• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Advances in Large-eddy Simulation of Two-phase Combustion (I)LES of Spray Combustion*

    2012-10-31 03:35:18ZHOULixing周力行LIKe李科andWANGFang王方DepartmentofEngineeringMechanicsTsinghuaUniversityBeijing00084ChinaDepartmentofThermalEngineeringBeihangUniversityBeijing009China
    關(guān)鍵詞:王方力行

    ZHOU Lixing (周力行)**, LI Ke (李科) and WANG Fang (王方) Department of Engineering Mechanics, Tsinghua University, Beijing 00084, China Department of Thermal Engineering, Beihang University, Beijing 009 China

    Advances in Large-eddy Simulation of Two-phase Combustion (I)LES of Spray Combustion*

    ZHOU Lixing (周力行)1,**, LI Ke (李科)1and WANG Fang (王方)21Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China2Department of Thermal Engineering, Beihang University, Beijing 100191, China

    Spray combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering. In recent years, large-eddy simulation (LES) becomes more and more attractive, because it can give the instantaneous flow and flame structures, and may give more accurate statistical results than the Reynolds averaged Navier-Stokes (RANS) modeling. In this paper, the present status of the studies on LES of spray combustion is reviewed, and the future research needs are discussed.

    spray combustion, large-eddy simulation, sub-grid scale model

    1 INTRODUCTION

    The CFD (computational fluid dynamics) simulation of spray combustion is widely used in power,transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering.The traditional CFD method is the Reynolds averaged Navier-Stokes (RANS) modeling. In recent years,large-eddy simulation (LES) becomes more and more attractive, because it can give the instantaneous flow and flame structures, and may give more accurate statistical results than RANS modeling. In LES the governing equations are filtered and the filtered variables of large scales are directly solved. For variables of small scales (unresolved scales) it is necessary to use the sub-grid scale (SGS) models. Up to now, there is rapid development on the LES of spray combustion,which is used in gas-turbine combustors, rocket-engine combustors and internal combustion engines. Recently,Moin and Apte [1], Patel et al. [2, 3] and James et al. [4]published series of papers, reporting their LES results.The key problems are the SGS stress models, combustion models, and their detailed experimental validation.In the following text, a review is given to show these models and their simulation results, and some comments to these results are made.

    2 LARGE-EDDY SIMULATION

    2.1 Filtered governing equations for LES of two-phase combustion

    The filtered gas governing equations for Eulerian-Lagrangian LES of two-phase combustion can be obtained as

    In the Eulerian-Lagrangian LES, the particle-phase equations are the same as those in RANS modeling [5].

    The accuracy and reasonability of LES are determined by: (1) sufficiently fine grids required for LES, (2) more accurate numerical scheme than that required by RANS modeling, (3) reasonable SGS stress and combustion models.

    2.2 SGS stress models for single-phase gas flows

    For single-phase gas flows the frequently used SGS stress models are the Smagorinsky eddy viscosity model, Germano’s dynamic eddy viscosity model and Kim’s SGS energy equation model. The SGS stress in the momentum equation is defined by

    The Smagorinsky eddy viscosity model [6] is given by

    where CS= 0 .16 is the Smagorinsky constant, and Δ is the filtered scale. The shortcoming of the Smagorinsky model is its too large dissipation rate of the kinetic energy. Germano et al. [7] proposed a dynamic Smagorinsky eddy viscosity model, in which the coefficient CSis not a constant, but is determined by the following filtration process

    Many investigators have indicated that in many cases the dynamic viscosity model gives better results than that given by the standard Smagorinsky model. Kim et al. [8] proposed a SGS kinetic energy model

    The merit of the SGS kinetic energy model is that it avoids the negative value of eddy viscosity, so it is better than the eddy viscosity models. In applications it has been reported that the results of SGS kinetic energy model are close to those obtained using the dynamic eddy viscosity model.

    2.3 SGS stress models for dispersed two-phase flows

    Most of investigators use Eulerian-Lagrangian LES of dispersed two-phase flows, and the SGS stress model for single-phase flows is applied to the gas phase of two-phase flows without accounting for the effect of particles. Some investigators use Eulerian-Eulerian LES by adopting the SGS model similar to the Smagorinsky model for both gas and particle phases [9]. Recently, Simonin et al. [10] proposed a particle SGS stress model for Eulerian-Eulerian LES,but theoretically it is rather complex. Alternatively,Liu et al. [11] simply extended the idea of USM(unified secondorder moments) and k-ε-kptwo-phase turbulence models into two-phase SGS stress models and proposed the USM SGS and two-phase SGS kinetic energy equation models.

