• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LOCAL CONVERGENCE OF INEXACT NEWTON-LIKE METHOD UNDER WEAK LIPSCHITZ CONDITIONS?

    2020-04-27 08:10:32IoannisARGYROS

    Ioannis K.ARGYROS

    Department of Mathematical Sciences,Cameron University,Lawton,OK 73505,USA

    E-mail:iargyros@cameron.edu

    Yeol Je CHO?

    School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731,China

    Department of Mathematics Education,Gyeongsang National University,Jinju 52828,Korea

    E-mail:yjcho@gnu.ac.kr

    Santhosh GEORGE

    Department of Mathematical and Computational Sciences,National Institute of Technology Karnataka,757 025 India

    E-mail:sgeorge@nitk.ac.in

    Yibin XIAO(肖義彬)

    School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731,China

    E-mail:xiaoyb9999@hotmail.com

    Abstract The paper develops the local convergence of Inexact Newton-Like Method(INLM)for approximating solutions of nonlinear equations in Banach space setting.We employ weak Lipschitz and center-weak Lipschitz conditions to perform the error analysis.The obtained results compare favorably with earlier ones such as[7,13,14,18,19].A numerical example is also provided.

    Key words inexact Newton method;Banach space;semilocal convergence;weak and center-weak Lipschitz condition;recurrent functions;Kantorovich hypotheses

    1 Introduction

    Let X,Y be Banach spaces and D be a non-empty convex and open subset in X.Let U(x,r)and(x,r)stand,respectively,for the open and closed ball in X with center x and radius r>0.Denote by L(X,Y)the space of bounded linear operators from X into Y.In this paper,we are concerned with the problem of approximating a solution x?of equation

    where F is a Fr′echet continuously differentiable operator de fined on D with values in Y.

    Using mathematical modelling,many problems from computational sciences and other disciplines can be brought in the form of equation(1.1)(see,for example,[3,5,9,10,12,18]),which is related to many problems such as inclusion problems and variational inequalities etc(see,for example,[16,17,20]).The solution of these equations can rarely be found in closed form.That is why the solution methods for these equations are iterative.In particular,the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton’s method[1–15,18,19].The study about convergence matter of iterative procedures is usually centered on two types:semilocal and local convergence analysis.The semilocal convergence matter is,based on the information around an initial point,to give criteria ensuring the convergence of iterative procedure,while the local one is,based on the information around a solution,to find estimates of the radii of convergence balls.There is a plethora of studies on the weakness and/or extension of the hypothesis made on the underlying operators(see,for example,[1–15,18,19]).

    Undoubtedly,the most popular iterative method,for generating a sequence approximating x?,is Newton’s method(NM)which is de fined as

    for each n≥0,where x0is an initial point.There are two difficulties with the implementation of the method(NM).The first is to evaluate F′and the second difficulty is to exactly solve the following Newton equation

    for each n≥0.It is well-known that evaluating F′and solving equation(1.3)may be computationally expensive[3,7,9,11,18,19].That is why the inexact Newton method(INLM)has been used[3,4,11,12,18,19].

    For n=0,the step 1 until the convergence do.

    Find the step?nwhich satis fies

    where

    Set xn+1=xn+?n,where Pnis an invertible operator for each n≥0.Here{rn}is a null-sequence in the Banach space Y.Clearly,the convergence behavior of the method(INLM)depends on the residual controls of{rn}and the hypotheses on F′.In particular,the Lipschitz continuity conditions on F′have been used and residual controls of the form

    for some θ∈ [0,1]and for each n ≥ 0 have been employed.Here{ηn},{θn}are the sequences in[0,1],{Pn}is a sequence in L(Y,X)and F′(x?)?1F′satis fies the Lipschitz condition or the H?lder condition on U(x?,r)(see[3–9,11–13,19]).

    In this paper,we are motivated by the works of Argyros et al.[3,4],Chen et al.[7]and optimization considerations.We suppose that F has a continuous Fr′echet-derivative in(x?,r),F(x?)=0,F′(x?)?1F′exists and F′(x?)?1F′satis fies the Lipschitz with the L-average radius condition

    for each x ∈ U(x?,r).Here,τ∈ [0,1]and L is a monotone function on[0,r].Condition(1.6)was inaugurated by Wang[19].

