• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HERMITIAN-EINSTEIN METRICS FOR HIGGS BUNDLES OVER COMPLETE HERMITIAN MANIFOLDS?

    2020-04-27 08:11:08DebinLIU劉德斌

    Debin LIU(劉德斌)

    School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China

    E-mail:liudebin@mail.ustc.edu.cn

    Pan ZHANG(張攀)?

    School of Mathematics,Sun Yat-sen University,Guangzhou 510275,China

    E-mail:zhangpan5@mail.sysu.edu.cn

    Abstract In this paper,we solve the Dirichlet problem for the Hermitian-Einstein equations on Higgs bundles over compact Hermitian manifolds.Then we prove the existence of the Hermitian-Einstein metrics on Higgs bundles over a class of complete Hermitian manifolds.

    Key words Higgs bundles;complete Hermitian manifolds;Hermitian-Einstein metric

    1 Introduction

    Let(M,g)be a Hermitian manifold and the corresponding K?hler form is denoted by ω .A Higgs bundle(E,,θ)over M is a holomorphic vector bundle(E,)coupled with a 1-form θ∈?1,0(M,End(E))satisfying=0 and θ∧θ=0,which is called the Higgs field.Higgs bundle was introduced by Hitchin[10]in his study of self-dual equations on a Riemann surface.It has rich structures and plays an important role in many areas including gauge theory,K?hler and hyper-K?hler geometry,group representations and nonabelian Hodge theory.

    For any given Hermitian metric H on a Higgs bundle E,we de fine its Hitchin-Simpson connection[26]to be

    where DHis the Chern connection with respect to H and,and θ?His the adjoint with respect to H.The curvature of this connection is given by

    where FHis the curvature of the Chern connection DHand?His the(1,0)part of DH.We say H is a Hermitian-Einstein metric,if its curvature FH,θsatis fies the Einstein condition:

    The celebrated Donaldson-Uhlernbeck-Yau theorem states that holomorphic vector bundles over compact K?hler manifolds admit Hermitian-Einstein metrics if they are stable.It was proved by Narasimhan and Seshadri[22]for compact Riemann surface,by Donaldson[7]for algebraic manifolds and by Uhlenbeck-Yau[29]for general compact K?hler manifolds.The inverse problem is that a holomorphic bundle admitting such a metric must be polystable(that is a direct sum of stable bundles with the same slope).And this was proved by Kobayashi[12]and L¨ubke[19]independently.This is the so-called Hitchin-Kobayashi correspondence for holomorphic vector bundles over compact K?hler manifolds.There were many interesting generalized Hitchin-Kobayashi correspondences(see the References[1–6,10,11,13–16,20,21,25,30,32],etc.).In the meanwhile,the Dirichlet problem was solved by Donaldson[8]for Hermitian-Einstein metrics over compact K?hler manifolds with non-empty boundary,and many interesting applications were addressed.Li and Zhang[18]generalized Donaldson’s result to the general Hermitian manifolds and considered a class of vortex equations,which generalize the well-known Hermitian-Einstein equations.As for the non-compact case,Ni and Ren[24]proved that a holomorphic vector bundle over a complete non-compact K?hler manifold with a spectral gap admits a Hermitian-Einstein metric if it admits a metric whose failure to be Hermitian-Einstein is in Lpfor p>1.Ni[23]also showed that the same conclusion holds,for example,if the K?hler manifold satis fies a L2-Sobolev inequality,or if it is non-parabolic(i.e.,admits a positive Green’s function).Later,Zhang[33]studied the existence of Hermitian-Einstein metrics for holomorphic vector bundles over complete Hermitian manifolds.At the same time,he[34]also proved the existence of Hermitian Yang-Mills-Higgs metrics for holomorphic vector bundles on a class of complete K?hler manifolds.

    When it comes to the Higgs bundles,Hitchin[10]and Simpson[26]obtained a Higgs bundle version of Donaldson-Unlenbeck-Yau theorem,i.e.,they proved that a Higgs bundle admits a Hermitian-Einstein metric if and only if it is Higgs polystable.Simpson[26]also considered some non-compact K?hler cases.He introduced the concept of analytic stability for Higgs bundles and proved that the analytic stability implies the existence of Hermitian-Einstein metrics.Recently,Zhang et al.[31]showed the existence of Hermitian-Einstein metrics of analytic stable Higgs bundles over complete non-compact Gauduchon manifolds.

    In this paper,we skip the stability conditions,and assume that the spectrum of a holomorphic Laplace operator has a positive lower bound(see[24]and[33])or the holomorphic Laplace operator satis fies the L2-Sobolev inequality(see[23]),we study the existence of Hermitian-Einstein metrics of Higgs bundles over complete Hermitian manifolds.More precisely,we will prove the following theorem.

    Theorem 1.1Let(M,g)be a complete Hermitian manifold of complex dimension m,and(E,,θ)be a Higgs bundle over M,with an initial Hermitian metric H0.

    1)Assume that the holomorphic operatorhas positive first eigenvalue(M)and thatfor some p ≥ 2 and real number λ.Then there exists a Hermitian-Einstein metric H on E.