    The filtered two-phase continuity and momentum equations in Eulerian-Eulerian LES can be given as

    In the USM SGS model, the two-phase SGS stresses are defined by

    and these stresses are determined by the transport equations as

    This model has been used to simulate swirling gas-particle flows with good results.

    2.4 The gas combustion model for LES

    For the gas combustion models in LES, different combustion models are used in RANS modeling, such as the eddy-break-up (EBU)-Arrhenius model, various presumed probability density distribution function(PDF) models, the laminar flamelet model (LFM), the conditional moment closure (CMC) model and the PDF equation model (the filtered PDF equation, or FDF)model. Most investigators frequently use the LFM for LES of non-premixed flames, the linear-eddy model and G-equation model for premixed flames, EBU and FDF models for both types of flames. The present authors and their co-workers make attempts to test different combustion models [12], and propose a second-order SGS combustion model (SOM SGS) for LES [13]

    The sub-grid scale correlation terms are given by the algebraic expressions

    where Φ and Ψ denote Yoxor Yfuor K,Cτ is the chemical reaction time,tτ is the turbulent diffusion time, a and c are model constants. The reaction time and fluctuation time are given by

    where β is the stoichiometric coefficient. This SOM SGS model has been successfully used in LES of nonpremixed gas jet combustion, gas swirling combustion and gas premixed combustion behind a bluff body.

    3 APPLICATIONS OF LES

    3.1 Spray combustion in gas-turbine combustors Moin and Apte [1] reported the LES of spray combustion in a gas-turbine combustor using a dynamic eddy-viscosity SGS stress model and a laminarflamelet combustion model with a presumed PDF. The statistical results for isothermal gas-particle flows are validated by experiments. For example, the predicted droplet velocity and its comparison with experiments are shown in Fig. 1. The instantaneous gas velocity map is given in Fig. 2, and the instantaneous temperature map in a gas-turbine combustor is shown in Fig. 3. The LES statistical results for the combustion case were validated for the temperature distribution only at a cross section. No other experimental validation for combustion processes was reported.

    Figure 1 Droplet velocity distribution [1]

    Figure 2 Instantaneous gas velocity map [1]

    Figure 3 Instantaneous temperature map in a gas-turbine combustor [1]

    Figure 4 Isothermal gas velocity [2, 3]

    Patel et al. [2, 3] did LES of spray combustion in a modelled and a full-scale gas-turbine combustor,using a SGS energy equation stress model and a lineareddy combustion model. The statistical results for gas time-averaged velocity, RMS (root mean square)fluctuation velocity and droplet velocity are well validated by experiments. For example, the predicted isothermal gas velocity profiles are in good agreement with the experiments, as shown in Fig. 4. The instantaneous temperature maps are given in Fig. 5. No experimental validation of the statistical results for temperature and concentration was reported.

    James et al. [4] conducted the LES of spray combustion in a gas-turbine combustor using standard and dynamic Smagorinsky, SGS energy equation stress models, simplified PDF and filtered PDF (FDF)equation combustion models. Validation of statistical results for isothermal flows by experiments shows that the dynamic Smagorinsky and SGS energy equation models are better than the standard Smagorinsky model. For the combustion case, the instantaneous velocity and temperature maps were obtained. For example, the instantaneous temperature maps are shown in Figs. 6 and 7. No validation of the statistical results for the spray combustion was reported.

    Figure 5 Instantaneous temperature map [2, 3]

    Figure 6 Instantaneous temperature map [4]

    Figure 7 Instantaneous temperature map [4]

    Boileau et al. [9] adopted a two-fluid-LES (Eulerian-Eulerian LES) to simulate an annular gas-turbine combustor. The Wale eddy-viscosity SGS stress model,similar to Smagorinsky model, was used for both gas and dispersed phases. A dynamic thickened-flame combustion model was used. The statistical results for isothermal swirling gas-particle flows are well validated by the measurement results. The instantaneous fuel concentration, droplet size and temperature maps,and the time series for ignition and flame propagation were obtained. No experimental validation of the statistical results for the combustion case was reported.

    Zhao et al. [14] did LES of a gas-turbine combustor by using a SGS energy equation stress model and an eddy-break-up (EBU) combustion model. The obtained instantaneous velocity vectors are in qualitative agreement with the PIV measurement results. The statistical results for temperature and oxygen concentration at the exit are close to the measurement results.

