• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Choline Chloride·xZnCl2 Ionic Liquids for Preparation of Biodiesel*

    2012-10-31 03:34:50LONGTao龍濤DENGYuefeng鄧岳鋒GANShucai甘樹才andCHENJi陳繼

    LONG Tao (龍濤), DENG Yuefeng (鄧岳鋒), GAN Shucai (甘樹才) and CHEN Ji (陳繼),**

    1 College of Chemistry, Jilin University, Changchun 130026, China 2 State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China

    Application of Choline Chloride·xZnCl2Ionic Liquids for Preparation of Biodiesel*

    LONG Tao (龍濤)1,2, DENG Yuefeng (鄧岳鋒)2, GAN Shucai (甘樹才)1and CHEN Ji (陳繼)2,**

    1College of Chemistry, Jilin University, Changchun 130026, China2State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China

    The inexpensive and moisture-stable Lewis-acidic ionic liquids were prepared and applied for transesterification of soybean oil to biodiesel. The influences of molar ratio of methanol to soybean oil, reaction temperature and amount of ionic liquids were investigated. The transesterification of soybean oil to biodiesel catalyzed by choline chloride·xZnCl2ionic liquids showed many advantages such as mild conditions and lower cost. On the other hand, the non-ideal yield and complicated separation between biodiesel and soybean oil were also investigated and analyzed. The improvement on the systems of choline chloride·xZnCl2was proposed for further investigation.

    ionic liquids, biodiesel, transesterification, Lewis acid

    1 INTRODUCTION

    In recent years, room-temperature ionic liquids(ILs) have attracted much attention for synthetic and catalytic application because of their important attributes such as wide liquid range, negligible vapor pressure, high catalytic activity, excellent chemical and thermal stabilities, potential recoverability, design possibilities, and ease of separation of the products from reactants [1]. ILs, up to now investigated, can be broadly divided into two types: one based on chloro-metallate anions such as andthe other onnon-metal-containing anions such as . The Lewis acidity of the ILs that composed of imidazole cation and chlorometallate anion increased in the order:CuCl<FeCl3<ZnCl2<AlCl3[2]. Therefore, chloroaluminate ILs have been studied extensively for use in acid catalyzed reactions such as alkylation [3], esterification [4], Baylis-Hillman reactions [5], Friedel-Crafts [6],Diels-Alder [7], electrochemical polymerization [8]and Henry reactions [9]. However, the cost of imidazolium ILs is relatively high for bulk application,whilst chloroaluminate ILs should be used under anhydrous and oxygen-free condition due to their low tolerance to moisture. Based on these reasons, choline chloride·xZnCl2have been prepared and investigated because of their easy preparation, moisture stable and relatively cheap [10]. Choline chloride·xZnCl2have been applied for electrolytic deposition [11], regiospecific Fischer indole reaction [12], protection of carbonyls reaction [13] and Diels-Alder reaction [14].In seeking new application for choline chloride·xZnCl2, some recent publication on biodiesel in ILs have attracted our attention. Earle et al. [15] used ILs ([emim][HSO4], 4-(3-methylimidazolium) butanesulfonic acid cation ILs and quaternary-ammonium-salt alkali ILs, etc.) as solvents and catalysts for the preparation of biodiesel. Zhang et al. [16] prepared composite catalyst from alkali or acidic IL and other alkali(sodium hydroxide, etc.) or acid (concentrated sulfuric acid, etc.) to catalyze soybean oil to biodiesel. Wu et al.[17] catalyzed biodiesel from cottonseed with Br?nsted acidic ILs. These ILs above-mentioned were mostly belonged to imidazole and pyridines ILs. In contrast,choline chloride·xZnCl2ILs have many merits [10]such as generally accessible, easy to handle and relatively cheap. In this paper, the application of choline chloride·xZnCl2as efficient catalysts for preparation of biodiesel under mild conditions is reported.

    2 EXPERIMENTAL

    2.1 Preparation of choline chloride·xZnCl2

    Choline chloride was purchased from Sinopharm Chemical Reagent Co., Ltd. ZnCl2was from Beijing chemical industrial factory. 0.1 mol choline chloride was mixed with zinc chloride (0.1 mol, 0.2 mol, 0.3 mol) and heated to 100 °C in air with stirring until a clear colorless liquid was obtained. The parallel controlled trial was conducted with 2︰1 molar ratio of ZnCl2to choline chloride under sealed nitrogen. The structures of the ILs are illustrated in Scheme 1.

    Scheme 1 Structures of choline chloride·xZnCl2

    2.2 Characterization of choline chloride·xZnCl2

    The structures of the ILs were analyzed by nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR).1H NMR and13C NMR spectra were obtained on a BRUKER AV600 nuclear magnetic resonance spectrometer. Chemical shifts were reported in parts per million. IR spectra were recorded on a BRUKER Vertex 70 FTIR spectrometer using KBr to form a liquid film. Thermogravimetric analysis (TGA) was determined by a thermal analysis instrument (SDTQ600,TA Instruments, USA) from room temperature to 800°C in air at a heating rate of 10 °C·min?1. Viscosity of choline chloride·2ZnCl2was determined by a rotary rheometer (MCR300, CP 25-2, Australia) at 25 °C.

    2.3 Determination of the Lewis acidity of choline chloride·xZnCl2

    All IR samples were prepared by mixing probe liquids and choline chloride·xZnCl2in a given molar ratio of pyridine/ILs=1︰1, and then spreading into liquid films on KBr windows.