    This paper is organized as follows.In Section 2,we give some estimates and preliminaries which will be used in the proof of the theorem.In Section 3,using the Hermitian-Einstein flow,we solve the Dirichlet problem for the Hermitian-Einstein equations over a compact Hermitian manifold.In Section 4,we prove the long-time existence of the Hermitian-Einstein flow over a complete Hermitian manifold.At last,we complete the proof of the main theorem in Section 5.

    2 Preliminary Results

    Let(M,g)be a compact Hermitian manifold,and(E,ˉ?,θ)be a rank r Higgs bundle over M with an initial Hermitian metric H0.Denote by ω the K?hler form,and de fine the operator Λ as the contraction with ω,i.e.,for α ∈ ?1,1(M,E),one has Λα =hα,ωi.For any local complex coordinatein M,we can de fine the holomorphic Laplace operator for functions as

    where V is a well-de fined vector fields on M.The holomorphic Laplace operatorcoincides with the usual Beltrami-Laplace operator if and only if the base manifold(M,g)is K?hler.

    Given any Hermitian metric H on E,since the bundle E is holomorphic with the holomorphic structure,there is a unique corresponding connection AHwhich is called the Chern connection.Under a holomorphic local frame{eα},we can express the metric H as a positive de fined matrix()1≤α,β≤r,where=H(eα,eβ).For simplicity we will still denote it by H.Then locally the Chern connection AHand its curvature form FHcan be written as

    Now consider two Hermitian metrics H and K on E.Set h=K?1H ∈?0(M,End(E)).It is easy to check that h is positive de fined and self-adjoint with respect to both H and K.Then by a direct calculation we have

    Next,we turn to a family of Hermitian metrics H(t)on E with an initial metric H(0)=H0.We will follow the classical heat flow method to deduce the existence of Hermitian-Einstein metric.Actually,we consider the following Hermitian-Einstein flow

    Taking a local holomorphic frame{eα}of E and local complex coordinates{zi}of M,the above flow can be written as

    We will see later the following proposition plays an important role in our discussion.

    Proposition 2.1Let H(t)be a solution of the flow(2.1),then

    ProofFor simplicity,setThen by a direct calculation,we have

    and

    Hence

    Now we recall the Donaldson’s distance on the space of Hermitian metrics as follows.

    De finition 2.2For any two Hermitian metrics H and K on the bundle E,we de fine

    where r=rank(E).

    If we choose a local frame to diagonalize H?1K to be diag(λ1,···,λr),then

    from which we can see that σ≥0 with equality if and only if H=K.Let d be the Riemannian distance function on the metric space,then

    holds for some monotone functions f1and f2.So we can conclude from this inequality that a sequence of metrics Hiconverges to some H in C0-topology if and only if

    For later use,we need the following lemma.

    Lemma 2.3

    ProofIt is easy to check that

    On the other hand,it is easy to check that tris nonnegative,by doing calculation locally[27].Hence we have the following proposition.

    Proposition 2.4Let H,K be two Hermitian-Einstein metrics,then

    Next,instead of considering H,K as Hermitian-Einstein metrics,we assume H=H(t),K=K(t)to be two solutions of the Hermitian-Einstein flow(2.1)with the same initial value H0.Similar to Proposition 2.4,we prove the following proposition.

    Proposition 2.5

    ProofSet h(t)=K(t)?1H(t).Notice that

    These two identities together with Lemma 2.3 show that

    For further discussion,we prove the following.

    Proposition 2.6Let H(x,t)be a solution of the Hermitian-Einstein flow with the initial metric H0and set h=H,then

    ProofThe proof is quite straightforward.First notice that

    And following the same argument as in[27],one can show that

    Set d=trh+trh?1,then from the above two inequalities,we can get

    Using the above discussion and Lemma 2.3,we can deduce that

    where the last inequality follows from the fact that

    Proceeding by a similar argument,we have

    Corollary 2.7Let H be a Hermitian-Einstein metric and H0be the initial Hermitian metric.Let h=H,then

    3 Over Compact Manifolds

    In this section our primary purpose is to solve the Dirichlet problem for the Hermitian-Einstein flow over a compact manifold.Speci fi cally,when the base manifold M is closed,we consider the following problem

    And when M is a compact manifold with a non-empty smooth boundary?M,for any given initial metric ? over ?M we instead consider the following boundary value problem

    One can easily check that the equation in(3.1)is non-linear,strictly parabolic.So we get the short-time existence from the standard parabolic PDE theory[9].

    Theorem 3.1For sufficiently small ε>0,problems(3.1)and(3.2)have a smooth solution de fined for 0≤ t< ε.

    Next,following a standard argument,we can show the long-time existence of(3.1)and(3.2).

    Lemma 3.2Suppose that a smooth solution Htto(3.1)or(3.2)is de fined for 0≤t

    Then Htconverges in C0topology to some continuous non-degenerate metric HTas t→T.