    3.2 LES of spray combustion using the SOM combustion model

    Recently Li and Zhou [15] used the SOM SGS combustion model in LES of ethanol spray combustion in a combustor measured in [16]. The SGS stress model is a SGS kinetic energy model. Fig. 8 gives the predicted time-averaged gas temperature using both SOM model and a finite-rate Arrhenius (FA) model without accounting for the effect of SGS reaction rate.The comparison is made among the LES results, experiments and RANS modeling results using the most complex PDF equation model reported in [16]. It is seen that the LES-SOM results are better than the LES-FA results, indicating that the small-scale temperature and concentration fluctuations do have obvious effect on combustion, in particular at 0.02 m where the LES-SOM results give the temperature peak at r 0.016 m observed in experiments, which cannot be given by the LES-FA results. Furthermore, the LES results are in much better agreement with the experiments than those obtained by RANS modeling using the most complex PDF equation model. Therefore, in general, LES can give more accurate statistical results than RANS modeling, even when using very simple one-step global kinetics.

    Figure 9 gives the predicted instantaneous vorticity map. The coherent structures are initially produced in the near-inlet shear region of fuel jet flows, then intensified to become large vortices, and finally weakened in the downstream region.

    Figure 8 Statistically averaged gas temperature for ethanol spray combustion [15]

    Figure 9 Instantaneous vorticity map [15]

    Figure10 Instantaneous fuel vapor concentration [15]

    The instantaneous ethanol vapor concentration is given in Fig. 10. Clearly, intensive evaporation takes place in the shear region, and the highest fuel concentration is located at the periphery of the large-vortex region. Fig. 11 gives the instantaneous gas temperature map in the z-r plane. In the case of two-phase jet combustion, high temperature develops around the coherent structures in the region of high vapor concentration, but not inside the large vortices. Besides,there are many small flame islands, which do not exist in single-phase jet flame, showing the combustion of separate droplet groups.

    Wang et al. [17] used SOM combustion model to simulate a methanol spray combustor by LES. The LES predicted statistically averaged temperature given in Fig. 12 also shows good agreement with the measurement results.

    4 FUTURE RESEARCH NEEDS AND CONCLUSIONS

    (1) LES of spray combustion has been used in practical combustors, in particular gas-turbine combustors.Different SGS stress models and combustion models are used, among which the laminar-flamelet model and EBU (EDC) model are frequently used.

    Figure 11 Instantaneous gas temperature for ethanol spray combustion [15]

    Figure 12 Temperature distribution for methanol spray combustion [17]□ Exp.; ● LES-SOM

    (2) In many LES studies there is no detailed experimental validation for the statistically averaged results. Further studies on SGS combustion models are still an important task for CFD modellers.

    (3) The SOM combustion model proposed by the present authors is well validated by experiments and is proved to be one of the reasonable and economical models. Further application of this model to various combustors and extended validation should be made.

    (4) All of available combustion models for two-phase combustion are taken from the gas combustion models. There is a need to develop a two-phase SGS combustion model based on DNS (direct numerical simulation), since the two-phase flame structures are different from the single-phase flame structures.

    ACKNOWLEDGEMENTS

    This paper was written and accomplished during the first author’s visit to VTT Technical Research Center of Finland, financially supported by this center.Thanks to Dr. Kallio from VTT Technical Research Center for her help and encouragement.

    NOMENCLATURE

    B pre-exponential factor

    D dissipation term

    E activation energy, J·mol?1

    h ehalpy

    k sub-grid scale kinetic energy, m2·s?2

    M relative molecular mass

    P production term

    Pr Prandtl number

    p pressure, Pa

    r radius, m

    u velocity component, m·s?1

    S source term

    Sc Schmidt number

    T temperature, K

    t time, s

    wsreaction rate, kg·s?1

    wsgssub-grid reaction rate, kg·s?1

    x, y, z space coordinate

    Y mass fraction

    β stoichiometric ratio

    μ dynamic viscosity, kg·m?1·s?1

    μtsubgrid-scale turbulent viscosity, kg·m?1·s?1

    ρ density, kg·m?3

    τ subgrid-scale stress

    τCchemical reaction time, s

    τTturbulent diffusion time, s

    Superscript

    ? filtered value

    Subscripts

    C chemical reaction

    fu fuel

    g gas

    i, j, k components of coordinates

    ox oxygen

    p particle

    sgs sub-grid scale

    t turbulents

    1 Moin, P, Apte, S.V., “Large-eddy simulation of realistic gas turbine combustors”, AIAA J., 44 (4), 698-708 (2006).

    2 Patel, N., Menon, S., “Simulation of spray-turbulence-flame interactions in a lean direct injection combustor”, Combust Flame, 153,228-257 (2008).

