• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inhibiting Effect of Ciprofloxacin, Norfloxacin and Ofloxacin on Corrosion of Mild Steel in Hydrochloric Acid*

    2012-10-31 03:34:52PANGXuehui龐雪輝RANXiangbin冉祥濱KUANGFei匡飛XIEJiandong解建東andHOUBaorong侯保榮SchoolofChemistryandChemicalEngineeringUniversityofJinanJinan00ChinaInstituteofOceanologyChineseAcademyofSciencesQingdao66071ChinaResearchCenterfor

    PANG Xuehui (龐雪輝)**, RAN Xiangbin (冉祥濱), KUANG Fei (匡飛), XIE Jiandong(解建東) and HOU Baorong (侯保榮) School of Chemistry and Chemical Engineering , University of Jinan, Jinan 00, China Institute of Oceanology, Chinese Academy of Sciences, Qingdao 66071, China Research Center for Marine Ecology, First Institute of Oceanography, SOA, Qingdao 66061, China School fo Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 67001, China Shandong Jianzhu University, Jinan 001, China

    Inhibiting Effect of Ciprofloxacin, Norfloxacin and Ofloxacin on Corrosion of Mild Steel in Hydrochloric Acid*

    PANG Xuehui (龐雪輝)1,2,**, RAN Xiangbin (冉祥濱)3, KUANG Fei (匡飛)4, XIE Jiandong(解建東)5and HOU Baorong (侯保榮)21School of Chemistry and Chemical Engineering , University of Jinan, Jinan 250022, China2Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China3Research Center for Marine Ecology, First Institute of Oceanography, SOA, Qingdao 266061, China4School fo Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 637001, China5Shandong Jianzhu University, Jinan 250014, China

    The inhibiting effect of ciprofloxacin, norfloxacin and ofloxacin on the corrosion of mild steel in 1 mol·L?1HCl and the mechanism were studied at different temperatures using mass loss measurement, electrochemical method, and X-ray photoelectron spectroscopy (XPS). Effective inhibition was shown by mass loss, potentiodynamic polarization and impedance spectroscopy measurement. The corrosion rate of the metal in the mass loss measurement, and the corrosion reaction on cathode and anode in the electrochemical measurement were accelerated when temperature was increased. XPS results showed that the inhibitors adsorbed effectively on the metal surface.

    corrosion, inhibition, electrochemical impedance spectroscopy, potentiodynamic polarization, X-ray photoelectron spectroscopy

    1 INTRODUCTION

    In the corrosion of a metal in its environment,chemical or electrochemical reactions occur and some metal is lost [1]. Inhibitors are used for controlling the corrosion of metals and alloys in severe environment in practice [2-6], which are added to many systems, such as cooling systems, refinery units, chemicals, oil and gas production units, and boiler, to prevent the corrosion.

    Many organic compounds [7-16], especially those with N, S, P, O and π bond, are studied and being studied for their corrosion inhibition potential. Some compounds show good anti-corrosive ability, but most of them are highly toxic to both human beings and environment during their synthesis or applications.Some environment-friendly and body-friendly corrosion inhibitors, especially those not containing heavy metals and nutrition salts, have been investigated,such as eco-friendly natural products [17-19] or rare earth elements [20-22].

    Pharmacokinetics, toxicology, drug resistance,residual in the body, and teratogenicity of ciprofloxacin, norfloxacin and ofloxacin have been tested in the animals’ body. They are widely used as the components of common antibiotic medicine for human beings because of the low toxicity, high efficiency,wide-spectrum antiseptic, and the ability to inhibit the population of bacteria [23-25].

    In this work, based on our previous work [26], we investigate the mechanism and inhibitory effect of ciprofloxacin, norfloxacin and ofloxacin at different temperatures by mass loss experiment and electrochemical experiment. X-ray photoelectron spectroscopy (XPS) measurement is used to investigate the adsorption of inhibitors on the metal surface.