    2.4 Preparation of biodiesel

    Soybean oil was obtained from Heilongjiang Jiusan Oil Co., Ltd. and was used without further treatment. Methanol was obtained from Shandong Yuwang Co., Ltd. The transesterification reaction was carried out in a 100 ml round-bottom flask in reflux for the desired time. Soybean oil, methanol, and choline chloride·xZnCl2with different molar ratios were quantitatively introduced into the reactor, and choline chloride·xZnCl2was dissolved in methanol firstly, and then soybean oil was added. The reaction with magnetic stirring and heating at the desired temperature was allowed to proceed for 24, 48 and 72 h, respectively. After reaction, the reactor was cooled to room temperature and two phases were formed. The upper phase consisted of the produced methyl esters, and the lower phase contained choline chloride·xZnCl2and excess methanol. The upper phase containing the methyl esters was simply separated from the lower phase by decantation. The biodiesel products were analyzed by HPLC equipped with a pump (515 HPLC Pump, Waters), an ultraviolet detector (Waters 2487),and a SunFire C18analytical column (250 mm length×4.6 mm i.d.; 5 μm particle size). The detection wavelength was 211 nm. The solvents were filtered through a 0.45 μm Millipore filter prior use. The mobile phase was methanol at a flow rate of 1.0 ml·min?1.The biodiesel samples were diluted with acetone(HPLC grade). The parallel controlled trial was conducted under sealed nitrogen.

    3 RESULTS AND DISCUSSION

    3.1 Characterizations of choline chloride·xZnCl2

    3.1.1 NMR analyses of choline chloride·xZnCl2

    Choline chloride·xZnCl2are analyzed by1H NMR and13C NMR spectroscopies. The NMR spectral data of choline chloride·xZnCl2are as follows.

    choline chloride·ZnCl2(1︰1):1H NMR (600 MHz, DMSO-d6): δ 3.106 (s, 9H), 3.385-3.401 (t, 2H,J 4.8 Hz), 3.831 (s, 2H), 5.266 (s, 1H).13C NMR (150 MHz, DMSO-d6): δ 53.15, 53.18, 53.20, 55.13, 66.94.

    choline chloride·2ZnCl2(1︰2):1H NMR (600 MHz, DMSO-d6): δ 3.101 (s, 9H), 3.381-3.398 (t, 2H,J 4.8 Hz), 3.828 (s, 2H), 5.241 (s,1H).13C NMR (150 MHz, DMSO-d6): δ 53.21, 53.23, 53.20, 55.16, 66.97.

    choline chloride·3ZnCl2(1︰3):1H NMR (600 MHz, DMSO-d6): δ 3.098 (s, 9H), 3.378-3.394 (t, 2H,J 4.8 Hz), 3.825 (s, 2H), 5.234 (s,1H).13C NMR (150 MHz, DMSO-d6): δ 53.34, 53.37, 53.38, 55.25, 66.06.

    The NMR spectral data of the ILs agree with their designed structures (Scheme 1) [10]. As can be seen from the spectra of these catalysts, there is no impurity peak in1H NMR. The band of 3.31 indicates the presence of water, which implies the ILs moisture insensitive.

    3.1.2 IR Analyses of choline chloride·xZnCl2

    Infrared spectra of choline chloride and choline chloride·xZnCl2are shown in Fig. 1. Observation of a broad band in 3430 cm?1and a band near 1620 cm?1[Figs. 1 (a-c)] indicate the presence of water in these ILs, which is different from choline chloride [Fig.1(d)], and both of the bands are found to increase to a certain degree with an increase of x for chloride·xZnCl2.The bands near 3300-3500, 1090 and 1050 cm?1could be assigned to the OH part or C C O stretching vibration associated with N C2H4OH group of choline cation. The infrared spectra of choline chloride·xZnCl2also agree with their designed structures (Scheme 1).

    Figure 1 FT-IR spectra of (a) choline chloride·ZnCl2, (b)choline chloride·2ZnCl2, (c) choline chloride·3ZnCl2, and (d)choline chloride

    3.1.3 Lewis acidity of choline chloride·xZnCl2

    Pyridine, a strongly basic molecule, can react with different type of acid to form pyridinium cation or stable complex. Thus, pyridine has been used as a probe molecule for determination of Lewis and Br?nsted acidity of ILs by monitoring the bands of 1400-1700 cm?1arising from its ring vibration modes[18]. The bands in ranges of 1445-1460 cm?1and 1602-1640 cm?1are indicative of pyridine coordination to Lewis acid sites, whilst the bands in ranges of 1530-1550 cm?1and 1631-1640 cm?1are the indication of the formation of pyridinium ions resulting from the presence of Br?nsted acidic sites [19]. Pyridine is added to choline chloride·xZnCl2to estimate the Lewis acidities of ILs followed by FT-IR scanning.As shown in Fig. 2, neat pyridine represents two well resolved single bands at 1437 cm?1and 1581 cm?1[Fig. 2 (a)]. In Figs. 2 (b-d), bands shift from 1437 to 1449, 1450, 1451 cm?1, respectively and 1581 to 1608 cm?1indicating the coordination of pyridine to Lewis acid sites. The band shift of pyridine molecule could estimate the intensity of acidity [20]. Anionic clusters of choline chloride·xZnCl2are reported to contain[11]. The relative proportions of each species have been quantified using potentiometry [21]. The acidic strength is found to increase in the following order:according to the slight band shifts from 1449 to 1450 and 1451 cm?1. Therefore, the acidity increases with increasing the mole ratios of ZnCl2to choline chloride from 1 to 3. This is in agreement with those catalytic activities obtained in transesterification of soybean oil to biodiesel (Fig. 3). The band of 1537cm?1in Fig. 2 (d) indicates the presence of Br?nsted acidic sites due to hydrolysis of part anion by the absorbed water mentioned above, which is consistent with [C4mim]Cl/AlCl3[22]. However, the hydrolysis is not reported in all the metal chloride systems because of different experimental conditions such as time,temperature and pH, and thus the explanation couldn’t be available in the similar study.