    ProofIn order to prove the convergence,it suffices to show that,given any ε>0,we can find δ>0 such that

    And this can be easily seen from the continuity at t=0 combining with Proposition 2.5 and the maximum principle.

    So,it remains to show HTis non-degenerate.By Proposition 2.1,we know that

    where C=C(H0)is a uniform constant.By a direct calculation we have

    And similarly

    Then we can conclude that σ(H,H0)is uniformly bounded on M × [0,T),which implies that HTis non-degenerate.

    For further consideration,we need the following lemma.

    Lemma 3.3Suppose M is a closed Hermitian manifold without boundary(compact with non-empty boundary).Let H(t)for 0≤t

    1)H(t)converges in C0topology to some continuous metric HTas t→T,

    2)supM|ΛFH|H0is uniformly bounded for t

    Then H(t)is bounded in C1,and also bounded in(for any 1

    Since the proof is exactly the same as that in[7]and[26],we omit it here.

    Theorem 3.4Problems(3.1)and(3.2)have a unique solution H(t)which exists for 0≤t<∞.

    ProofTheorem 3.1 guarantees that a solution exists for a short time.Then we suppose that there is a solution H(t)existing for 0≤t

    Finally,since we have proved the long-time existence of the Dirichlet problem(3.2),it remains for us to show that the solution H(t)converges to a metric H∞as the time t approaches to the in fi nity,and that the limit H∞is Hermitian-Einstein.

    Suppose H(t)is a solution to(3.2)for 0≤t<∞.As in the previous section we still setFrom Proposition 2.1 and the fact thatholds for any section α of End(E),we have

    Next,according to Proposition 1.8 of Chapter 5 in[28],the following Dirichlet problem is solvable

    Therefore the maximum principle implies that

    for any y∈M and 0≤t<∞.

    Let 0≤t1≤t<∞,=H?1(x,t1)H(x,t).Obviouslyˉh satis fies

    Then we have

    Integrating it over[t1,t]gives

    From(3.6)and(3.7),we have that H(t)converges in the C0topology to some continuous metric H∞as t?→ +∞.Hence using Lemma 3.3 again we know that H(t)has uniform C1andbounds.This together with the fact thatis uniformly bounded and the standard elliptic regularity arguments shows that,by passing to a subsequence if necessary,H(t)→H∞in C∞topology.And from(3.6)we have

    i.e.,H∞is the desired Hermitian-Einstein metric satisfying the Dirichlet boundary condition.Since for any given initial Hermitian metric ? over boundary ?M one can construct a Hermitian metric H0over M with H0|?M= ? by choosing a proper partition of unity,we have eventually proved the following theorem.

    Theorem 3.5Suppose(M,g)is a compact Hermitian manifold with non-empty boundary?M and(E,,θ)is a Higgs bundle over M.Then for any Hermitian metric ? on restriction of E to?M there is a unique Hermitian metric H on E such that

    4 Hermitian-Einstein Flow Over Complete Hermitian Manifolds

    Let M be a complete non-compact Hermitian manifold without boundary,in which case we will still call it complete for short,and E be a rank r Higgs bundle over M with an initial Hermitian metric H0.Suppose the curvature of AH0satis fiesIdE|H0≤C0for some positive constant C0.What we want to prove is the existence of the long time solution to the Hermitian-Einstein flow over M starting at H0.

    It is well known that for any topological manifold M we can always find a compact exhaustion sequence,i.e.,a countable collection of compact subsetsof M which satis fies?i? ?i+1and?i=M.Moreover,if the manifold is smooth we can further assume that??iis smooth for each i.Now for such an exhaustion,by our discussion in Section 3 we can find Hermitian metrics H(x,t)on E|?ifor each i,which solve the following problems

    Notice here we use H0as both the initial metric with respect to t and the boundary metric.So Proposition 2.1 together with the maximum principle shows that

    As before we set hi=Hi.Then through a simple calculation(as is shown in the proof of Lemma 3.2),we can see that

    Integrating along time direction from 0 to T,we have

    This immediately implies

    and

    In particular,for any compact subset K we can choose i large enough so that K??i,then we get the following C0-estimate

    Without loss of generality,we can assume that K=Bo(R),here K=Bo(R)denotes the geodesic ball of radius R center at a fixed point o∈M.We want to show that,by passing to a subsequence if necessary,{Hi}converges uniformly to a Hermitian metric H∞(x,t)over Bo(R)×[0,T/2].By Lemma 2.3,we have

    Hence using(4.3)and(4.4),we can get the following estimate

    where C3is a uniform constant depending only on C0,T,R and V.Since(4.7)gives the uniform C0-estimate for hiand notice thatis also uniformly bounded,(4.8)implies that hiis uniformly bounded in(Bo(2R)×[0,T]).From Sobolev embedding theorem we know that(Bo(2R)×[0,T])can be compactly embedded into L2(Bo(2R)×[0,T]).So by passing to a subsequence if necessary,we conclude that hi,and hence Hi,converges in L2(Bo(2R)×[0,T]).