    2 MATERIALS AND METHODS

    2.1 Materials

    Ciprofloxacin, norfloxacin and ofloxacin (Fig. 1)were purchased from Aldrich. 1 mol·L?1HCl solution without inhibitor was used as blank control. Mild steel specimens had composition (%, by mass) of 0.017 C,0.78 Si, 0.85 Mn, 0.0047 P, 0.017 S, and Fe for the rest.

    Figure 1 Molecule structure

    2.2 Mass loss experiment

    The mild steel specimens were polished with SiC emery papers (400, 600, 800 grit), rinsed in water and acetone, dried in a desiccator, weighed by an analytic balance (±0.0001 g), and immersed in the test solutions for 4 h at 293, 303, 313, and 323 K in triplicate.Then the specimens were removed, rinsed in water and absolute ethyl alcohol, dried in a desiccator, and weighed. The difference of specimen mass before and after the immersion is the corrosion mass loss. The inhibition efficiency IE and corrosion rate R from mass loss are calculated by:

    where W0and W are blank and inhibited mass loss,respectively, Δ W= W0?W , S is the area of specimen,and t is the corrosion time.

    2.3 Electrochemical measurement

    Working electrodes with 0.01 m×0.01 m exposed area used in the electrochemical measurement were covered with araldite epoxy, polished with SiC emery papers (400, 600, 1000 grit), rinsed with distilled water, and degreased ultrasonically in acetone. An IM6e electrochemical measurement system (ZAHNER,Germany) was used for polarization curve and electrochemical impedance spectroscopy (EIS) measurements. Electrochemical experiments were performed in a three-electrode cell with a mild steel working electrode, a platinum foil (0.015 m×0.015 m) as a counter-electrode and a saturated calomel electrode(SCE) with a Luggin capillary as reference electrode.Before the experiment, the working electrodes were immersed in the test solution for 30 min. The steady-state open circuit potential (OCP) was disturbed using an ac sine wave with 0.005V amplitude,the frequency range was 20 mHz-100 kHz, and the parameters were obtained by SIM program. IE is calculated from EIS measurements by:

    where Rt′ and Rtare charge transfer resistance values for blank and inhibited solution, respectively.

    Potentiodynamic curves were obtained fromanalysis software. IE is from potentiodynamic curves,

    2.4 XPS measurement

    XPS measurement was performed at a power of 100W using a PHI Quantera Scanning X-ray Microscope (SXM) with an Al Kαmonochromated source(hν1486.6 eV) with a beaming diameter of 100 μm.All spectra were collected using a suitable takeoff angel modified by the instrument with respect to the sample surface. The energy analyzer was operated in the fixed retard ratio mode with 0.5 eV each step for survey spectra. The Al 2p peak (74.75 eV) of aluminum oxide was used as internal reference for calibration of binding energy scale. The data were fitted by using Origin 7.0 with peak fitting module (PFM) pack.A Salvztsky Golay function was applied for each spectrum. The peak area was measured by fitting the individual region scans with Gaussian peaks.

    3 RESULTS AND DISCUSSION

    3.1 Mass loss experiment

    IE and R at different concentrations and temperatures are shown in Table 1 and Fig. 2, respectively.The values of R decrease markedly with increasing concentration at 303 K, and reach the lowest values of 0.059 (ciprofloxacin), 0.075 (norfloxacin), and 0.139(ofloxacin) mg·cm?2·h?1at 3.16×10?3mol·L?1, which are slower than other heterocyclic inhibitors [25, 27-31]under the same condition. R increases with temperature,since the desorption of inhibitors increases at higher temperature and the metal surface is not protected effectively. However, Table 1 shows that IE does not reduce, though higher temperature accelerates the corrosion rate. The results indicate that the three compounds are excellent acid inhibitors, and ciprofloxacin is the best.