    Figure 2 FT-IR spectra of (a) pure pyridine, (b) pyridine +choline chloride·ZnCl2, (c) pyridine + choline chloride·2ZnCl2,and (d) pyridine + choline chloride·3ZnCl2(pyridine/IL=1︰1 by molar ratios in b-d)

    Figure 3 TG curve of choline chloride·ZnCl2, choline chloride·2ZnCl2 and Choline chloride·3ZnCl2

    3.1.4 Thermal stability and viscosity of choline chloride·xZnCl2

    The thermogravimetric analysis is illustrated in Fig. 3. The decomposition temperatures of choline chloride·ZnCl2, choline chloride·2ZnCl2and choline chloride·3ZnCl2are 320.01 °C, 322.82 °C and 328.89°C, respectively. There is a mass loss on the TG curve near 100 °C which results from the evaporation of water. Therefore, choline chloride·xZnCl2exhibit high thermal stabilities.

    The freezing points of choline chloride·xZnCl2vary between 65 °C (1︰1), 25 °C (1︰2) and 45 °C(1︰3) [10]. Therefore, choline chloride·2ZnCl2is liquid at room temperature while choline chloride·ZnCl2and choline chloride·3ZnCl2are solid. The viscosity of choline chloride·2ZnCl2is determined to be 281 Pa·s at 298 K, close to the calculated viscosity value about 242 Pa·s at 298 K [21].

    3.2 Preparation of biodiesel and analysis

    3.2.1 Effect of different molar ratios of choline chloride to ZnCl2

    The reaction was conducted while the molar ratio of methanol to soybean oil is 16︰1 at 70 °C for 24 h,48 h, 72 h and 84 h, respectively (see Fig. 4). It is found that choline chloride·xZnCl2efficiently promoted the transesterification. The transesterification is promoted by the Lewis acidic speciesin the catalysts. The yield of biodiesel is slightly enhanced with increasing x from 1 to 3. The conversion of soybean oil increases markedly with time, but there is no significant enhancement after 72 h.Hence, 72 h is chosen as the optimized reaction time.Choline chloride·2ZnCl2is chosen as a typical example of catalyst.

    3.2.2 Effect of the amount of choline chloride·2ZnCl2A series of experiments were carried out using the choline chloride·2ZnCl2with different dosages(see Fig. 5). The amount of choline chloride·2ZnCl2is denoted by the IL/oil mass ratio. The results show that with an increase in the relative amount of choline chloride·2ZnCl2, the rate of transesterification reaction is obviously enhanced before 10% and then decreased.The highest conversion is achieved at 10% choline chloride·2ZnCl2. It is very likely that the amount of choline chloride·2ZnCl2higher than 10% would result in a decrease in the catalytic activity and the reason needs to be further investigated.

    Figure 5 Effect of choline chloride·2ZnCl2 amount on the transesterification reaction[IL, n(methanol)︰n(oil)=16︰1, 70 °C]● 24 h; ■ 48 h; ▲ 72 h

    3.2.3 Effect of the molar ratio of methanol to soybean oil

    It is shown that the biodiesel content rapidly increases with increasing molar ratio of methanol to oil(see Fig. 6). Since biodiesel production by transesterification is a reversible reaction, the production yield could be elevated by introducing excess amount of the reactant methanol to change the equilibrium. When the ratio is less than 16, the molar ratio of methanol to oil has a significant effect on the catalytic activity.When methanol is further increased, the concentration of catalyst is diluted at a fixed amount of choline chloride·2ZnCl2and soybean oil, and the amount of methanol has a slight effect on the catalytic performance after 16. Moreover, a higher molar ratio of methanol to oil will cause the separation problem during recycling. Therefore, the optimal molar ratio of methanol to soybean oil of 16 is preferable.

    3.2.4 Effect of the reaction temperature

    In general, the reaction temperature can influence the reaction rate and biodiesel yield. In present work,the reaction temperature varies within a range from 50 to 90 °C. The experimental results are shown in Fig. 7.The biodiesel yield increases with increasing temperature every 10 °C from 50 to 90 °C. The increasing rates are 13.21%, 7.16%, 2.84% and 4.38%, respectively. The temperature intervals of the increase are equal, but the correspondingly increased biodiesel content is reduced gradually. These results show that the influence of reaction temperature on the transesterification reaction becomes smaller with an increase in temperature. Furthermore, the reaction temperature consumedly exceeds the boiling point of methanol such as 80 and 90°C, and the methanol will quickly vaporize and form a large number of bubbles,which inhibits the reaction on the two-phase interface.Moreover, in order to save energy, it is necessary to choose the relative low temperature. Therefore, the optimum reaction temperature for the transesterification of soybean oil to biodiesel is considered to be around 70°C.

    Figure 4 Effect of different molar ratios of choline chloride to ZnCl2[catalyst 10%, n(methanol)︰n(oil)=16︰1, 70 °C]● 1︰1; ■ 1︰2; ▲ 1︰3

    Figure 6 Effect of methanol/soybean oil molar ratio on the transesterification reaction (IL 10%, 70 °C)▲ 24 h; ◆ 48 h; ● 72 h

    Figure 7 Effect of reaction temperature on the transesterification reaction[n(methanol)︰n(oil) =16︰1, IL 10%]● 24 h; ■ 48 h; ▲ 72 h

    3.2.5 Effect of moisture

    The parallel experiment was carried out with and without sealed nitrogen with 16︰1 molar ratio, 70 °C and 72 h. The conversations are 54.52% and 56.14%without and with nitrogen protection, respectively.Therefore, choline chloride·2ZnCl2is insensitive to moisture.