    In view of(1.6),there exists a monotone function L0on[0,r]such that the center Lipschitz with L0-average condition

    holds for each x ∈ U(x?,r).Clearly,we have

    for each u∈[0,r]and L/L0can be arbitrarily large[3,4,6](see also the numerical example at the end of the study).It is worth noticing that(1.7)is not an additional to(1.6)hypothesis since in practice the convergence of(1.6)requires the computation of(1.7).

    for each x ∈ U(x?,r)instead of using(1.6)to obtain

    for each x ∈ U(x?,r).

    Notice that(1.6)and(1.10)were used in[7,19].It turns out that using(1.9)instead of(1.10),in the case when L0(u)

    1)Larger radius of convergence.

    2)Tighter error estimates on the distancesfor each n ≥ 0.

    3)Fewer iterations to achieve a desired error tolerance.

    The rest of the paper is organized as follows:In Section 2,we present some auxiliary results.Section 3 contains the local convergence analysis of the method(INLM).In Section 4,we present special cases.Finally,the numerical example appears in Section 5 and the conclusion in Section 6.

    2 Background

    In this section,we present three auxiliary results.The first two are Banach-type perturbation lemmas.

    Lemma 2.1Suppose that F is such that F′is continuously Fr′echet-differentiable in U(x?,r),F′(x?)?1∈ L(Y,X)and F′(x?)?1F′satis fies the center-Lipschitz condition with L0-average.Let r satisfy

    Then,for each x ∈ U(x?,r),F′(x)is invertible and

    Thus it follows from(2.3)and the Banach lemma on invertible operators[10]that F′(x)?1∈L(Y,X)and(2.2)holds.This completes the proof.

    Lemma 2.2Suppose that F is such that F′is continuously Fr′echet-differentiable in U(x?,r),F′(x?)?1∈ L(Y,X)and F′(x?)?1F′satis fies the radius Lipschitz condition with L-average and the center-Lipschitz condition with L0-average.Then we have

    ProofLet x ∈ U(x?,r).Using(1.7)and(2.1),it follows in turn that

    If F′(x?)?1F′satis fies the center-Lipschitz condition,then we have

    ProofLet x ∈ U(x?,r).We have

    But,in view of(2.2)and the estimate

    shown in[7,Lemma 2.1,1.3],we obtain

    which implies(2.4)and,since L0(u)≤L(u),(2.4)implies(2.5).Estimate(2.6)is shown in[7,Lemmas 1.3,2.2].

    Remark 2.3If L0=L,then our two preceeding results are reduced to the corresponding ones in[7].Otherwise,i.e.,if the strict inequality holds in(1.8),then our estimates are more precise since

    and

    Notice that the right hand sides of(2.9)and(2.10)are the upper bounds of the norms,respectively obtained in the corresponding lemmas in[7].It turns out that in view of estimates(2.9)and(2.10),we obtain the advantages already mentioned in Introduction of this paper of our approach over the corresponding ones in[7,19].

    Next,we present another auxiliary result due to Wang[19,Lemma 2.2].

    Lemma 2.4Suppose that the function Lαde fined by

    is nondecreasing for some α with α ∈ [0,1],where L is a positive integrable function.Then,for each β ≥ 0,the function ?β,αde fined by

    is also nondecreasing.

    3 Local Convergence

    In this section,we present the local convergence of the inexact Newton method using(1.6)and(1.7).

    First,we consider the case Bn=F′(xn)for each n ≥ 0.

    Theorem 3.1Suppose that x?satis fies equation(1.1),F has a continuous Fr′echet derivative in U(x?,r),F′(x?)?1exists and F′(x?)F′satis fies the radius Lipschitz condition(1.6)and the center-Lipschitz condition(1.7).Assume that Bn=F′(xn)for each n ≥ 0 in(1.3)and

    with vn≤v<1.Let r>0 satisfy

    Then the method(INLM)(for Bn=F′(xn))is convergent for all x0∈ U(x?,r)and

    where

    is less than 1.Further,suppose that the function Lαde fined in(2.11)is nondecreasing for some α with 0<α≤1.Letsatisfy

    Then the method(INLM)(for Bn=F′(xn))is convergent for all x0∈U(x?,)and

    where

    is less than 1.