    Table 1 The inhibition efficiency from mass loss experiment for mild steel

    3.2 Electrochemical impendence spectroscopy

    A typical set of Nyquist plots for mild steel electrode at 293, 303, 313, and 323 K for inhibitor of 3.16×10?4mol·L?1are shown in Fig. 3. They display single capacitive semi-loop [26], and can be interpreted in terms of the usual equivalent circuitcalculated as described in Ref. [34]. Impedance parameters are given in Table 2. Fig. 3 shows that the inhibition mechanism does not change when T is increased, which is the depression of charge transfer by the compact inhibitor adsorption film [26]. In Fig. 3 and Table 2, 3 and Table 2, Rtvalues decrease and Cdlvalues increase as temperature increases. The decrease in Rtindicates that the charge transfer resistance, resulted from the inhibitor, between the metal surface and electric double layer decreases when T increases.The increase of Cdlsuggests that the protection is weakened by the thermal motion of inhibitor at higher T, so that the electrode reaction is accelerated and the charge number is increased on metal surface and in the double layer. Thus higher temperature reduces the inhibitory effect. However, the inhibitory ability does not disappear as temperature increases. Table 2 shows that the inhibitor enhances the corrosion resistance at higher temperature, compared with the blank control.At 3.16×10?4mol·L?1of inhibitor and in the temperature range, ciprofloxacin shows the highest Rtand ofloxacin the lowest Rt. The inhibitory ability is:ciprofloxacin>norfloxacin>ofloxacin, as deduced in Ref. [26]. The result is consistent with that from mass loss experiment.

    3.3 Potentiodynamic polarization curves

    Polarization curves for the mild steel in the acidic solution with 3.16×10?4mol·L?1inhibitor are shown in Fig. 5. Electrochemical corrosion kinetic parameters obtained by extrapolation of Tafel lines are given in Table 2. Both cathodic and anodic current-potential curves are nearly parallel to Tafel lines, and the values of anodic slope (βa) are modified slightly and those of cathodic slope (βc) changes slightly as temperature increases. The phenomenon indicates that higher temperature does not change the reactions controlling the process on cathode and anode.

    Figure 2 Corrosion rate of mild steel with inhibitors in 1 mol·L?1 HCl

    Figure 3 Nyquist diagram for mild steel in 1 mol·L?1 HCl and 3.16×10?4 mol·L?1 inhibitor at different temperatures■ 293 K; ○ 303 K; ▲ 313 K; △ 323 K

    In Fig. 5 and Table 2, current density values of cathode (ik) and anode (ia), and the total current density Icorrincrease obviously with temperature. Although the anodic iron dissolution and the cathodic proton-discharge reaction are accelerated greatly at higher temperature, the inhibitory effect still exists,reflected by IE data. The values of Edesfor the three inhibitors decrease when T increases, since the inhibitor desorption is accelerated because of the thermal motion and metal dissolution. Thus, higher temperature reduces the inhibitory effect. Table 2 shows that the inhibitory ability from polarization experiment is also in the order of ciprofloxacin>norfloxacin>ofloxacin.

    3.4 X-ray photoelectron spectroscopy measurement

    X-ray photoelectron spectroscopy was used to characterize the steel sample immersed in 1 mol·L?1HCl with 3.16×10?4mol·L?1inhibitor for 3 h to validate the effective adsorption of the inhibitor on the metal surface, and the XPS spectra are shown in Fig. 6.XPS core-level spectra of C1s, O1s and N1s and their fitting curves for the inhibitors are shown in Figs. 7-9,and the peak area and area percentage are given in Table 3. The structure and the front orbital density distribution of inhibitors [26] are shown in Fig. 10 in order to analyze XPS measurement.