    3.3 Problems and analyses

    The conversion rate of transesterification using choline chloride·2ZnCl2as catalyst under molar ratio of methanol to oil of 16︰1 with addition of 10%catalyst at 70 °C for 72 h is 54.52%. The reaction mechanism of transesterification is shown in Scheme 2.is the predominant species in IL so that thetransesterification is mainly catalyzed by. The non-ideal yield of biodiesel predominately attributesto the weak acidity of . Therefore, the main method increasing the conversion is to improve the acidity of catalyst. The recycling utilization of choline chloride·2ZnCl2plays an important role in preparation procedure. Choline chloride·2ZnCl2exists in methanol phase with glycerol. Glycerol was separated from ILs by vacuum distillation in the reported literatures[23-27]. However, the high boiling point and high viscosity of glycerol make the separation between ILs and glycerol difficult. Furthermore, the requirement for equipment is high in vacuum distillation, which has not been realized in industry. Therefore, the separation between glycerol and ILs may become the bottleneck problem. Thus, the ILs immobilized on some solid materials such as resin to catalyze transesterification to biodiesel or purification of ILs by solvent extraction are proposed, which will be further studied.

    4 CONCLUSIONS

    Choline chloride·xZnCl2were applied as Lewis acidic catalysts for transesterification of soybean oil,which extended their application. FT-IR investigation demonstrated that Lewis acid strength of ILs increased with the increase of ZnCl2, which was in agreement with the activities observed in the preparation of biodiesel. Because of the weak acidity of catalyst, the yield of biodiesel was lower than other ILs.

    Choline chloride·xZnCl2is a new system with many excellent advantages such as simple preparation and low prices. The preparation process of biodiesel using choline chloride·xZnCl2as Lewis acidic catalysts is effective.

    1 Seddon, K.R., “ Ionic liquids for clean technology”, J. Chem. Technol.Biotechnol., 68, 351 (1997).

    Scheme 2 The reaction mechanism of transesterification

    2 Acevedo, O., “Determination of local effects for chloroaluminate ionic liquids on Diel-Alder reactions”, J. Mol. Graphics Modell., 28,95-101 (2009).

    3 DeCastro, C., Sauvage, E., Valkenberg, M.H., H?lderich, W.F.,“Immobilised ionic liquids as Lewis acid catalysts for the alkylation of aromatic compounds with dodecene”, J. Catal., 196, 86-94 (2000).

    4 Shen, Z.L., He, X.J., Mo, W.M., Xie, Y., Hu, B.X., Sun, N., “Synthesis of α-hydroxy esters by glyoxylate-ene reaction in lewis acid chloroaluminate ionic liquids”, Chin. J. Catal., 27 (3), 197-199 (2006).

    5 Kumar, A., Pawar, S.S., “The DABCO-catalysed Baylis-Hillman reactions in the chloroaluminate room temperature ionic liquids: rate promoting and recyclable media”, J. Mol. Catal. A: Chem., 211, 43-47(2004).

    6 Boon, J.A., Levisky, J.A., Pflug, J.L., Wilkes, J.S., “Friedel crafts reactions at ambient-temperature molten-salts”, J. Org. Chem., 51(58), 480-483 (1986).

    7 Lee, C.W., “Diels-Alder reactions in chloroaluminate ionic liquids:acceleration and selectivity enhancement”, Tetrahedron Lett., 40,2461-2464 (1999).

    8 Tang, J., Osteryoung, R., “Formation and electrochemistry of polyaniline in ambient-temperature molten salts”, Synth. Met., 45 (11),1-13 (1991).

    9 Kumar, A., Pawar, S.S., “Catalyzing Henry reactions in chloroaluminate ionic liquids”, J. Mol. Catal. A: Chem., 235, 244-248 (2005).

    10 Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K.,Tambyrajah, V., “Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains”, Chem. Commun., 2010-2011 (2001).

    11 Abbott, A.P., Capper, G., Mckenzie, K.J., Ryder, K.S., “Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride”, J. Electroanal. Chem., 599, 288-294 (2007).

    12 Morales, R.C., Tambyrajah, V., Jenkins, P.R., Davies, D.L., Abbott,A.P., “The regiospecific Fischer indole reaction in choline chloride·2ZnCl2with product isolation by direct sublimation from the ionic liquid”, Chem. Commun., 158-159 (2004).

    13 Duan, Z.Y., Gu, Y.L., Deng, Y.Q., “Green and moisture-stable Lewis acidic ionic liquids(choline chloride·xZnCl2) catalyzed protection of carbonyls at room temperature under solvent-free conditions”, Catal.Commun., 7, 651-656 (2006).

    14 Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah,V., “Quaternary ammonium zinc-or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels-Alder reactions”, Green Chem., 4, 24-26 (2002).

    15 Earle, M.J., Seddon, K.R., Plechkova, N.V., “Production of bio-diesel”, Eur. Pat., EP1866086 (2006).

    16 Zhang, S.J., Sun, J., Zhang, J.M., “The preparation of biodiesel based on ionic liquid”, CN Pat., 200510082972.0 (2005).

    17 Wu, Q., Chen, H., Han, M.H., Wang, D.Z., Wang, J.F., “Transesterification of cottonseed oil catalyzed by Br?nsted acidic ionic liquids”,Ind. Eng. Chem. Res., 46, 7955-7960 (2007).