    3 Patel, N., Kirtas, M., Sankaran, V., Menon, S., “Simulation of spray combustion in a lean direct injection combustor”, Proceedings of the Combustion Institute, 31, 2327-2334 (2007).

    4 James, S., Zhu, J., Anand, M.S., “Large-eddy simulations as a design tool for gas turbine combustion systems”, AIAA J., 44 (4), 674-686 (2007).

    5 Zhou, L.X., Theory and Numerical Modeling of Turbulent Gas-Particle Flows and Combustion, CRC Press, Florida (1993).

    6 Smagorinsky, J., “General circulation experiments with the primitive equations (I) The basic experiment”, Monthly. Weather Rev., 91,99-164 (1963).

    7 Germano, M., Piomelli, U., Moin, P., Cabot, W.H., “A dynamic sub-gridscale eddy viscosity model”, Physics of Fluids A, 3 (7), 1760-1765 (1991).

    8 Kim, W.W., Menon, S., Mongia, H.C., “Large-eddy simulation of a gas turbine combustor flow”, Combustion Science and Technology,143, 25-62 (1999).

    9 Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L.Y.M.,Poinsot, T.J., Cazalens, M., “Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines”, Flow Turbulence and Combustion, 80, 291-321 (2008).

    10 Moreau, M., Simonin, O., Bédat, B., “Development of gas-particle Euler-Euler LES approach: A priori analysis of particle sub-grid models in homogeneous isotropic turbulence”, Flow, Turbulence and Combustion, 82, 295-324 (2010).

    11 Liu, Y., Zhou, L.X., Xu, C.X., “Large-eddy simulation of swirling gas-particle flows using a USM two-phase SGS stress model”,Powder Technology, 198, 183-188 ( 2010).

    12 Zhou, L.X., Hu, L.Y., Wang, F., “Large-eddy simulation of turbulent combustion using different combustion models”, Fuel, 87, 3123-3131(2008).

    13 Zhou, L.X., “Development of SOM combustion model for Reynolds-averaged and large-eddy simulation of turbulent combustion and its validation by DNS”, Science in China E, 51 (8), 1073-1086(2008).

    14 Yan, Y.W., Zhao, J.X., Zhang, J.Z., Liu, Y., “Large-eddy simulation of two-phase spray combustion for gas turbine combustors”, Applied Thermal Engineering, 28, 1365-1374 (2008).

    15 Li, K., Zhou, L.X., “Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model”, In: Seventh International Symposium on Coal Combustion, Harbin Institute of Technology Harbin, China (2011).

    16 Ge, H.W., Düwel, I., Kronemayer, H., Dibble, R.W., Gutheil, E.,Schulz, C., Wolfrum, J., “Laser-based experimental and Monte Carlo PDF numerical investigation of an ethanol/air spray flame”, Combustion Science and Technology, 180 (8), 1529-1547 (2008).

    17 Wang, F., Leboeuf, F., Huang, Y., Zhou, L.X., Sayma, A.I., “An algebraic sub-grid scale turbulent combustion model”, In: Proceedings of the ASME Turbo Expo, ASME, USA, Vol.2, Parts A and B, 1-8(2010).

    2011-10-24, accepted 2011-10-28.

    * Supported by the National Natural Science Foundation of China (50606026, 50736006) and the Foundation of State Key Laboratory of Engines, Tianjin University (K-2010-07).