    This implies that given any ε>0,we have

    for j,k sufficiently large.In order to show the uniform convergence,we need the following mean-value type inequality.

    Lemma 4.1(see[33,Lemma 5.2])Let M be an m-dimensional complete non-compact Hermitian manifold without boundary,and Bo(2R)be a geodesic ball,centered at o∈M of radius 2R.Suppose that f(x,t)is a non-negative function satisfying

    over Bo(2R)×[0,T].Let?K ≤0 be the lower bound of the Ricci curvature of Bo(2R).Then for any p>0,there exist positive constant C′and C′′depending only on C,m,R,K,p,T and V such that

    Now let f(x,t)=σ2(Hj(x,t),Hk(x,t)).Obviously fsatis fies(4.10)with C=0.Then by Lemma 4.1,(4.9)and the fact that Hj=Hkat t=0 gives

    here C4is a positive constant depending only on C0,R,T and the bound of the sectional curvature on Bo(2R).And this implies that,by passing to a subsequence if necessary,Hiconverges uniformly to a continuous Hermitian metric H∞over Bo(R)×[0,T/2].

    Finally,we want to use the above C0-estimate to deduce a C1-estimate over any compact subset K.We will follow Donaldson[8]and Zhang[33].For any point x∈Bo(2R)we can choose a coordinate ball Bx(R′)centered at p small enough such that E can be locally trivialized over it.Let{yj}be a real coordinate on Bx(R′)and denote?0(M,End(E)).Then we have the following.

    Proposition 4.2ρlis de fined as above,then

    ProofFrom(4.1),we know Hisatis fies

    For now for the sake of calculation convenience,we omit the subscript i and l and denote Hi,ρlto be H,ρ respectively.Then by considering a one-parameter family of solutions obtained by translating in the direction ofone can check that

    where

    As is shown in the proof of Proposition 2.1,one can check that

    By direct calculation,we have

    and one can easily check that

    Then combining those calculations together shows that

    Then this proposition together with Lemma 4.1 and(4.8)gives

    where C5is a positive constant independently on i.Moreover,for the Hermitian metric g there exist constants C6and C7such that

    holds over Bx(R′).Hence we have

    From this and(4.12)we can fi nally conclude that there exists a positive constant C8which is independently of i such that

    Since x is arbitrary,we can see that Hihas a uniform C1-bound over Bo(R)×[0,T/4].Since we have derive the C0and C1estimates,the standard parabolic theory is enough to show the global convergence of Hi,which is

    Theorem 4.3Let(M,g)be a complete non-compact Hermitian manifold without boundary,and(E,,θ)be a Higgs bundle over M with an initial Hermitian metric H0.If the initial data satisfiesfor some positive constant C0,then the following Hermitian-Einstein flow

    has a solution which is de fined on M ×[0,∞).

    5 Hermitian-Einstein Metrics on Complete Hermitian Manifolds

    In this section we will prove the existence of Hermitian-Einstein metric on complete noncompact Hermitian manifold.We will proceed by the direct elliptic method.The argument is similar to that in[33]for holomorphic vector bundle case.The following are the main assumptions we will need.

    De finition 5.1(Positive spectrum) Let M be a complete Hermitian manifold.We say the holomorphic Laplace operatorhas positive first eigenvalue,if there exists a positive number c such that for any compactly supported smooth function φ one has

    De finition 5.2(L2-Sobolev inequality) Let M be a complete Hermitian manifold of complex dimension m.We say the holomorphic Laplace operatorsatis fies L2-Sobolev inequality,if there exists a positive constant SMsuch that for any compact supported smooth function φ one has

    In order to use the direct elliptic method,we now introduce a new distance function instead of σ.For two metrics H and K,we de fine

    The relationship between σ and τ is given by

    Now choose a compact exhaustion sequenceas in Section 4.By our previous discussion in Section 3,we know that over each ?ithere exists a Hermitian metric Hisuch that

    where H0is the given initial metric on E.Denote hi=Hiand τi= τ(H0,Hi).Then by Corollary 2.7 we can see that

    Next we impose the following condition on the holomorphic Laplace operator.

    Condition 5.3There exists a positive number p>0 such that for every non-negative function f∈Lp(M),there exists a non-negative solution u∈C0(M)of

    Theorem 5.4Let(M,g)be a complete Hermitian manifold,and(E,,θ)be a Higgs bundle over M with an initial Hermitian metric H0.Assume for the holomorphic Laplace operator?,Condition 5.3 is satis fied with some positive number p.Assume further thatThen there exists a Hermitian-Einstein metric H on E.

    ProofLet u be a solution to.If M satis fies Condition 5.3,this together with(5.1)and the maximun principle shows that

    holds for any x∈?i.Using this C0-estimate,and proceeding as how we did in Section 4 shows that Hiconverges uniformly over any compact subset of M to a smooth Hermitian metric H satisfying

    over any compact subset.Hence H is a Hermitian-Einstein metric over the whole manifold M.

    Therefore we complete the proof of Theorem 1.1 by the following lemma.