    ProofLet x0∈ B(x?,r),where r satis fies(3.1).Then q given by(3.3)is such that q∈(0,1).Indeed,by the positivity of L,we have

    Suppose that(notice that x0∈ U(x?,r))xn∈ U(x?,r),we have,by(1.3),

    where xθ=x?+θ(xn?x?).It follows,by Lemmas 2.1 and 2.2 and conditions(1.6)and(1.7)that we can obtain in turn

    In particular,if n=0 in(3.7),we obtainHence x1∈ U(x?,r),which shows that the method(INLM)can be continued an in finite number of times.By induction,for each n ≥ 0,xn∈ U(x?,r)anddecreases monotonically.Consequently,it follows that,for each n≥0,

    Hence we show(3.3).Moreover,ifsatis fies(3.4)and Lαde fined by(2.11)is nondecreasing for some α with 0< α ≤ 1,then we get

    If n=0 in(3.1),then we get

    Hence x1∈U(x?,?r).That is,the method(INM)can be continued an in finite number of times.

    It follows by induction that,for each n≥0,xn∈U(x?,)anddecreases monotonically.Therefore,for each k≥0,from(3.7)and Lemma 2.4,it follows in turn that

    Remark 3.2If L0=L,then our Theorem 3.1 reduces to Theorem 3.1 in[7].Otherwise,if L0

    and

    which reduce to the ones in[19]if L0=L.Then we can conclude that vanishing residual,Theorem 3.1 merges into the theory of the Newton method.Besides,if the function Lαde fined by(2.11)is nondecreasing for α=1,then we improve the result in[7].

    Next,we present a result analogous to Theorem 3.1 can also be proven for the inexact Newton-like method,where Bn=B(xn)approximates F′(xn).

    Theorem 3.3Suppose that x?satis fies equation(1.1),F has a continuous derivative in U(x?,r),F′(x?)?1exists and F′(x?)F′satis fies the radius Lipschitz condition(1.6)and the center Lipschitz condition(1.7).Let B(x)be an approximation to F′(x)for all x ∈ U(x?,r),B(x)is invertible and

    Then the method(INLM)method is convergent for all x0∈ U(x?,r)and

    where

    is less than 1.Further,suppose that the function Lαde fined by(2.11)is nondecreasing for some α with 0<α≤1.Lersatisfy

    Then(INLM)is convergent for all x0∈U(x?,)and

    where

    is less than 1.

    ProofLet x0∈ U(x?,r),where r satis fies(3.9),then q given by(3.11)is such that q∈(0,1).Indeed,by the positivity of L,we have

    Moreover,if xn∈ U(x?,r),then,from(1.3),it follows in turn that

    where xθ=x?+θ(xn?x?).Using Lemmas 2.1,2.2 and condition(3.8),we obtain

    If n=0 in(3.15),then we obtain

    Hence x1∈ U(x?,r),this shows that the iteration can be continued an in finite number of times.

    By induction,for each n ≥ 0,xn∈ U(x?,r)anddecreases monotonically.

    Therefore,for each n≥0,it follows in turn that

    which implies(3.10).Furthermore,ifsatis fies(3.12)and Lαde fined by(2.11)is nondecreasing for some α with 0< α ≤ 1,then we get

    If n=0 in(3.15),then we obtain

    Hence x1∈U(x?,),this shows that(1.4)can be continued in finite number of times.By induction,for eachanddecreases monotonically.

    Therefore,for each n≥0,we have

    Remark 3.4If L0=L our Theorem 3.3 reduces to Theorem 3.2 in[7].Otherwise,i.e.,if L0

    4 Special Cases

    In this section,we consider the following special cases of Theorem 3.1 and Theorem 3.3,respectively.

    Corollary 4.1Suppose that x?satis fies equation(1.1),F has a continuous derivative in U(x?,r),F′(x?)?1exists,F′(x?)F′satis fies the radius Lipschitz condition with

    for each x ∈ U(x?,r),0≤ θ≤ 1,where xθ=x?+θ(x?x?),and the center-radius Lipschitz condition with

    for each x∈ U(x?,r),0≤ θ≤ 1 for some c0≤ c.Assume that Bn=F′(xn)for each n≥ 0 in(1.3)and

    with vn≤v<1.Let?r>0 satisfy

    Then the inexact Newton method is convergent for all x0∈U(x?,)and

    where

    is less than 1.