    C1s core-level spectra for ciprofloxacin, norflox-acin and ofloxacin are shown in Fig. 7. All C1s spectra have two peaks. At 285.5 eV (ciprofloxacin), 285.3 eV(norfloxacin), and 285.4 eV (ofloxacin), the peaks belong to C atoms of C C bond and pyrazine circle,which are more positive than those at 284.6 eV (C C)and 285.2 eV (C N ) [35], of similar structure without interaction. In Fig. 10 C C bond and C atoms of pyrazine circle show stronger energy of the highest occupied molecular orbital (HOMO) distribution, so that they supply electrons to Fe atoms more easily and their binding energy shifts positively. The peaks at 289.1 eV (ciprofloxacin), 288.9 eV (norfloxacin) and 289.0 eV(ofloxacin) correspond to C atoms of C O ,

    Table 2 Electrochemical parameters for mild steel in 1 mol·L?1 HCl with inhibitors

    Figure 4 Equivalent circuit model for impedance analysis

    Figure 5 Polarization curves for mild steel in 1 mol·L?1 HCl with inhibitor of 3.16×10?4 mol·L?1 1—293 K; 2—303 K; 3—313 K; 4—323 K

    OC OH, which are more negative than the one at 290.8eV [35] of similar structure without interaction.The lowest unoccupied molecular orbital (LUMO) on C O, OC OH shows the stronger distribution, so these parts may accept the feedback electrons from Fe atoms and their binding energy shifts negatively.

    Figure 7 XPS core-level spectra of C1s for steel surface exposed to 3.16×10-4 mol·L-1 inhibitor+1 mol·L-1 HCl solution for 3 h at 303 K

    Figure 10 and Table 3 show that C atoms of C C bond and pyrazine circle contribute considerably to the adsorption of inhibitor, more than C O, OC OH.The peak area percentage of C atoms of C C bond and pyrazine circle reaches 84% (ciprofloxacin), 82%(norfloxacin), and 84% (ofloxacin), which are almost five times those of C O, OC OH, since C atom content in C C bond and pyrazine circle is higher than that of C O, OC OH. In Table 3, the peak area of C follows the sequence of ciprofloxacin>norfloxacin>ofloxacin, and it is the sequence of the interaction ability.

    Figure 6 XPS spectra of mild steel surface

    N1s core-level spectra for ciprofloxacin, norfloxacin and ofloxacin are shown in Fig. 8. For ciprofloxacin, the peaks at 399.1, 399.2 and 399.8 eV correspond to N1s spectra of NH , N , and the peak at 403.1 eV is generated by protonized N+.For norfloxacin, the peaks at 399.0, 399.1 and 399.6 eV are generated by NH , N , and the peak at 403.0 eV is generated by protonized N+. For ofloxacin, the peaks at 399.0 and 400.6 eV are generated by NH , N , and that at 403.3eV is generated by protonized N+. The binding energy of the similar structure without interaction of NH ,N is 398.8 eV [36], which is more negative than those of inhibitors with interaction. In Fig. 10, N of NH , N shows stronger HOMO distribution intensity, offering electrons more easily to interact with Fe atoms, which is the reason for binding energy of N1s to shift positively. Moreover, N atoms of the inhibitors are protonized easily in the acidic solution,and can offer the lone pair electrons to H+and H2O in the protonized process, resulting in negative shift of N atom. However, protonized N+are only part of all N atoms, so the integral peak area is less than that of NH , N . From Table 3, the peak area of N element follows the sequence of ciprofloxacin>norfloxacin>ofloxacin, which shows the total interaction ability with Fe atoms.

    Figure 9 shows O1s core-level spectra for ciprofloxacin, norfloxacin and ofloxacin. O1s spectra at 528.7 eV (ciprofloxacin), 528.5 eV (norfloxacin), and 528.7 eV (ofloxacin) are generated by O2?. The peaks at 530.4 eV (ciprofloxacin) and 531.2 eV (norfloxacin)are generated by O atoms of C O, OC OH, and the peak at 530.7 eV (ofloxacin) corresponds to O of ofloxacin, which shift negatively from 533.6 eV [35],the binding energy of similar structure (C O,OC OH) without interaction.