    Lemma 5.5(see[33,Lemma 6.4,Lemma 6.5])Let M be a complete Hermitian manifold of complex dimension m.

    1)Assume the holomorphic Laplace operator??has positive first eigenvalue(M).Then for a non-negative function f∈Lp(M),where p≥2,the following equation

    has a non-negative solution

    2)Assume??satis fies the L2-Sobolev inequality.Then for a non-negative function f∈Lp(M),where 2≤p

    伦精品一区二区三区| 国产女主播在线喷水免费视频网站| 欧美精品一区二区大全| 青草久久国产| 少妇人妻久久综合中文| 最近中文字幕高清免费大全6| 午夜日韩欧美国产| 超碰97精品在线观看| 美女午夜性视频免费| 伦精品一区二区三区| 精品福利永久在线观看| xxx大片免费视频| 高清不卡的av网站| 三级国产精品片| 天天影视国产精品| 老司机影院毛片| 午夜av观看不卡| 在线观看三级黄色| 日本欧美国产在线视频| 纯流量卡能插随身wifi吗| 久久精品熟女亚洲av麻豆精品| 免费在线观看完整版高清| 永久网站在线| 精品久久蜜臀av无| 亚洲综合精品二区| 精品亚洲乱码少妇综合久久| 性高湖久久久久久久久免费观看| 五月伊人婷婷丁香| 天美传媒精品一区二区| 久久久精品区二区三区| 尾随美女入室| 亚洲精品,欧美精品| 啦啦啦在线观看免费高清www| 在线观看免费高清a一片| 三级国产精品片| 精品人妻在线不人妻| 午夜福利在线免费观看网站| 看非洲黑人一级黄片| 一级毛片电影观看| 啦啦啦中文免费视频观看日本| 91久久精品国产一区二区三区| 女性生殖器流出的白浆| 国产成人一区二区在线| 看十八女毛片水多多多| 国产一区二区三区综合在线观看| 亚洲精品美女久久av网站| 宅男免费午夜| 在线天堂中文资源库| 久久久国产精品麻豆| 色94色欧美一区二区| 久久国产精品大桥未久av| 亚洲欧美精品自产自拍| 天天操日日干夜夜撸| 这个男人来自地球电影免费观看 | 精品人妻在线不人妻| 久久鲁丝午夜福利片| 一级毛片黄色毛片免费观看视频| 一级片免费观看大全| 亚洲av.av天堂| 一二三四中文在线观看免费高清| 亚洲美女搞黄在线观看| 亚洲人成77777在线视频| 波多野结衣一区麻豆| 青春草亚洲视频在线观看| 国产成人aa在线观看| 亚洲第一av免费看| 高清黄色对白视频在线免费看| 精品一区二区三区四区五区乱码 | 超色免费av| 青草久久国产| 精品久久久久久电影网| 在线观看三级黄色| 丰满乱子伦码专区| 国产成人免费无遮挡视频| av在线播放精品| 亚洲欧美一区二区三区久久| 老女人水多毛片| 久久久久久久久久久免费av| 一级毛片 在线播放| 美女福利国产在线| 男女午夜视频在线观看| 亚洲国产精品一区二区三区在线| 亚洲内射少妇av| 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 成年美女黄网站色视频大全免费| av网站在线播放免费| 又黄又粗又硬又大视频| 精品视频人人做人人爽| 亚洲一区二区三区欧美精品| 国产精品一区二区在线不卡| 国产一级毛片在线| 天天影视国产精品| 天堂中文最新版在线下载| 亚洲国产av影院在线观看| 我的亚洲天堂| 日本欧美国产在线视频| 伊人久久国产一区二区| 91精品三级在线观看| 叶爱在线成人免费视频播放| xxx大片免费视频| 日本欧美国产在线视频| 国产又色又爽无遮挡免| 香蕉国产在线看| 亚洲av电影在线观看一区二区三区| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 久久免费观看电影| 人人澡人人妻人| 亚洲三区欧美一区| www.av在线官网国产| 免费观看a级毛片全部| 美女xxoo啪啪120秒动态图| 精品少妇一区二区三区视频日本电影 | 国产精品欧美亚洲77777| 男人爽女人下面视频在线观看| 国产精品久久久av美女十八| 最新的欧美精品一区二区| 免费av中文字幕在线| 欧美精品亚洲一区二区| 亚洲成av片中文字幕在线观看 | 免费日韩欧美在线观看| av视频免费观看在线观看| 电影成人av| √禁漫天堂资源中文www| 在线观看免费高清a一片| 国产无遮挡羞羞视频在线观看| 午夜福利,免费看| 免费人妻精品一区二区三区视频| 国产精品一区二区在线不卡| 亚洲精品国产av蜜桃| 免费大片黄手机在线观看| 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 久久精品国产鲁丝片午夜精品| 