    ** To whom correspondence should be addressed. E-mail: zhoulx@mail.tsinghua.edu.cn

    猜你喜歡
    王方力行
    循序力行,讓“德融數(shù)理”落地生根
    中國德育(2022年12期)2022-08-22 06:17:16
    才子大比拼
    情景劇小品
    百名支書感黨恩 學(xué)史力行話振興③
    百名支書感黨恩 學(xué)史力行話振興④
    王方誌:賣一份保險(xiǎn),做一生服務(wù)
    身體力行
    Effect of Different Types of Structural Configuration on Air Distribution in a Compact Purification Device
    光影空間
    赤水源(2018年2期)2018-04-21 06:42:42
    堅(jiān)持實(shí)事求是 力行“三嚴(yán)三實(shí)”
    国产av不卡久久| 国产老妇女一区| 久久国产精品人妻蜜桃| 内地一区二区视频在线| xxxwww97欧美| 可以在线观看的亚洲视频| 国产伦人伦偷精品视频| 免费搜索国产男女视频| 18禁黄网站禁片午夜丰满| 国产高清有码在线观看视频| 国产一区二区三区在线臀色熟女| 搡老岳熟女国产| 国内揄拍国产精品人妻在线| 国产精品一区二区性色av| 99久久九九国产精品国产免费| 免费av观看视频| 亚洲中文日韩欧美视频| 国产av麻豆久久久久久久| 联通29元200g的流量卡| 天堂影院成人在线观看| 欧美一级a爱片免费观看看| 免费看日本二区| 久久九九热精品免费| 69av精品久久久久久| 色播亚洲综合网| 亚洲无线在线观看| 国产一区二区亚洲精品在线观看| 88av欧美| 欧美性猛交╳xxx乱大交人| 亚洲自偷自拍三级| 久久精品国产鲁丝片午夜精品 | 亚洲av免费高清在线观看| 亚洲av一区综合| av在线天堂中文字幕| 国产高清有码在线观看视频| 色精品久久人妻99蜜桃| 99精品久久久久人妻精品| 真人一进一出gif抽搐免费| 欧美在线一区亚洲| 国产精品女同一区二区软件 | 国产午夜精品论理片| 亚洲电影在线观看av| 久久精品人妻少妇| 午夜福利高清视频| 免费看a级黄色片| 日韩人妻高清精品专区| 波多野结衣高清无吗| 亚洲 国产 在线| 在线观看一区二区三区| 欧美日韩精品成人综合77777| 草草在线视频免费看| 男女下面进入的视频免费午夜| 我的女老师完整版在线观看| 午夜福利欧美成人| 亚洲欧美日韩无卡精品| av在线蜜桃| 22中文网久久字幕| 97人妻精品一区二区三区麻豆| 国产精品一区二区三区四区久久| 毛片一级片免费看久久久久 | 一进一出抽搐gif免费好疼| 亚洲熟妇熟女久久| 51国产日韩欧美| 午夜视频国产福利| 午夜影院日韩av| 日韩欧美免费精品| 亚洲美女搞黄在线观看 | 婷婷六月久久综合丁香| 日本一二三区视频观看| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 亚洲国产欧洲综合997久久,| 亚洲成人久久爱视频| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 久久久久久久精品吃奶| 级片在线观看| 国产免费一级a男人的天堂| 国产一区二区在线av高清观看| 麻豆成人午夜福利视频| 日韩欧美在线乱码| 3wmmmm亚洲av在线观看| 嫩草影院入口| 啦啦啦观看免费观看视频高清| av在线蜜桃| 琪琪午夜伦伦电影理论片6080| 热99re8久久精品国产| 人人妻人人看人人澡| 日本五十路高清| 亚洲av一区综合| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 黄色女人牲交| 午夜免费激情av| 又黄又爽又刺激的免费视频.| 久久精品91蜜桃| 九色成人免费人妻av| 18禁黄网站禁片午夜丰满| 亚洲午夜理论影院| 午夜福利欧美成人| 桃红色精品国产亚洲av| 99热精品在线国产| av在线观看视频网站免费| 欧美一区二区亚洲| 久久精品国产鲁丝片午夜精品 | 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 国产av在哪里看| 听说在线观看完整版免费高清| 久久久久性生活片| 少妇熟女aⅴ在线视频| 日韩精品有码人妻一区| 1024手机看黄色片| 伦精品一区二区三区| 亚洲欧美日韩无卡精品| videossex国产| 国产大屁股一区二区在线视频| 九九在线视频观看精品| АⅤ资源中文在线天堂| 99热网站在线观看| 俺也久久电影网| 日韩大尺度精品在线看网址| 国产三级在线视频| 天美传媒精品一区二区| 直男gayav资源| 欧美三级亚洲精品| 91久久精品国产一区二区三区| 干丝袜人妻中文字幕| 日韩精品中文字幕看吧| 天堂√8在线中文| 中文字幕精品亚洲无线码一区| 