    18 Parry, E.P., “An infrared study of pyridine adsorbed on acidic solids,characterisation of surface acidity”, J. Catal., 2, 371-379 (1963).

    19 Wu, Q., Dong, B.Q., Han, M.H., Xin, H.L., Jin, Y., “Studies on acidity of chloroaluminate ionic liquids using pyridine as infrared spectroscopic probe” , Chin. J. Anal. Chem., 9 (34), 1323-1326 (2006).

    20 Bourne, K.H., Cannings, F.R., Pitkethly, R.C., “Structure and properties of acid sites in a mixed-oxide system (I) Synthesis and infrared characterization”, J. Phys. Chem., 74 (10), 2197-2205 (1970).

    21 Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., “Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures”, Inorg. Chem., 43, 3447-3452 (2004).

    22 Wang, X.H., Tao, G.H., Wu, X.M., Kou, Y., “Investigation of the acidity of ionic liquids by IR spectroscopy”, Acta Phys. Chim. Sin.,21 (5), 528-533 (2005). (in Chinese)

    23 Wu, Q., Chen, H., Han, M.H., “Preparation of biodiesel oil from cottonseed oil catalyzed by ionic liquids”, Petrochem. Technol., 35(6), 583-586 (2006). (in Chinese)

    24 Wang, W.K., Bao, Z.H., “Preparation of biodiesel from soybean oil catalyzed by aluminum chloride-based ionic liquid”, China Oils and Fats, 32 (9), 51-53 (2007). (in Chinese)

    25 Yi, W.L., Han, M.H., Wu, Q., Jin, Y., “Preparation of biodiesel from waste oil catalyzed with Br?nsted acid ionic liquid”, Chin. J. Process. Eng., 8 (6), 1144-1148 (2007). (in Chinese)

    26 Li, H.P., Wang, Q.Y., Lan, X.Q., Wang, X., Song, H., “Preparation of biodiesel from rapeseed oil catalyzed by ionic liquid [Hmim]HSO4”,China Oils and Fats, 33 (4), 57-59 (2008). (in Chinese)

    27 Han, M.H., Yi, W.L., Wu, Q., Hong, Y.C., Wang, D.Z., “Preparation of biodiesel from waste oils catalyzed by a Br?nsted acidic ionic liquid”, Bioresour. Technol., 100, 2308-2310 (2009).

    2009-07-14, accepted 2009-11-11.

    * Supported by the National High Technology Research and Development Program of China (2007AA06Z202), the National Key Technology Research and Development Program of China (2006BAC02A10), and the Distinguished Young Scholars Foundation of Jilin Province (20060114).