    Corollary 4.2Suppose that x?satis fies equation(1.1),F has a continuous derivative in U(x?,r),F′(x?)?1exists and F′(x?)F′satis fies the radius Lipschitz condition(4.1)and the center Lipschitz condition(4.2).Let B(x)be an approximation to the F′(x)for all x ∈ B(x?,r)B(x)is invertible and satis fies condition(3.8),

    with vk≤v<1.Let>0 satisfy

    Then the inexact Newton method is convergent for all x0∈U(x?,)and

    where

    is less than 1.

    Remark 4.3(1)If v=0 in Corollary 4.1,then the estimate for the radius of convergence ball for Newton’s method is given by

    which improves the result in[7]for c0

    (2)The results in Section 5 of[7]using only the center-Lipschitz condition can be improved if rewritten using L0instead of L.

    5 Examples

    Finally,we provide an example where L0

    Example 5.1Let X=Y=R3,D=(0,1)and x?=(0,0,0).De fine function F on D for w=(x,y,z)by

    Then the Fr′echet derivative of F is given by

    Notice that we have F(x?)=0,F′(x?)=F′(x?)?1=diag{1,1,1}and L0=e?1

    More examples where L0

    6 Conclusions

    Under the hypothesis that F′(x?)F′satis fies the center Lipschitz condition(1.7)and the radius Lipschitz condition(1.6),we presented a more precise local convergence analysis for the enexact Newton method under the same computational cost as in earlier studies such as Chen and Li[7].Numerical examples are provided to show that the center Lipschitz function can be smaller than the radius Lipschitz function.

