天堂va国产| 亚洲欧美日韩东京热| 九九热线精品视视频播放| 亚洲av成人精品一区久久| 亚洲美女视频黄频| 亚洲不卡免费看| 18禁黄网站禁片免费观看直播| 国产中年淑女户外野战色| 国产免费一级a男人的天堂| 中国美女看黄片| 国产精品国产高清国产av| 免费大片18禁| 国产伦一二天堂av在线观看| 欧美性感艳星| 国产精品亚洲美女久久久| 国产精品爽爽va在线观看网站| 大又大粗又爽又黄少妇毛片口| 久久精品国产清高在天天线| 精品人妻一区二区三区麻豆 | 亚洲婷婷狠狠爱综合网| 国产白丝娇喘喷水9色精品| 一个人免费在线观看电影| 亚洲人成网站在线观看播放| 久久久久久大精品| 亚洲人成网站在线观看播放| a级毛片a级免费在线| 一级毛片aaaaaa免费看小| 黑人高潮一二区| 99热这里只有精品一区| 一区福利在线观看| 欧美成人精品欧美一级黄| 最好的美女福利视频网| 成年免费大片在线观看| 国产精品无大码| 在线看三级毛片| 日韩精品青青久久久久久| 简卡轻食公司| 欧美+亚洲+日韩+国产| 成人性生交大片免费视频hd| 国产免费一级a男人的天堂| 国产精华一区二区三区| 永久网站在线| av女优亚洲男人天堂| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 亚洲国产高清在线一区二区三| 亚洲精品久久国产高清桃花| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 亚洲第一区二区三区不卡| 日本爱情动作片www.在线观看 | 中文字幕熟女人妻在线| 久久人妻av系列| 免费av毛片视频| 亚洲第一电影网av| 在线免费观看的www视频| 一本精品99久久精品77| 美女黄网站色视频| 日韩大尺度精品在线看网址| 天堂√8在线中文| 亚洲在线观看片| 99热只有精品国产| 久久久精品大字幕| 女生性感内裤真人,穿戴方法视频| 中文字幕久久专区| 麻豆国产97在线/欧美| 99精品在免费线老司机午夜| 亚洲无线在线观看| 日韩成人伦理影院| 熟女电影av网| 欧美激情在线99| 黄色一级大片看看| 久久午夜福利片| 99久久九九国产精品国产免费| 欧美性感艳星| 亚洲最大成人中文| 亚洲婷婷狠狠爱综合网| 夜夜看夜夜爽夜夜摸| 春色校园在线视频观看| 麻豆久久精品国产亚洲av| 国产精品嫩草影院av在线观看| 日本黄大片高清| 亚洲av免费高清在线观看| 国产一级毛片七仙女欲春2| 亚洲最大成人手机在线| 麻豆久久精品国产亚洲av| 久久九九热精品免费| 国产一级毛片七仙女欲春2| 日本欧美国产在线视频| 在线观看av片永久免费下载| 97超级碰碰碰精品色视频在线观看| 亚洲精品日韩在线中文字幕 | 赤兔流量卡办理| 成人特级av手机在线观看| 看黄色毛片网站| 久久久久久大精品| 内射极品少妇av片p| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看| 日韩高清综合在线| 国产精品一区二区性色av| 国产人妻一区二区三区在| 一区二区三区高清视频在线| 最近的中文字幕免费完整| 此物有八面人人有两片| 成人鲁丝片一二三区免费| 亚洲成人中文字幕在线播放| 别揉我奶头 嗯啊视频| 九九久久精品国产亚洲av麻豆| 又爽又黄a免费视频| 日韩欧美三级三区| 看片在线看免费视频| 九九热线精品视视频播放| 中国美白少妇内射xxxbb| 欧美日韩乱码在线| h日本视频在线播放| 午夜老司机福利剧场| 精品一区二区三区视频在线观看免费| 国产片特级美女逼逼视频| 日韩人妻高清精品专区| 欧美丝袜亚洲另类| 黄片wwwwww| 日本三级黄在线观看| 免费电影在线观看免费观看| 免费人成在线观看视频色| 久久久久久大精品| 亚洲最大成人中文| 99riav亚洲国产免费| 免费观看在线日韩| 最近2019中文字幕mv第一页| 国产 一区精品| 亚洲久久久久久中文字幕| 久久精品国产清高在天天线| 国产精品电影一区二区三区| 深爱激情五月婷婷| 日韩精品中文字幕看吧| 久久久久国内视频| 我的老师免费观看完整版| 亚洲人与动物交配视频| 97人妻精品一区二区三区麻豆| 校园春色视频在线观看| 亚洲av美国av| 免费av观看视频| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 国产片特级美女逼逼视频| 日韩精品青青久久久久久| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 一本精品99久久精品77| 国国产精品蜜臀av免费| 欧美绝顶高潮抽搐喷水| 18禁在线无遮挡免费观看视频 | 国产精品一二三区在线看| 91av网一区二区| 日本在线视频免费播放| 99在线人妻在线中文字幕| 亚洲欧美成人精品一区二区| 卡戴珊不雅视频在线播放| 欧美日韩一区二区视频在线观看视频在线 | 亚洲aⅴ乱码一区二区在线播放| 黄色配什么色好看| 男插女下体视频免费在线播放| 91久久精品电影网| 久久久国产成人精品二区| 日本 av在线| 亚洲av成人精品一区久久| 九九热线精品视视频播放| 两性午夜刺激爽爽歪歪视频在线观看| 午夜老司机福利剧场| 一进一出抽搐gif免费好疼| 久久99热6这里只有精品| 国内揄拍国产精品人妻在线| 国产91av在线免费观看| 亚洲综合色惰| 免费观看精品视频网站| 免费观看人在逋| 免费av不卡在线播放| 精品欧美国产一区二区三| 人人妻,人人澡人人爽秒播| 欧美极品一区二区三区四区| 日韩欧美三级三区| 亚洲欧美成人精品一区二区| 免费搜索国产男女视频| 麻豆久久精品国产亚洲av| 热99re8久久精品国产| 天天躁夜夜躁狠狠久久av| 国产欧美日韩一区二区精品| 亚洲一区二区三区色噜噜| 日本一二三区视频观看| 熟女电影av网| 午夜精品在线福利| 亚洲乱码一区二区免费版| 色尼玛亚洲综合影院| 亚洲国产欧洲综合997久久,| 欧美+日韩+精品| 欧美xxxx黑人xx丫x性爽| 91久久精品电影网| 亚洲欧美精品综合久久99| 精品乱码久久久久久99久播| 日韩成人伦理影院| 亚洲精品久久国产高清桃花| 亚洲av中文av极速乱| 中文字幕免费在线视频6| 亚州av有码| 亚洲国产日韩欧美精品在线观看| 午夜福利在线观看吧| 日本免费一区二区三区高清不卡| 成人亚洲精品av一区二区| 国产男人的电影天堂91| 内射极品少妇av片p| 99riav亚洲国产免费| 亚洲精品日韩在线中文字幕 | 欧美最新免费一区二区三区| 国产人妻一区二区三区在| 18禁黄网站禁片免费观看直播| 男女那种视频在线观看| 超碰av人人做人人爽久久| 欧美区成人在线视频| 久久精品夜色国产| 久久精品国产亚洲av香蕉五月| 国产欧美日韩精品一区二区| 亚洲av熟女| 我的老师免费观看完整版| 国产精品伦人一区二区| 国产精品人妻久久久影院| 亚洲,欧美,日韩| 国产成人影院久久av| av天堂在线播放| 在线播放国产精品三级| 九九热线精品视视频播放| 亚洲经典国产精华液单| 热99re8久久精品国产| 搡女人真爽免费视频火全软件 | 久久久久久久久久黄片| 国产精品亚洲美女久久久| 最近手机中文字幕大全| 色在线成人网| 精品一区二区三区av网在线观看| 一夜夜www| 寂寞人妻少妇视频99o| 老司机午夜福利在线观看视频| 精品午夜福利在线看| 99久久精品一区二区三区| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 男人的好看免费观看在线视频| 波多野结衣高清无吗| 亚洲成a人片在线一区二区| 91av网一区二区| 国产色爽女视频免费观看| 我要搜黄色片| 亚洲中文字幕一区二区三区有码在线看| 美女高潮的动态| 深夜精品福利| 成人高潮视频无遮挡免费网站| 麻豆成人午夜福利视频| 色噜噜av男人的天堂激情| 日韩一区二区视频免费看| 亚洲aⅴ乱码一区二区在线播放| ponron亚洲| 蜜桃久久精品国产亚洲av| 久久久精品94久久精品| 欧美日韩综合久久久久久| 久久99热6这里只有精品| 99热只有精品国产| 日韩,欧美,国产一区二区三区 | 中国美女看黄片| 国产男靠女视频免费网站| 国产色爽女视频免费观看| 国产黄色小视频在线观看| 寂寞人妻少妇视频99o| 久久精品国产99精品国产亚洲性色| 亚州av有码| 人妻制服诱惑在线中文字幕| 可以在线观看的亚洲视频| 黄片wwwwww| 午夜视频国产福利| 18禁裸乳无遮挡免费网站照片| 亚洲自拍偷在线| 亚洲三级黄色毛片| 天天躁日日操中文字幕| av中文乱码字幕在线| 国产色爽女视频免费观看| 69人妻影院| 午夜福利高清视频| 欧美国产日韩亚洲一区| 欧美性感艳星| 1000部很黄的大片| 久久精品国产亚洲av天美| 听说在线观看完整版免费高清| 日本-黄色视频高清免费观看| 亚洲av不卡在线观看| 色哟哟·www| 成人亚洲欧美一区二区av| 热99re8久久精品国产| 亚洲一级一片aⅴ在线观看| 搞女人的毛片| 熟女人妻精品中文字幕| 91麻豆精品激情在线观看国产| 看黄色毛片网站| 男插女下体视频免费在线播放| 亚洲精品成人久久久久久| 国产在线男女| 禁无遮挡网站| 欧美bdsm另类| 91在线观看av| 麻豆国产av国片精品| 久久精品国产亚洲av香蕉五月| 亚洲性久久影院| 麻豆国产av国片精品| www.色视频.com| 伦精品一区二区三区| 午夜爱爱视频在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 欧美成人免费av一区二区三区| 丰满乱子伦码专区| 你懂的网址亚洲精品在线观看 | 国产视频内射| 十八禁网站免费在线| 老熟妇乱子伦视频在线观看| 99热这里只有是精品在线观看| 亚洲av成人av| 精品不卡国产一区二区三区|