熟妇人妻久久中文字幕3abv| 久久久久久久久大av| 麻豆成人午夜福利视频| 国产成人一区二区在线| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| 熟妇人妻久久中文字幕3abv| 亚洲av美国av| 少妇人妻精品综合一区二区 | 久久久国产成人精品二区| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av香蕉五月| 最后的刺客免费高清国语| 欧美一级a爱片免费观看看| 日日啪夜夜撸| 欧美激情在线99| 乱码一卡2卡4卡精品| 人妻夜夜爽99麻豆av| a级毛片a级免费在线| 成年免费大片在线观看| 亚洲av二区三区四区| 亚洲18禁久久av| 三级毛片av免费| 久久精品国产亚洲av涩爱 | 成人三级黄色视频| 精品欧美国产一区二区三| 国产精品不卡视频一区二区| 国产蜜桃级精品一区二区三区| 成年人黄色毛片网站| 免费一级毛片在线播放高清视频| eeuss影院久久| 99riav亚洲国产免费| 99热精品在线国产| 成人国产麻豆网| 精品一区二区三区视频在线| 国产精品乱码一区二三区的特点| 国产av不卡久久| 免费看日本二区| 亚洲人成网站在线播放欧美日韩| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 12—13女人毛片做爰片一| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av天美| 国产老妇女一区| 亚洲无线在线观看| 国产综合懂色| 无遮挡黄片免费观看| a在线观看视频网站| 人人妻人人看人人澡| 日本 av在线| 在线免费十八禁| 日韩国内少妇激情av| 国产精品一及| 国内精品久久久久久久电影| 国产老妇女一区| 亚洲精品国产成人久久av| 老司机福利观看| 人妻夜夜爽99麻豆av| 我要搜黄色片| 久久人妻av系列| 亚洲av中文av极速乱 | 免费在线观看影片大全网站| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 无人区码免费观看不卡| 亚洲中文字幕日韩| 免费大片18禁| 日日夜夜操网爽| av国产免费在线观看| 在现免费观看毛片| 精品福利观看| 麻豆国产97在线/欧美| 色av中文字幕| 日韩一本色道免费dvd| 亚洲国产精品成人综合色| 亚洲在线观看片| av中文乱码字幕在线| 国产精品久久视频播放| 尾随美女入室| 久久人人爽人人爽人人片va| 99久久成人亚洲精品观看| 91午夜精品亚洲一区二区三区 | 欧美一区二区精品小视频在线| 搡老妇女老女人老熟妇| 成人欧美大片| 热99在线观看视频| 一级av片app| 日本-黄色视频高清免费观看| 俄罗斯特黄特色一大片| 中文字幕久久专区| 99久久精品热视频| 色视频www国产| 日本-黄色视频高清免费观看| 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| 国产不卡一卡二| 成人av在线播放网站| 婷婷亚洲欧美| 乱人视频在线观看| 成人一区二区视频在线观看| 免费av毛片视频| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 亚洲aⅴ乱码一区二区在线播放| 免费人成在线观看视频色| 国内揄拍国产精品人妻在线| 国产单亲对白刺激| 日韩欧美 国产精品| 久久久久久久精品吃奶| 伦精品一区二区三区| 天堂√8在线中文| 亚洲美女搞黄在线观看 | 免费看美女性在线毛片视频| 国产av麻豆久久久久久久| 久久99热这里只有精品18| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 免费高清视频大片| 久久人妻av系列| 五月伊人婷婷丁香| 久久精品国产亚洲网站| 欧美三级亚洲精品| www.www免费av| 伦精品一区二区三区| 九色成人免费人妻av| 亚洲第一电影网av| 久久精品夜夜夜夜夜久久蜜豆| 三级毛片av免费| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 91狼人影院| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 亚洲精品成人久久久久久| 欧美xxxx性猛交bbbb| av.