    ** To whom correspondence should be addressed. E-mail: jchen@ciac.jl.cn

    日韩三级视频一区二区三区| 亚洲五月婷婷丁香| 亚洲欧美激情综合另类| 国产精品一区二区免费欧美| 一区二区三区激情视频| 搡老岳熟女国产| 哪里可以看免费的av片| 好男人在线观看高清免费视频| 亚洲欧洲精品一区二区精品久久久| 又黄又粗又硬又大视频| 久久欧美精品欧美久久欧美| 国产精品一区二区三区四区久久| 黄片大片在线免费观看| 老司机福利观看| 免费观看精品视频网站| 色哟哟哟哟哟哟| 两个人免费观看高清视频| 少妇裸体淫交视频免费看高清 | 久久午夜综合久久蜜桃| 精品少妇一区二区三区视频日本电影| 丁香欧美五月| 免费搜索国产男女视频| 欧美色欧美亚洲另类二区| 99热这里只有是精品50| www日本在线高清视频| 日韩欧美 国产精品| 亚洲国产看品久久| 欧美午夜高清在线| 欧美一区二区国产精品久久精品 | 香蕉久久夜色| 好男人电影高清在线观看| 亚洲18禁久久av| 欧美黑人巨大hd| 女人被狂操c到高潮| 搡老熟女国产l中国老女人| 天天躁夜夜躁狠狠躁躁| 国产精品自产拍在线观看55亚洲| 美女 人体艺术 gogo| 夜夜躁狠狠躁天天躁| 国产精品一区二区精品视频观看| 久久精品国产亚洲av香蕉五月| 国产高清有码在线观看视频 | 老汉色∧v一级毛片| 18禁国产床啪视频网站| 中国美女看黄片| 成人国语在线视频| 级片在线观看| 午夜日韩欧美国产| 亚洲熟女毛片儿| 亚洲欧美日韩无卡精品| 国产成人系列免费观看| 一级片免费观看大全| 欧美丝袜亚洲另类 | 动漫黄色视频在线观看| 国产精品,欧美在线| 一个人观看的视频www高清免费观看 | 波多野结衣高清作品| 一级片免费观看大全| 亚洲精品国产一区二区精华液| 天天一区二区日本电影三级| 男人舔女人下体高潮全视频| 久久久久国内视频| 亚洲在线自拍视频| 成人国产一区最新在线观看| 黄色视频不卡| 国产日本99.免费观看| 在线观看舔阴道视频| 午夜福利在线在线| 亚洲美女视频黄频| 90打野战视频偷拍视频| 日韩大码丰满熟妇| 夜夜夜夜夜久久久久| 黄色a级毛片大全视频| 欧美性长视频在线观看| 亚洲专区中文字幕在线| 久久99热这里只有精品18| 一夜夜www| www.www免费av| 久久午夜综合久久蜜桃| 大型黄色视频在线免费观看| 嫩草影院精品99| x7x7x7水蜜桃| 免费在线观看视频国产中文字幕亚洲| 日韩 欧美 亚洲 中文字幕| 亚洲av熟女| 成人亚洲精品av一区二区| 特级一级黄色大片| 国产av一区二区精品久久| 久久精品成人免费网站| 国产精品永久免费网站| 午夜视频精品福利| 亚洲熟妇熟女久久| 国产区一区二久久| 婷婷精品国产亚洲av| 婷婷六月久久综合丁香| 国模一区二区三区四区视频 | 变态另类成人亚洲欧美熟女| 欧美黑人欧美精品刺激| 国产成人一区二区三区免费视频网站| 亚洲国产日韩欧美精品在线观看 | 欧美日韩精品网址| 国产免费av片在线观看野外av| 免费搜索国产男女视频| 中文字幕精品亚洲无线码一区| 正在播放国产对白刺激| 99国产精品一区二区三区| av免费在线观看网站| 国产精品久久久久久久电影 | 91麻豆av在线| 日韩欧美国产在线观看| 免费在线观看日本一区| 国产亚洲精品综合一区在线观看 | 久久香蕉国产精品| 日本免费a在线| 给我免费播放毛片高清在线观看| 国产成人aa在线观看| 午夜福利成人在线免费观看| 久久国产精品影院| 丰满人妻一区二区三区视频av | 国产精品,欧美在线| 麻豆av在线久日| 色尼玛亚洲综合影院| 亚洲专区国产一区二区| 老汉色av国产亚洲站长工具| 可以在线观看的亚洲视频| 一区二区三区国产精品乱码| 国产一区二区在线观看日韩 | 国产男靠女视频免费网站| 免费看美女性在线毛片视频| 久久精品国产99精品国产亚洲性色| 欧美绝顶高潮抽搐喷水| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| 亚洲精品国产一区二区精华液| 亚洲国产精品合色在线| 免费av毛片视频| 久久精品成人免费网站| 9191精品国产免费久久| 欧美在线黄色| 亚洲五月天丁香| 国产人伦9x9x在线观看| 国产精品影院久久| 欧美中文综合在线视频| 中文资源天堂在线| 久久天堂一区二区三区四区| 欧美人与性动交α欧美精品济南到| 亚洲人成网站高清观看| 久热爱精品视频在线9| 两个人免费观看高清视频| 男女视频在线观看网站免费 | 亚洲精品粉嫩美女一区| 操出白浆在线播放| 99国产精品一区二区三区| 国产蜜桃级精品一区二区三区| 在线观看午夜福利视频| 怎么达到女性高潮| 精华霜和精华液先用哪个| 夜夜爽天天搞| 免费观看精品视频网站| 波多野结衣高清无吗| 成人午夜高清在线视频| 久久久久久久久免费视频了| 久久久久亚洲av毛片大全| а√天堂www在线а√下载| 成人18禁在线播放| 此物有八面人人有两片| 99久久无色码亚洲精品果冻| 精品一区二区三区av网在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美性猛交黑人性爽| 99久久国产精品久久久| 欧美乱码精品一区二区三区| 91麻豆精品激情在线观看国产| 两性夫妻黄色片| 国产激情欧美一区二区| 日韩欧美精品v在线| 夜夜爽天天搞| 中文资源天堂在线| 久久精品国产亚洲av香蕉五月| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 国产精品一区二区三区四区久久| 亚洲精品国产一区二区精华液| 日本黄大片高清| 老汉色av国产亚洲站长工具| 欧洲精品卡2卡3卡4卡5卡区| 久久欧美精品欧美久久欧美| 在线观看免费日韩欧美大片| 国产亚洲精品av在线| 亚洲精品久久成人aⅴ小说| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 黄色女人牲交| 成年免费大片在线观看| 又黄又爽又免费观看的视频| 日韩三级视频一区二区三区| 黄色丝袜av网址大全| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看 | 国产单亲对白刺激| 欧美成人午夜精品| 久久久精品欧美日韩精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品中文字幕在线视频| cao死你这个sao货| 精品高清国产在线一区| 久久亚洲精品不卡| 亚洲成人久久爱视频| 一本大道久久a久久精品| 亚洲av美国av| 