久久久国产精品麻豆| 99热网站在线观看| 人妻少妇偷人精品九色| 不卡视频在线观看欧美| 99热网站在线观看| 国产黄色视频一区二区在线观看| 日本黄色日本黄色录像| 日韩制服骚丝袜av| av不卡在线播放| 日本欧美视频一区| 这个男人来自地球电影免费观看 | 久久久久国产精品人妻一区二区| 亚洲男人天堂网一区| 国产精品一国产av| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 亚洲av日韩在线播放| 又粗又硬又长又爽又黄的视频| 成年人午夜在线观看视频| 精品国产一区二区三区四区第35| 久久99蜜桃精品久久| 日本av手机在线免费观看| 午夜精品国产一区二区电影| 99精国产麻豆久久婷婷| 精品一区在线观看国产| 女的被弄到高潮叫床怎么办| 香蕉丝袜av| 亚洲综合色网址| 国产精品99久久99久久久不卡 | 亚洲精品视频女| 久久热在线av| 伊人久久国产一区二区| 亚洲精品视频女| 在线观看美女被高潮喷水网站| 如何舔出高潮| 寂寞人妻少妇视频99o| 欧美日韩亚洲国产一区二区在线观看 | av.在线天堂| 欧美精品国产亚洲| 999精品在线视频| 亚洲av电影在线进入| 亚洲av男天堂| 精品少妇一区二区三区视频日本电影 | 涩涩av久久男人的天堂| 亚洲精品视频女| 精品少妇久久久久久888优播| 欧美成人午夜免费资源| 老鸭窝网址在线观看| 久久久久人妻精品一区果冻| av线在线观看网站| 日韩一本色道免费dvd| 国产精品女同一区二区软件| 男女午夜视频在线观看| 在线天堂最新版资源| 久久99蜜桃精品久久| 丰满乱子伦码专区| 最近手机中文字幕大全| 18禁动态无遮挡网站| 18禁国产床啪视频网站| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 99久久综合免费| 在线亚洲精品国产二区图片欧美| 人体艺术视频欧美日本| 国产日韩一区二区三区精品不卡| 亚洲美女搞黄在线观看| 汤姆久久久久久久影院中文字幕| 午夜日韩欧美国产| 考比视频在线观看| 日日撸夜夜添| 国产免费视频播放在线视频| 日韩制服丝袜自拍偷拍| 视频在线观看一区二区三区| 精品卡一卡二卡四卡免费| 巨乳人妻的诱惑在线观看| 超色免费av| 精品卡一卡二卡四卡免费| 在线观看免费视频网站a站| 中文欧美无线码| 黄色毛片三级朝国网站| 80岁老熟妇乱子伦牲交| 性少妇av在线| 青春草国产在线视频| 午夜福利在线免费观看网站| 美女xxoo啪啪120秒动态图| 亚洲精品一区蜜桃| 免费人妻精品一区二区三区视频| 欧美 亚洲 国产 日韩一| 久久毛片免费看一区二区三区| 日韩精品有码人妻一区| 欧美精品亚洲一区二区| 在线天堂最新版资源| 中文字幕最新亚洲高清| 亚洲第一av免费看| 人人妻人人澡人人看| 老司机影院成人| 亚洲男人天堂网一区| 国产97色在线日韩免费| 欧美 日韩 精品 国产| 中文字幕人妻丝袜制服| 日日摸夜夜添夜夜爱| 亚洲第一av免费看| 亚洲欧美成人综合另类久久久| 在线 av 中文字幕| 午夜福利在线免费观看网站| 我的亚洲天堂| 久久婷婷青草| 亚洲一级一片aⅴ在线观看| 精品少妇一区二区三区视频日本电影 | 久久狼人影院| 少妇人妻久久综合中文| 丝袜在线中文字幕| 久久精品国产亚洲av高清一级| 久久热在线av| 免费少妇av软件| 日本色播在线视频| 亚洲欧美一区二区三区国产| 久久鲁丝午夜福利片| 2018国产大陆天天弄谢| 亚洲av在线观看美女高潮| 亚洲av欧美aⅴ国产| 国产1区2区3区精品| h视频一区二区三区| 亚洲欧美成人综合另类久久久| 国产黄色视频一区二区在线观看| av.在线天堂| 黄色怎么调成土黄色| 在线观看人妻少妇| 视频区图区小说| a级毛片黄视频| 久久久久国产网址| 伦理电影免费视频| 国产成人精品一,二区| 久久99精品国语久久久| 亚洲一区中文字幕在线| 夫妻性生交免费视频一级片| 日本av手机在线免费观看| 男人添女人高潮全过程视频| 日韩制服骚丝袜av| 欧美日韩亚洲高清精品| 美女大奶头黄色视频| 日日摸夜夜添夜夜爱| 少妇被粗大的猛进出69影院| 可以免费在线观看a视频的电影网站 | 国产乱人偷精品视频| 最新的欧美精品一区二区| 午夜福利影视在线免费观看| 深夜精品福利| 欧美国产精品一级二级三级| 少妇精品久久久久久久| 日韩制服骚丝袜av| 亚洲av综合色区一区| 制服丝袜香蕉在线| 精品久久久精品久久久| 色94色欧美一区二区| 制服人妻中文乱码| 男女无遮挡免费网站观看| 免费在线观看黄色视频的| 水蜜桃什么品种好| 午夜福利在线观看免费完整高清在| 午夜免费鲁丝| 亚洲视频免费观看视频| 国产亚洲午夜精品一区二区久久| tube8黄色片| 国产熟女午夜一区二区三区| 在线观看www视频免费| 亚洲欧美一区二区三区黑人 | 亚洲国产精品一区二区三区在线| 国产精品久久久久久av不卡| 亚洲久久久国产精品| 