    久久精品综合一区二区三区| a级毛色黄片| 成人性生交大片免费视频hd| 三级毛片av免费| 在线免费十八禁| 国产精品久久久久久精品电影小说 | 免费少妇av软件| 国产高清三级在线| 亚洲人成网站高清观看| 91狼人影院| 成人高潮视频无遮挡免费网站| 亚洲电影在线观看av| 蜜臀久久99精品久久宅男| 黄片无遮挡物在线观看| 哪个播放器可以免费观看大片| 亚洲熟女精品中文字幕| 我的女老师完整版在线观看| 男女边吃奶边做爰视频| 少妇裸体淫交视频免费看高清| 91在线精品国自产拍蜜月| 一个人观看的视频www高清免费观看| 精品久久久久久久末码| 六月丁香七月| 欧美成人a在线观看| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 可以在线观看毛片的网站| 国产高清三级在线| 免费av观看视频| 中国美白少妇内射xxxbb| 日韩在线高清观看一区二区三区| 国产成人一区二区在线| 国产伦一二天堂av在线观看| 91狼人影院| 国产精品久久久久久久电影| 亚洲av中文av极速乱| 亚洲成人精品中文字幕电影| 亚洲av男天堂| 一级片'在线观看视频| 亚洲最大成人av| 欧美性感艳星| 欧美一区二区亚洲| 美女内射精品一级片tv| 99热6这里只有精品| 精品久久久久久成人av| 黄色欧美视频在线观看| 特级一级黄色大片| 肉色欧美久久久久久久蜜桃 | 亚洲av日韩在线播放| 亚洲精品亚洲一区二区| 少妇被粗大猛烈的视频| 日韩三级伦理在线观看| 狂野欧美激情性xxxx在线观看| 少妇裸体淫交视频免费看高清| 91精品伊人久久大香线蕉| 禁无遮挡网站| 欧美丝袜亚洲另类| 九九爱精品视频在线观看| 伊人久久国产一区二区| 久久精品熟女亚洲av麻豆精品 | 国产av在哪里看| 91av网一区二区| 亚洲av男天堂| 国产综合精华液| 亚洲欧美中文字幕日韩二区| 又爽又黄无遮挡网站| 久久精品国产鲁丝片午夜精品| 精品一区二区三卡| www.av在线官网国产| 国产精品久久久久久久电影| 日韩中字成人| 中文精品一卡2卡3卡4更新| 激情 狠狠 欧美| 嫩草影院入口| 午夜爱爱视频在线播放| 欧美日韩亚洲高清精品| 真实男女啪啪啪动态图| 免费av观看视频| 欧美区成人在线视频| 男女边摸边吃奶| 欧美日韩精品成人综合77777| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇人妻一区二区三区视频| 日韩不卡一区二区三区视频在线| 久久久精品94久久精品| 禁无遮挡网站| 中文字幕制服av| 天堂网av新在线| 亚洲最大成人中文| 三级国产精品欧美在线观看| 美女大奶头视频| 国产亚洲午夜精品一区二区久久 | 亚洲最大成人av| 日韩欧美精品免费久久| 麻豆精品久久久久久蜜桃| 直男gayav资源| 91狼人影院| 亚洲国产高清在线一区二区三| 日韩av不卡免费在线播放| 亚洲怡红院男人天堂| 亚洲av一区综合| 国产亚洲精品久久久com| 狂野欧美白嫩少妇大欣赏| 高清毛片免费看| 欧美高清成人免费视频www| 久久鲁丝午夜福利片| 国产永久视频网站| 国内揄拍国产精品人妻在线| 激情五月婷婷亚洲| 亚洲综合精品二区| 蜜桃亚洲精品一区二区三区| 成年女人在线观看亚洲视频 | 久久久久久久久久人人人人人人| 精品人妻偷拍中文字幕| 日本wwww免费看| 亚洲最大成人av| 国语对白做爰xxxⅹ性视频网站| 亚洲成人久久爱视频| 日本三级黄在线观看| av在线亚洲专区| 日韩av不卡免费在线播放| 最近最新中文字幕免费大全7| 综合色丁香网| 久久久久性生活片| 亚洲在线自拍视频| 欧美激情国产日韩精品一区| 国产乱人视频| 七月丁香在线播放| 日韩成人av中文字幕在线观看| 午夜激情福利司机影院| 伊人久久国产一区二区| 色综合色国产| 亚洲av国产av综合av卡| 免费大片18禁| 性插视频无遮挡在线免费观看| 好男人在线观看高清免费视频| 久久久久久久国产电影| 国产成人freesex在线| 蜜臀久久99精品久久宅男| 五月玫瑰六月丁香| 嫩草影院新地址| 国产美女午夜福利| 日日啪夜夜爽| 人体艺术视频欧美日本| 亚洲精品成人久久久久久| 久久久精品94久久精品| av女优亚洲男人天堂| 亚洲人成网站高清观看| 免费av不卡在线播放| av播播在线观看一区| 黑人高潮一二区| 亚洲aⅴ乱码一区二区在线播放| 免费黄色在线免费观看| 久久久a久久爽久久v久久| 国产白丝娇喘喷水9色精品| 26uuu在线亚洲综合色| a级毛片免费高清观看在线播放| 最后的刺客免费高清国语| 亚洲精品456在线播放app| 赤兔流量卡办理| 身体一侧抽搐| 