在线天堂| 亚洲欧美日韩卡通动漫| 伊人久久精品亚洲午夜| 亚洲性夜色夜夜综合| 日本精品一区二区三区蜜桃| 中文字幕免费在线视频6| 婷婷精品国产亚洲av在线| 给我免费播放毛片高清在线观看| av福利片在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩在线高清观看一区二区三区 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| 国产精品一区二区性色av| 欧美xxxx黑人xx丫x性爽| 日本熟妇午夜| 精品免费久久久久久久清纯| 伦精品一区二区三区| 国产一区二区激情短视频| 久久人妻av系列| 日本 av在线| 国产单亲对白刺激| 国产真实伦视频高清在线观看 | 午夜福利欧美成人| 亚洲欧美精品综合久久99| 嫩草影视91久久| 欧美色视频一区免费| 麻豆成人av在线观看| 成人午夜高清在线视频| 内射极品少妇av片p| 亚洲精品国产成人久久av| 天堂网av新在线| 久久精品国产亚洲av香蕉五月| 免费看日本二区| 亚洲精品在线观看二区| 韩国av在线不卡| 久久久久久九九精品二区国产| 18禁裸乳无遮挡免费网站照片| 少妇熟女aⅴ在线视频| 国产精品精品国产色婷婷| 联通29元200g的流量卡| 哪里可以看免费的av片| 联通29元200g的流量卡| 亚洲av免费在线观看| 免费黄网站久久成人精品| 午夜影院日韩av| 中文字幕精品亚洲无线码一区| 1000部很黄的大片| 日韩亚洲欧美综合| 国产精品一区二区性色av| 久久久久九九精品影院| 一区二区三区激情视频| a在线观看视频网站| 国语自产精品视频在线第100页| а√天堂www在线а√下载| 91狼人影院| a级毛片a级免费在线| 可以在线观看毛片的网站| 欧美黑人欧美精品刺激| 亚洲人成网站高清观看| 国产男人的电影天堂91| 国产色婷婷99| 欧美精品国产亚洲| 亚洲在线自拍视频| 长腿黑丝高跟| 欧美最黄视频在线播放免费| АⅤ资源中文在线天堂| av专区在线播放| 哪里可以看免费的av片| 国产av麻豆久久久久久久| 欧美精品国产亚洲| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽| 联通29元200g的流量卡| 国产国拍精品亚洲av在线观看| 十八禁国产超污无遮挡网站| 国产高清视频在线观看网站| 天堂网av新在线| 五月玫瑰六月丁香| 99热精品在线国产| a级毛片免费高清观看在线播放| 窝窝影院91人妻| 国产成人福利小说| 波多野结衣巨乳人妻| 国国产精品蜜臀av免费| 小蜜桃在线观看免费完整版高清| 成年女人永久免费观看视频| 免费一级毛片在线播放高清视频| 亚洲精品粉嫩美女一区| 日韩欧美在线乱码| 欧美日韩乱码在线| 欧美激情久久久久久爽电影| 亚洲精品影视一区二区三区av| 伦理电影大哥的女人| 69人妻影院| 国产精品乱码一区二三区的特点| 免费人成视频x8x8入口观看| 国产乱人伦免费视频| 夜夜爽天天搞| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| 国产黄片美女视频| 在线观看午夜福利视频| 国产熟女欧美一区二区| 高清毛片免费观看视频网站| 三级国产精品欧美在线观看| 午夜精品久久久久久毛片777| 99久久久亚洲精品蜜臀av| 日韩亚洲欧美综合| 久久精品人妻少妇| 女人被狂操c到高潮| 村上凉子中文字幕在线| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看 | 88av欧美| 99久久精品一区二区三区| 有码 亚洲区| 成人精品一区二区免费| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱 | 亚洲性夜色夜夜综合| 亚洲无线观看免费| 欧美zozozo另类| 亚洲经典国产精华液单| 99久久精品国产国产毛片| 国产一级毛片七仙女欲春2| 成年人黄色毛片网站| 悠悠久久av| 18禁黄网站禁片午夜丰满| 欧美又色又爽又黄视频| 91精品国产九色| avwww免费| 九九爱精品视频在线观看| 国产高清激情床上av| 级片在线观看| 亚洲熟妇熟女久久| 搡老熟女国产l中国老女人| 国产伦人伦偷精品视频| 国产乱人伦免费视频| 最后的刺客免费高清国语| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 国产爱豆传媒在线观看| 国产日本99.免费观看| 少妇人妻一区二区三区视频| 日本在线视频免费播放| 97超视频在线观看视频| 天堂av国产一区二区熟女人妻| 国产一区二区三区在线臀色熟女| 特级一级黄色大片| 午夜福利在线观看吧| 夜夜看夜夜爽夜夜摸| 国产欧美日韩一区二区精品| 久久久午夜欧美精品| 欧美中文日本在线观看视频| 国内揄拍国产精品人妻在线| 亚洲在线自拍视频| 噜噜噜噜噜久久久久久91| 亚洲性久久影院| 丝袜美腿在线中文| 亚洲第一区二区三区不卡| 久99久视频精品免费| av中文乱码字幕在线| 极品教师在线视频| 99久久中文字幕三级久久日本| 久久人妻av系列| 床上黄色一级片| 亚洲午夜理论影院| 少妇猛男粗大的猛烈进出视频 | .