国产精品亚洲av一区麻豆| 亚洲欧美精品综合一区二区三区| 成在线人永久免费视频| 50天的宝宝边吃奶边哭怎么回事| 婷婷六月久久综合丁香| 午夜激情福利司机影院| 小说图片视频综合网站| 欧美日韩乱码在线| 国产探花在线观看一区二区| 精华霜和精华液先用哪个| 后天国语完整版免费观看| 中文资源天堂在线| 亚洲精品国产精品久久久不卡| 欧美一级毛片孕妇| 国产三级中文精品| 欧美成人性av电影在线观看| 黑人操中国人逼视频| 宅男免费午夜| 精品久久蜜臀av无| 999久久久国产精品视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品 国内视频| 亚洲中文日韩欧美视频| 波多野结衣高清作品| 老司机福利观看| 两个人的视频大全免费| 欧美黑人巨大hd| 亚洲国产欧美网| 日韩欧美一区二区三区在线观看| 最新在线观看一区二区三区| 国产精品综合久久久久久久免费| av超薄肉色丝袜交足视频| 中文字幕av在线有码专区| 91麻豆精品激情在线观看国产| 成年免费大片在线观看| 成人国产一区最新在线观看| 亚洲欧美日韩高清专用| av福利片在线观看| 国内毛片毛片毛片毛片毛片| 波多野结衣巨乳人妻| 国产私拍福利视频在线观看| 亚洲av电影不卡..在线观看| 无遮挡黄片免费观看| 午夜精品在线福利| 免费在线观看视频国产中文字幕亚洲| 国产黄a三级三级三级人| 久久久久国产一级毛片高清牌| 久久婷婷成人综合色麻豆| 最近最新中文字幕大全免费视频| 看片在线看免费视频| 久久精品aⅴ一区二区三区四区| 国内精品久久久久久久电影| 999久久久国产精品视频| 这个男人来自地球电影免费观看| 国产成+人综合+亚洲专区| 国产欧美日韩精品亚洲av| 午夜成年电影在线免费观看| 亚洲精品一区av在线观看| 国产精华一区二区三区| 欧美激情久久久久久爽电影| 黄色视频,在线免费观看| 午夜精品一区二区三区免费看| 国产真人三级小视频在线观看| 在线观看免费午夜福利视频| 亚洲一区二区三区色噜噜| 大型av网站在线播放| 亚洲国产欧美网| 亚洲熟妇中文字幕五十中出| 欧洲精品卡2卡3卡4卡5卡区| 99re在线观看精品视频| 亚洲人与动物交配视频| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看 | 99国产极品粉嫩在线观看| 成年人黄色毛片网站| av免费在线观看网站| 听说在线观看完整版免费高清| 日本一本二区三区精品| 日韩欧美一区二区三区在线观看| 熟女少妇亚洲综合色aaa.| 波多野结衣高清无吗| 国产av又大| 老司机在亚洲福利影院| 亚洲av第一区精品v没综合| 久久久久久久久中文| 国产精品一区二区三区四区久久| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品sss在线观看| 别揉我奶头~嗯~啊~动态视频| 一级作爱视频免费观看| 亚洲午夜精品一区,二区,三区| 亚洲国产欧洲综合997久久,| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 久99久视频精品免费| 久久久久国产精品人妻aⅴ院| 亚洲性夜色夜夜综合| 高潮久久久久久久久久久不卡| 国内揄拍国产精品人妻在线| 亚洲国产中文字幕在线视频| 欧美av亚洲av综合av国产av| 亚洲成a人片在线一区二区| 老司机靠b影院| 一级片免费观看大全| 在线十欧美十亚洲十日本专区| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩高清在线视频| 丰满人妻一区二区三区视频av | 一夜夜www| 看片在线看免费视频| 日韩欧美精品v在线| 亚洲成av人片免费观看| 亚洲中文字幕日韩| 欧美日韩乱码在线| 日韩大尺度精品在线看网址| 十八禁网站免费在线| 成人18禁高潮啪啪吃奶动态图| 午夜福利18| 亚洲人成伊人成综合网2020| 两个人的视频大全免费| 国产真实乱freesex| 成人特级黄色片久久久久久久| 欧美在线一区亚洲| 少妇熟女aⅴ在线视频| 日韩欧美免费精品| 欧美绝顶高潮抽搐喷水| 在线观看美女被高潮喷水网站 | 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 18禁黄网站禁片免费观看直播| 亚洲欧美激情综合另类| 国产三级在线视频| 夜夜夜夜夜久久久久| 91字幕亚洲| 99精品久久久久人妻精品| 精品少妇一区二区三区视频日本电影| 久久精品成人免费网站| 久久国产精品影院| 一本久久中文字幕| 熟女电影av网| 中国美女看黄片| av免费在线观看网站| 亚洲黑人精品在线| 色老头精品视频在线观看| 51午夜福利影视在线观看| 亚洲国产日韩欧美精品在线观看 | 黄色女人牲交| 制服人妻中文乱码| 亚洲,欧美精品.| 91大片在线观看| 99久久精品热视频| 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品电影| 熟女少妇亚洲综合色aaa.| 亚洲国产看品久久| 色尼玛亚洲综合影院| 久久这里只有精品中国| 午夜久久久久精精品| 久久天堂一区二区三区四区| 久久久久久久久免费视频了| 九色成人免费人妻av| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 高潮久久久久久久久久久不卡| 国产精品一区二区三区四区久久| 成人欧美大片| 欧美性猛交黑人性爽| 看免费av毛片| 九九热线精品视视频播放| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 韩国av一区二区三区四区| 亚洲人成77777在线视频| 99国产精品99久久久久| 99国产综合亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区激情短视频| 亚洲在线自拍视频| 亚洲av成人av| 在线国产一区二区在线| 制服丝袜大香蕉在线| 日韩国内少妇激情av| 久久精品国产亚洲av高清一级| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 久久久久国产精品人妻aⅴ院| 99国产精品一区二区蜜桃av| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 国产99白浆流出| 一级作爱视频免费观看| 99国产极品粉嫩在线观看| 国内精品久久久久久久电影| 欧美一区二区精品小视频在线| 别揉我奶头~嗯~啊~动态视频| 精品电影一区二区在线| 国产区一区二久久| av欧美777| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 亚洲 欧美一区二区三区| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品综合一区在线观看 | 少妇熟女aⅴ在线视频| 免费人成视频x8x8入口观看| 在线a可以看的网站| 日韩大码丰满熟妇| 身体一侧抽搐| 亚洲欧美激情综合另类| 国产精品久久久av美女十八| www.