一边亲一边摸免费视频| 精品亚洲成国产av| 99热网站在线观看| 亚洲图色成人| 少妇被粗大猛烈的视频| 蜜桃国产av成人99| 国产精品成人在线| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 国产精品久久久久久av不卡| 99热国产这里只有精品6| 99久久精品国产国产毛片| 国产精品二区激情视频| 99香蕉大伊视频| 毛片一级片免费看久久久久| 亚洲伊人色综图| 叶爱在线成人免费视频播放| 成人国产麻豆网| 国产1区2区3区精品| 久久久久久人人人人人| 伦理电影大哥的女人| 又大又黄又爽视频免费| 观看美女的网站| 国产精品99久久99久久久不卡 | 久久久国产精品麻豆| 可以免费在线观看a视频的电影网站 | 免费不卡的大黄色大毛片视频在线观看| 国产片特级美女逼逼视频| 免费看不卡的av| 国产极品粉嫩免费观看在线| 婷婷色综合www| 国产淫语在线视频| 国产 一区精品| 99久久精品国产国产毛片| 亚洲男人天堂网一区| 菩萨蛮人人尽说江南好唐韦庄| 久久久久国产精品人妻一区二区| 大香蕉久久网| 国产国语露脸激情在线看| 一区二区三区乱码不卡18| 精品亚洲成国产av| 一级片免费观看大全| 久久青草综合色| 97在线人人人人妻| 天天躁夜夜躁狠狠久久av| 两个人看的免费小视频| 三上悠亚av全集在线观看| 制服丝袜香蕉在线| 国产日韩一区二区三区精品不卡| 成年av动漫网址| 寂寞人妻少妇视频99o| 久久热在线av| 久久精品国产鲁丝片午夜精品| 中文天堂在线官网| 久久久久久久精品精品| 在线观看人妻少妇| 最新的欧美精品一区二区| 热re99久久国产66热| 青春草视频在线免费观看| 五月伊人婷婷丁香| 亚洲欧美精品综合一区二区三区 | 又大又黄又爽视频免费| 狠狠精品人妻久久久久久综合| 日本色播在线视频| 中文字幕制服av| 久久精品亚洲av国产电影网| 亚洲三区欧美一区| 香蕉国产在线看| 一区二区三区激情视频| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 成人毛片a级毛片在线播放| 老司机亚洲免费影院| 免费女性裸体啪啪无遮挡网站| 一本久久精品| 你懂的网址亚洲精品在线观看| 99久久综合免费| 成人免费观看视频高清| 国产精品久久久久久av不卡| 国产高清不卡午夜福利| 在线观看免费高清a一片| 国产一区二区激情短视频 | 国产av精品麻豆| 男男h啪啪无遮挡| 久久久久久久久久久免费av| 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃| 中文字幕精品免费在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| videossex国产| 久久久国产精品麻豆| 午夜福利视频精品| 国产精品一区二区在线观看99| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 丰满迷人的少妇在线观看| 国产不卡av网站在线观看| 国产高清国产精品国产三级| 国产精品二区激情视频| 日日爽夜夜爽网站| 国产白丝娇喘喷水9色精品| 国精品久久久久久国模美| av有码第一页| 亚洲色图综合在线观看| 老司机影院毛片| 一级毛片我不卡| 国产av精品麻豆| 春色校园在线视频观看| 人成视频在线观看免费观看| 99热全是精品| 免费观看a级毛片全部| 亚洲国产成人一精品久久久| 日韩制服骚丝袜av| 久久久久久免费高清国产稀缺| 永久网站在线| 亚洲在久久综合| 免费播放大片免费观看视频在线观看| videossex国产| 久久精品国产亚洲av涩爱| 成人18禁高潮啪啪吃奶动态图| 新久久久久国产一级毛片| 男人操女人黄网站| 老司机亚洲免费影院| 国产一区二区激情短视频 | 久久热在线av| 国产亚洲av片在线观看秒播厂| 亚洲精品视频女| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| 2022亚洲国产成人精品| 春色校园在线视频观看| 国产探花极品一区二区| 各种免费的搞黄视频| 午夜精品国产一区二区电影| 欧美精品一区二区大全| 国产免费视频播放在线视频| 午夜影院在线不卡| 国产精品偷伦视频观看了| 制服丝袜香蕉在线| 精品一区在线观看国产| 久久久久久久亚洲中文字幕| 日韩伦理黄色片| 婷婷色综合www| 久久精品国产亚洲av涩爱| 一本—道久久a久久精品蜜桃钙片| 老汉色∧v一级毛片| 久久精品国产亚洲av高清一级| 久久青草综合色| 欧美97在线视频| 国产麻豆69| 在线亚洲精品国产二区图片欧美| 男女免费视频国产| 久久久久久久精品精品| 久久毛片免费看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 999久久久国产精品视频| 成年美女黄网站色视频大全免费| 少妇猛男粗大的猛烈进出视频| 