国产精品久久| 桃红色精品国产亚洲av| 亚洲 国产 在线| 免费看av在线观看网站| 日韩精品有码人妻一区| 久久久精品大字幕| av在线天堂中文字幕| 免费看光身美女| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区人妻视频| 97超级碰碰碰精品色视频在线观看| 精华霜和精华液先用哪个| 黄色丝袜av网址大全| 天堂√8在线中文| 国产亚洲精品av在线| 天美传媒精品一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲人与动物交配视频| 精品人妻视频免费看| 久久久久久久久久久丰满 | 精品久久久久久久久久久久久| 亚洲av成人av| 国产伦一二天堂av在线观看| 99国产精品一区二区蜜桃av| 国产一级毛片七仙女欲春2| 99热6这里只有精品| 久久人人精品亚洲av| 免费黄网站久久成人精品| 在线看三级毛片| 成人毛片a级毛片在线播放| 两人在一起打扑克的视频| www日本黄色视频网| 国产av一区在线观看免费| 97超视频在线观看视频| 看黄色毛片网站| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 亚洲四区av| 此物有八面人人有两片| 人妻久久中文字幕网| 亚洲av美国av| 亚洲性久久影院| 中国美女看黄片| 国产免费一级a男人的天堂| 国产亚洲欧美98| 久久婷婷人人爽人人干人人爱| 免费观看精品视频网站| 精品免费久久久久久久清纯| 午夜福利在线观看免费完整高清在 | 亚洲成人免费电影在线观看| 午夜激情欧美在线| 国产高清激情床上av| 99精品在免费线老司机午夜| 制服丝袜大香蕉在线| 伦理电影大哥的女人| 最近在线观看免费完整版| 亚洲精品一区av在线观看| 免费黄网站久久成人精品| 哪里可以看免费的av片| 欧美精品啪啪一区二区三区| 精品欧美国产一区二区三| 国产午夜精品久久久久久一区二区三区 | 乱系列少妇在线播放| 亚洲精品成人久久久久久| 亚洲人成网站高清观看| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播放欧美日韩| 很黄的视频免费| 一区福利在线观看| 成人一区二区视频在线观看| 亚洲欧美日韩卡通动漫| 91久久精品电影网| 中文字幕免费在线视频6| 哪里可以看免费的av片| 黄色一级大片看看| 国产欧美日韩一区二区精品| 婷婷色综合大香蕉| 欧美最黄视频在线播放免费| av视频在线观看入口| 麻豆久久精品国产亚洲av| 蜜桃亚洲精品一区二区三区| 色哟哟·www| 日本五十路高清| 91麻豆av在线| 亚洲熟妇熟女久久| 日韩精品中文字幕看吧| 一区二区三区免费毛片| 日日啪夜夜撸| 最近最新中文字幕大全电影3| 亚洲精品国产成人久久av| 波野结衣二区三区在线| 国内精品久久久久久久电影| 国产精品久久久久久精品电影| 看黄色毛片网站| 久久天躁狠狠躁夜夜2o2o| 97碰自拍视频| 日韩欧美国产在线观看| 噜噜噜噜噜久久久久久91| 精品不卡国产一区二区三区| 国产视频内射| 亚洲一级一片aⅴ在线观看| 国产亚洲精品av在线| a在线观看视频网站| 最好的美女福利视频网| 99热这里只有是精品50| 精品免费久久久久久久清纯| 一区二区三区高清视频在线| 如何舔出高潮| 女生性感内裤真人,穿戴方法视频| 亚洲av五月六月丁香网| 三级毛片av免费| 免费av毛片视频| 久久久久免费精品人妻一区二区| 久久国内精品自在自线图片| 日本色播在线视频| 啦啦啦韩国在线观看视频| 啪啪无遮挡十八禁网站| 中文字幕av成人在线电影| 亚洲精品乱码久久久v下载方式| 色哟哟·www| 亚洲专区国产一区二区| 一级黄片播放器| 在线免费观看的www视频| 国产伦一二天堂av在线观看| 亚洲欧美日韩高清专用| 国产不卡一卡二| 少妇的逼水好多| 俺也久久电影网| 亚洲国产精品sss在线观看| 中文字幕久久专区| 日本 欧美在线| 国产男靠女视频免费网站| 亚洲av成人精品一区久久| 99九九线精品视频在线观看视频| 夜夜看夜夜爽夜夜摸| 极品教师在线视频| 丰满乱子伦码专区| 成人特级黄色片久久久久久久| 成年女人毛片免费观看观看9| 少妇的逼好多水| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成a人片在线一区二区| 亚洲18禁久久av| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲网站| 国产精品人妻久久久影院| 欧美日韩国产亚洲二区| 欧美成人a在线观看| 一区二区三区激情视频| 少妇人妻精品综合一区二区 | 欧美一级a爱片免费观看看| 亚洲熟妇中文字幕五十中出| 日韩欧美在线乱码| 日本爱情动作片www.在线观看 | 一区二区三区高清视频在线| 桃色一区二区三区在线观看| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 日本精品一区二区三区蜜桃| 国产探花在线观看一区二区| 深爱激情五月婷婷| h日本视频在线播放| av女优亚洲男人天堂| 午夜免费成人在线视频| 亚洲久久久久久中文字幕| 波多野结衣高清作品| 在线观看舔阴道视频| 色精品久久人妻99蜜桃| 成人毛片a级毛片在线播放| 国产单亲对白刺激| 国产精品一及| 看黄色毛片网站| 色播亚洲综合网| 成人毛片a级毛片在线播放| 国产精品久久久久久久久免|