黑人高潮一二区| 大香蕉97超碰在线| 中文字幕免费在线视频6| a级一级毛片免费在线观看| 全区人妻精品视频| 九九久久精品国产亚洲av麻豆| 国产av国产精品国产| 麻豆精品久久久久久蜜桃| 国产激情偷乱视频一区二区| 国产女主播在线喷水免费视频网站 | 日韩欧美精品免费久久| 成人二区视频| 午夜视频国产福利| 中文天堂在线官网| 国产精品久久久久久精品电影| 搡老乐熟女国产| 在线免费十八禁| 日韩欧美国产在线观看| 国产精品一区二区三区四区免费观看| 亚洲自拍偷在线| 久久久久久久午夜电影| 午夜免费激情av| 亚洲精品456在线播放app| 午夜免费男女啪啪视频观看| 日韩人妻高清精品专区| 一级片'在线观看视频| 禁无遮挡网站| 观看免费一级毛片| 精品国产一区二区三区久久久樱花 | 日日撸夜夜添| 日本爱情动作片www.在线观看| 国产中年淑女户外野战色| 国产免费又黄又爽又色| 人妻制服诱惑在线中文字幕| 日韩人妻高清精品专区| 亚州av有码| av国产久精品久网站免费入址| 欧美日韩国产mv在线观看视频 | 国产成年人精品一区二区| 少妇裸体淫交视频免费看高清| 乱系列少妇在线播放| 亚洲精品一区蜜桃| 国产亚洲精品av在线| 男女边摸边吃奶| 91久久精品国产一区二区三区| 亚洲av不卡在线观看| 精品熟女少妇av免费看| 一个人免费在线观看电影| 真实男女啪啪啪动态图| 免费播放大片免费观看视频在线观看| 国产淫片久久久久久久久| 亚洲精华国产精华液的使用体验| 亚洲av.av天堂| 成年免费大片在线观看| 久久久久久九九精品二区国产| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 亚洲熟女精品中文字幕| 非洲黑人性xxxx精品又粗又长| av福利片在线观看| 超碰av人人做人人爽久久| 真实男女啪啪啪动态图| 亚洲欧美成人综合另类久久久| 能在线免费观看的黄片| 最近中文字幕2019免费版| 久久久精品94久久精品| 精品久久久久久久久久久久久| 男女边摸边吃奶| 午夜福利在线观看吧| 波多野结衣巨乳人妻| 久久久成人免费电影| 午夜爱爱视频在线播放| 精品熟女少妇av免费看| 午夜福利视频精品| 人妻一区二区av| av又黄又爽大尺度在线免费看| 亚洲一区高清亚洲精品| 男女啪啪激烈高潮av片| av国产久精品久网站免费入址| 久久这里有精品视频免费| 亚洲精品日韩在线中文字幕| 91精品一卡2卡3卡4卡| 成年版毛片免费区| 亚洲欧洲国产日韩| 久久97久久精品| 亚洲精品456在线播放app| 人人妻人人澡人人爽人人夜夜 | or卡值多少钱| 三级毛片av免费| 亚洲丝袜综合中文字幕| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件| 蜜桃亚洲精品一区二区三区| 99久久精品一区二区三区| av国产免费在线观看| 国产在视频线精品| 高清在线视频一区二区三区| 在线天堂最新版资源| 国产成人福利小说| av卡一久久| 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 又大又黄又爽视频免费| 日韩欧美精品免费久久| 人妻一区二区av| 欧美bdsm另类| 免费看美女性在线毛片视频| 一级av片app| 国产成人a区在线观看| 亚洲欧美日韩无卡精品| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 日韩欧美精品v在线| 最后的刺客免费高清国语| 免费人成在线观看视频色| 22中文网久久字幕| 噜噜噜噜噜久久久久久91| 天堂俺去俺来也www色官网 | 日韩欧美 国产精品| 一级二级三级毛片免费看| 精品久久久久久成人av| 成年女人看的毛片在线观看| 国产高清国产精品国产三级 | 18禁在线播放成人免费| 精品一区二区三区视频在线| 午夜精品一区二区三区免费看| 人体艺术视频欧美日本| 国产av不卡久久| 人妻少妇偷人精品九色| 极品少妇高潮喷水抽搐| 国产永久视频网站| 最近中文字幕高清免费大全6| 亚洲av不卡在线观看| 国产精品久久久久久久电影| 深爱激情五月婷婷| 国产91av在线免费观看| 国产高清不卡午夜福利| 日韩三级伦理在线观看| 亚洲精品第二区| 精品不卡国产一区二区三区| 男女国产视频网站| 久久久久久久久久久丰满| 欧美精品一区二区大全| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 男女啪啪激烈高潮av片| 亚洲国产最新在线播放| av在线老鸭窝| 两个人的视频大全免费| 色哟哟·www| 国产美女午夜福利| 白带黄色成豆腐渣| 