熟女人妻精品国产| 黄片小视频在线播放| 成人18禁高潮啪啪吃奶动态图| 十八禁网站免费在线| 天堂av国产一区二区熟女人妻 | 免费观看精品视频网站| 久久久精品欧美日韩精品| 搞女人的毛片| 国产精品久久视频播放| 久久精品91蜜桃| 俺也久久电影网| 全区人妻精品视频| 一本久久中文字幕| ponron亚洲| 中国美女看黄片| 亚洲熟女毛片儿| 一级作爱视频免费观看| 欧美日本亚洲视频在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产精品,欧美在线| 精品国内亚洲2022精品成人| 成在线人永久免费视频| 成人国产综合亚洲| 给我免费播放毛片高清在线观看| 日韩精品青青久久久久久| 国内精品久久久久久久电影| 男女下面进入的视频免费午夜| 欧美大码av| 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 国产黄a三级三级三级人| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 亚洲午夜精品一区,二区,三区| 日韩大码丰满熟妇| 国产精品久久久久久久电影 | 欧美在线一区亚洲| 国产午夜福利久久久久久| 欧美色视频一区免费| 18禁观看日本| 国产成人欧美在线观看| 99久久精品热视频| 91老司机精品| 国产精品精品国产色婷婷| 又黄又粗又硬又大视频| 两个人视频免费观看高清| 少妇裸体淫交视频免费看高清 | 欧美色视频一区免费| 中文字幕高清在线视频| 99在线人妻在线中文字幕| 国产av一区在线观看免费| 美女大奶头视频| 91麻豆av在线| 一级a爱片免费观看的视频| 亚洲第一欧美日韩一区二区三区| 日本五十路高清| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区三区四区免费观看 | 欧美乱色亚洲激情| av超薄肉色丝袜交足视频| 三级国产精品欧美在线观看 | 搡老熟女国产l中国老女人| 大型av网站在线播放| 久久久久久免费高清国产稀缺| 免费在线观看黄色视频的| 村上凉子中文字幕在线| 日韩欧美在线二视频| 久久精品影院6| 亚洲国产日韩欧美精品在线观看 | 俄罗斯特黄特色一大片| 亚洲专区国产一区二区| 日本一区二区免费在线视频| 巨乳人妻的诱惑在线观看| 国产人伦9x9x在线观看| 91成年电影在线观看| 亚洲一区中文字幕在线| 欧美人与性动交α欧美精品济南到| 精品电影一区二区在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品美女久久久久99蜜臀| 99久久99久久久精品蜜桃| 国产精品 国内视频| 久久久久久人人人人人| 成人三级做爰电影| 久久精品影院6| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人一区二区三| 人成视频在线观看免费观看| 国产精品综合久久久久久久免费| 老司机福利观看| 十八禁网站免费在线| 熟妇人妻久久中文字幕3abv| 俺也久久电影网| 精品人妻1区二区| 在线播放国产精品三级| 亚洲国产欧美人成| 精品福利观看| 成人av在线播放网站| 国产成人系列免费观看| 午夜精品一区二区三区免费看| 在线观看美女被高潮喷水网站 | 一夜夜www| 国产99白浆流出| 久久精品国产99精品国产亚洲性色| 丰满人妻一区二区三区视频av | 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 高清在线国产一区| 国产一区二区三区在线臀色熟女| 小说图片视频综合网站| 老司机午夜十八禁免费视频| 久久精品国产清高在天天线| 国产熟女xx| 又大又爽又粗| 久久人人精品亚洲av| 久久热在线av| 性色av乱码一区二区三区2| 妹子高潮喷水视频| 精品欧美一区二区三区在线| 国产成年人精品一区二区| 国产免费男女视频| 真人一进一出gif抽搐免费| 搡老岳熟女国产| 怎么达到女性高潮| 久久久久久久精品吃奶| 日本黄大片高清| 特大巨黑吊av在线直播| 麻豆国产97在线/欧美 | 舔av片在线| 久久香蕉精品热| 免费在线观看亚洲国产| 国产精品免费一区二区三区在线| 亚洲专区字幕在线| 毛片女人毛片| 美女免费视频网站| 亚洲在线自拍视频| 国产成人精品久久二区二区91| 麻豆久久精品国产亚洲av| 成人亚洲精品av一区二区| 亚洲国产欧美人成| 日本成人三级电影网站| 欧美黄色淫秽网站| 一进一出好大好爽视频| 好看av亚洲va欧美ⅴa在| 嫁个100分男人电影在线观看| 无遮挡黄片免费观看| 高潮久久久久久久久久久不卡| 岛国在线免费视频观看| 黄色 视频免费看| 欧美成人免费av一区二区三区| 久久香蕉国产精品| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产亚洲精品| 美女黄网站色视频| 日本熟妇午夜| 日本一区二区免费在线视频| 一进一出好大好爽视频| 又黄又粗又硬又大视频| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看一区二区三区| 日韩欧美在线乱码| 日本一二三区视频观看| 欧美日本亚洲视频在线播放| 怎么达到女性高潮| 欧美黑人巨大hd| 亚洲精品一区av在线观看| 国产成人av激情在线播放| 亚洲aⅴ乱码一区二区在线播放 | 午夜成年电影在线免费观看| 亚洲性夜色夜夜综合| 亚洲中文字幕一区二区三区有码在线看 | svipshipincom国产片| av在线天堂中文字幕| 精品一区二区三区视频在线观看免费| 免费看日本二区| 国产高清视频在线观看网站| 成年版毛片免费区| 日本撒尿小便嘘嘘汇集6| 88av欧美| 国产乱人伦免费视频| av片东京热男人的天堂| 波多野结衣高清作品| 国产精品99久久99久久久不卡| e午夜精品久久久久久久| 长腿黑丝高跟| 黄色成人免费大全| av片东京热男人的天堂| 99在线人妻在线中文字幕| 三级男女做爰猛烈吃奶摸视频| 久久精品国产99精品国产亚洲性色| 亚洲精品国产精品久久久不卡| 国产视频一区二区在线看| 免费看日本二区|