久久这里有精品视频免费| 久久99蜜桃精品久久| 国产熟女欧美一区二区| 国产成人免费无遮挡视频| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 成人二区视频| 寂寞人妻少妇视频99o| 久久国产亚洲av麻豆专区| 宅男免费午夜| 亚洲综合色网址| 十八禁高潮呻吟视频| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 黄片小视频在线播放| 视频区图区小说| 妹子高潮喷水视频| 国产成人精品久久二区二区91 | 欧美精品国产亚洲| 97在线人人人人妻| 美女主播在线视频| 建设人人有责人人尽责人人享有的| 成人毛片a级毛片在线播放| 久久精品久久精品一区二区三区| 国产午夜精品一二区理论片| 99久久中文字幕三级久久日本| 久久久久久久国产电影| 国产精品偷伦视频观看了| 亚洲精品国产av成人精品| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 国产无遮挡羞羞视频在线观看| 久久精品亚洲av国产电影网| 亚洲精品日本国产第一区| 不卡视频在线观看欧美| 精品久久蜜臀av无| 如何舔出高潮| 母亲3免费完整高清在线观看 | 丁香六月天网| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 在线看a的网站| 天天躁日日躁夜夜躁夜夜| 在线精品无人区一区二区三| 亚洲内射少妇av| 巨乳人妻的诱惑在线观看| 一本—道久久a久久精品蜜桃钙片| www日本在线高清视频| 男男h啪啪无遮挡| 国产精品一区二区在线观看99| 久久精品久久精品一区二区三区| 美女午夜性视频免费| 欧美日韩亚洲国产一区二区在线观看 | 我的亚洲天堂| 亚洲在久久综合| av天堂久久9| 免费在线观看完整版高清| 国产成人av激情在线播放| 久久久久精品人妻al黑| 久久影院123| 国产成人一区二区在线| 黄片播放在线免费| 亚洲国产精品999| 9色porny在线观看| 国产精品不卡视频一区二区| av一本久久久久| 日韩在线高清观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 巨乳人妻的诱惑在线观看| 日韩av免费高清视频| 日本欧美视频一区| 亚洲精品国产一区二区精华液| 成年女人在线观看亚洲视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美日韩在线播放| 亚洲美女黄色视频免费看| 麻豆精品久久久久久蜜桃| 久久99蜜桃精品久久| 超碰97精品在线观看| 欧美日韩一级在线毛片| 精品99又大又爽又粗少妇毛片| 五月伊人婷婷丁香| 久久久久久久国产电影| 看非洲黑人一级黄片| 久久人人爽人人片av| 只有这里有精品99| 成人二区视频| 69精品国产乱码久久久| 在线亚洲精品国产二区图片欧美| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区蜜桃| 国产麻豆69| videos熟女内射| 99热网站在线观看| 少妇精品久久久久久久| 大码成人一级视频| 亚洲国产看品久久| 国产精品三级大全| 国产又色又爽无遮挡免| 国产精品 欧美亚洲| 亚洲精品久久成人aⅴ小说| 国产精品免费大片| 国产午夜精品一二区理论片| 男女高潮啪啪啪动态图| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 99re6热这里在线精品视频| 最近中文字幕高清免费大全6| www.av在线官网国产| 搡女人真爽免费视频火全软件| 在线观看美女被高潮喷水网站| 少妇被粗大的猛进出69影院| √禁漫天堂资源中文www| 亚洲欧美成人精品一区二区| 两个人看的免费小视频| 亚洲第一青青草原| 一级毛片电影观看| 伊人久久国产一区二区| 日韩不卡一区二区三区视频在线| 丝袜在线中文字幕| 日本av免费视频播放| 青春草国产在线视频| 日韩伦理黄色片| 精品亚洲成国产av| 亚洲欧洲日产国产| 在线精品无人区一区二区三| 久久韩国三级中文字幕| 亚洲经典国产精华液单| 久久 成人 亚洲| www.av在线官网国产| 亚洲精品av麻豆狂野| 成年人免费黄色播放视频| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 嫩草影院入口| 国产有黄有色有爽视频| 日韩中文字幕视频在线看片| 我的亚洲天堂| 另类亚洲欧美激情| 欧美国产精品一级二级三级| 亚洲成av片中文字幕在线观看 | 国产精品久久久久成人av| 精品福利永久在线观看| 精品少妇一区二区三区视频日本电影 | 国产精品国产三级国产专区5o| 视频在线观看一区二区三区| 国产精品国产三级国产专区5o| 国产一区二区三区av在线| 国产精品蜜桃在线观看| 少妇人妻久久综合中文| 天天影视国产精品| 亚洲av欧美aⅴ国产|