色综合亚洲欧美另类图片| 国产精品一区www在线观看| 内射极品少妇av片p| 免费不卡的大黄色大毛片视频在线观看 | 国产单亲对白刺激| 欧美最新免费一区二区三区| 舔av片在线| 内地一区二区视频在线| 国产精品一区二区性色av| av在线播放精品| a级一级毛片免费在线观看| 日本wwww免费看| 三级国产精品片| 欧美日韩一区二区视频在线观看视频在线 | 中国美白少妇内射xxxbb| 国产 一区精品| 观看美女的网站| 亚洲人与动物交配视频| 成年版毛片免费区| 国产亚洲午夜精品一区二区久久 | 80岁老熟妇乱子伦牲交| 欧美bdsm另类| 久久99热6这里只有精品| 欧美精品一区二区大全| 丰满少妇做爰视频| 国产成人freesex在线| 国产国拍精品亚洲av在线观看| 干丝袜人妻中文字幕| 少妇熟女aⅴ在线视频| 国产精品人妻久久久影院| 极品教师在线视频| 中文字幕av成人在线电影| 亚洲欧美日韩卡通动漫| 国模一区二区三区四区视频| 免费观看精品视频网站| 精华霜和精华液先用哪个| 成人性生交大片免费视频hd| 大香蕉久久网| 国产亚洲91精品色在线| 午夜精品国产一区二区电影 | 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 亚洲精品影视一区二区三区av| 亚洲欧美成人精品一区二区| 国内揄拍国产精品人妻在线| 97精品久久久久久久久久精品| 成人亚洲精品一区在线观看 | 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕| 一个人免费在线观看电影| 大又大粗又爽又黄少妇毛片口| 精品国产三级普通话版| 国产美女午夜福利| 亚洲精华国产精华液的使用体验| 五月伊人婷婷丁香| 亚洲欧美一区二区三区国产| .国产精品久久| 久久综合国产亚洲精品| 别揉我奶头 嗯啊视频| ponron亚洲| 亚洲综合精品二区| 岛国毛片在线播放| 日本猛色少妇xxxxx猛交久久| 蜜桃亚洲精品一区二区三区| 成年女人看的毛片在线观看| 久久久精品欧美日韩精品| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 丰满少妇做爰视频| 18+在线观看网站| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 国产男女超爽视频在线观看| 美女国产视频在线观看| 国产精品国产三级国产专区5o| 精品一区二区三区人妻视频| 日本猛色少妇xxxxx猛交久久| 亚洲不卡免费看| 亚洲精品自拍成人| 亚洲四区av| 91精品一卡2卡3卡4卡| 一级毛片 在线播放| 久久精品国产亚洲网站| 亚洲精品456在线播放app| 欧美日韩一区二区视频在线观看视频在线 | 极品教师在线视频| 免费高清在线观看视频在线观看| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 日韩成人av中文字幕在线观看| 在线观看人妻少妇| 最新中文字幕久久久久| 欧美丝袜亚洲另类| 国产午夜福利久久久久久| 最近中文字幕高清免费大全6| 日韩欧美一区视频在线观看 | 春色校园在线视频观看| 亚洲欧美成人精品一区二区| 在线免费观看的www视频| 狠狠精品人妻久久久久久综合| 永久免费av网站大全| 亚洲av免费高清在线观看| 亚洲av中文字字幕乱码综合| 我的女老师完整版在线观看| 熟妇人妻不卡中文字幕| 久久精品久久久久久噜噜老黄| 狂野欧美白嫩少妇大欣赏| 日本免费在线观看一区| 我要看日韩黄色一级片| av在线老鸭窝| 久久精品久久久久久噜噜老黄| 中文字幕制服av| 精品人妻视频免费看| 欧美xxxx黑人xx丫x性爽| 国内精品一区二区在线观看| 18禁在线播放成人免费| 中文字幕久久专区| 国产成人免费观看mmmm| 嘟嘟电影网在线观看| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 国产成人精品久久久久久| 老司机影院成人| 国产老妇女一区| 免费大片18禁| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| 乱码一卡2卡4卡精品| 日韩伦理黄色片| 午夜福利成人在线免费观看| 日本与韩国留学比较| 最近的中文字幕免费完整| a级一级毛片免费在线观看| 国产午夜精品久久久久久一区二区三区| 午夜免费激情av| 免费大片黄手机在线观看| 综合色av麻豆| 国产乱人偷精品视频| av免费观看日本| 国产片特级美女逼逼视频| 国产精品1区2区在线观看.| 最近中文字幕高清免费大全6| 97超碰精品成人国产| 亚洲av成人av| 99热这里只有精品一区| 夜夜看夜夜爽夜夜摸| 久久久久久久午夜电影| 又黄又爽又刺激的免费视频.| 日韩制服骚丝袜av| 男人狂女人下面高潮的视频| 成年版毛片免费区| 国产精品人妻久久久影院| 国产在视频线在精品| 一区二区三区高清视频在线| 国产综合精华液| 在线播放无遮挡| 97在线视频观看| 久久精品熟女亚洲av麻豆精品 | 国产老妇伦熟女老妇高清| 精品熟女少妇av免费看| 亚洲精品第二区| 国产一区二区在线观看日韩| 久久久久久久亚洲中文字幕| 有码 亚洲区| 久久久久免费精品人妻一区二区| 美女内射精品一级片tv| 国产精品综合久久久久久久免费| 美女高潮的动态| 菩萨蛮人人尽说江南好唐韦庄| 国产探花在线观看一区二区| 日本av手机在线免费观看| 成人亚洲欧美一区二区av| 亚洲精品日本国产第一区| 久久99蜜桃精品久久| 久久精品国产鲁丝片午夜精品| 九色成人免费人妻av| 亚洲人成网站在线观看播放| 久久综合国产亚洲精品| 人体艺术视频欧美日本| 一级黄片播放器| 亚洲欧洲国产日韩| 久久这里有精品视频免费| 69人妻影院| 亚洲第一区二区三区不卡| 久久人人爽人人片av| 亚洲欧美成人综合另类久久久| 免费观看精品视频网站| 91在线精品国自产拍蜜月| 欧美三级亚洲精品| 啦啦啦啦在线视频资源| 97超视频在线观看视频| 国产亚洲精品av在线| av卡一久久| 成人毛片a级毛片在线播放| 国产一级毛片在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美+日韩+精品| 亚洲婷婷狠狠爱综合网| 日韩av在线免费看完整版不卡| 中文字幕免费在线视频6| 亚洲av成人av| 成人高潮视频无遮挡免费网站| 午夜福利视频1000在线观看| 久久99精品国语久久久| 久久久久久久久久久丰满| 97在线视频观看| 国产精品.久久久| 亚洲国产色片| 26uuu在线亚洲综合色| 大又大粗又爽又黄少妇毛片口| 国产黄色小视频在线观看| 亚洲第一区二区三区不卡| 美女高潮的动态| 97超视频在线观看视频| 欧美激情国产日韩精品一区| 大香蕉97超碰在线| 美女大奶头视频| 免费少妇av软件| 搡老妇女老女人老熟妇| 亚洲av日韩在线播放| 久久草成人影院| 亚洲18禁久久av| 精品少妇黑人巨大在线播放| 男插女下体视频免费在线播放| 亚洲av国产av综合av卡| 精品久久久久久久久久久久久| 97在线视频观看| .国产精品久久| 秋霞在线观看毛片| av免费在线看不卡| 亚洲,欧美,日韩| 日本欧美国产在线视频| 亚洲精品成人久久久久久| 欧美97在线视频| 亚洲欧美日韩卡通动漫| ponron亚洲| 日本三级黄在线观看| 国产亚洲最大av| 少妇高潮的动态图| 国产精品一区www在线观看| 国内揄拍国产精品人妻在线| 精品久久久久久久人妻蜜臀av| 大片免费播放器 马上看| freevideosex欧美| 免费黄频网站在线观看国产| 日本免费a在线| 人妻夜夜爽99麻豆av| 狠狠精品人妻久久久久久综合| 夫妻午夜视频| 99久久九九国产精品国产免费| 国产成人aa在线观看| 久久久成人免费电影| 中文资源天堂在线| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 亚洲不卡免费看| 我要看日韩黄色一级片| 欧美xxⅹ黑人| 亚洲av电影不卡..在线观看| 国产黄a三级三级三级人| 亚洲成色77777| 国产视频内射| 国产男人的电影天堂91| 白带黄色成豆腐渣| 日韩一区二区三区影片| 亚洲精品色激情综合| 精品少妇黑人巨大在线播放| 国产人妻一区二区三区在| 国产精品av视频在线免费观看| 日韩在线高清观看一区二区三区| 99久久精品国产国产毛片| 久久精品国产自在天天线| 午夜视频国产福利| 精品久久久精品久久久| 久久国产乱子免费精品| 夜夜爽夜夜爽视频| 91精品伊人久久大香线蕉| 国产av在哪里看| 国产色婷婷99| 国产成人a∨麻豆精品| av在线观看视频网站免费| 欧美一级a爱片免费观看看| 在线观看免费高清a一片| 国产av在哪里看| 成人综合一区亚洲| 亚洲精品影视一区二区三区av| 国产精品福利在线免费观看| 青春草视频在线免费观看| 18禁在线无遮挡免费观看视频| 街头女战士在线观看网站| 欧美一级a爱片免费观看看| 一个人观看的视频www高清免费观看| 日产精品乱码卡一卡2卡三| 午夜精品一区二区三区免费看| 一个人观看的视频www高清免费观看| 亚洲精品视频女| 日日啪夜夜爽| 久久精品久久精品一区二区三区| ponron亚洲| 真实男女啪啪啪动态图| 亚洲国产精品成人综合色| 自拍偷自拍亚洲精品老妇|