    The peak of O2?is resulted from the oxidation in atmosphere during the period after the sample is removed from the solution and before it is tested, which may be several days, so that the integral peak area is larger. In Table 3, the peak area of O is in the order of ciprofloxacin>norfloxacin>ofloxacin, which represents the total interaction ability of O element with Fe atoms.

    Figure 8 XPS core-level spectra of N1s for steel surface exposed to 3.16×10-4 mol·L-1 inhibitor+1 mol·L-1 HCl solution for 3 h at 303 K

    From Table 3, we can deduce that the effective peak area of O element>that of C element>that of N element. Less O element content leads to stronger XPS test result, which may be resulted from O element of FeOOH from the metal oxidation. N element content is the least, and so does its effective peak area,but its ability to offer the electron should not be neglected, as reported by other researches [36-40].

    4 CONCLUSIONS

    Ciprofloxacin, norfloxacin and ofloxacin are effective inhibitors for mild steel in 1 mol·L?1HCl at different temperatures, and the inhibitory ability is as the sequence of ofloxacin<norfloxacin<ciprofloxacin at same temperature.

    Mass loss experiment shows that corrosion rate R increases with temperature, but the inhibition efficiency IE does not decrease.

    EIS displays a single capacitive loop, Rtdecreases and Cdlincreases when T increases. Potentiodynamic polarization curves indicate that the inhibitors suppress both anodic and cathodic processes, and the inhibition mechanism does not change at higher temperature, but the total corrosion current density Icorrand Edesdecrease.

    XPS results show that C, N and O element aredetected. The corresponding peak shifts positively or negatively since the functional group of the inhibitors offers or accepts the electrons according with quantum chemical analysis.

    Table 3 Binding energy and peak area of compounds from C1s, N1s, and O1s spectra

    Figure 10 The optimized geometry for inhibitors and the frontier molecule orbital density distribution

    NOMENCLATURE

    C concentration, mol·L?1

    Cdlconstant phase elements modeling capacitance, F·cm?2

    E corrosion potential, V

    Edesdesorption potential

    EHOMOenergy of the highest occupied molecular orbital, eV

    ELUMOenergy of the lowest unoccupied molecular orbital, eV

    f frequency, Hz

    h the Planck constant

    Icorrtotal corrosion current density, A·cm?2

    IE inhibitory efficiency, %

    iaanodic current density, A·cm?2

    ikcathodic current density, A·cm?2

    Rselectrolyte resistance, ?·cm?2

    Rtcharge transfer resistance, ?·cm?2

    v the optical frequency

    Zimthe imaginary part of ac impedance

    Zrethe real pant of ac impedance

    βaanodic slope, mV·dec?1

    βccathodic slope, mV·dec?1

    1 Sanyal, B., “Organic compounds as corrosion inhibitors in different environments—A review”, Prog. Org. Coat., 9, 165-236 (1981).

    2 Nathan, C.C., Corrosion Inhibitors, NACE, Houston (1973).

    3 Ranney, M.W., Inhibitors—Manufacture and Technology, Noyes Data Corp, New Jersey (1976).

    4 Putilova, N., Balezin, S.A., Barannik, V.P., Metallic Corrosion Inhibitors, Pergamon Press, London (1966).

    5 Xiao, M.T., Huang, Y.Y., Meng, C., Guo, Y.H., “Kinetics of asymmetric reduction of phenylglyoxylic acid to R-(-)-mandelic acid by Saccharomyces cerevisiae FD11b”, Chin. J. Chem. Eng., 14 (1),73-80 (2006).

    6 Eldredge, G.G., Warner, J.C., The Corrosion Hand Book, Wiley, New York, 905 (1948).

    7 Solmaz, R., Kardas, G., Yazici, B., Erbil, M., “Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media”, Colloid. Surf. Physicochem. Eng. Aspect., 312, 7-17 (2008).

    8 Negm, N.A., Zaki, M.F., “Corrosion inhibition efficiency of nonionic Schiff base amphiphiles of p-aminobenzoic acid for aluminum in 4N HCl”, Colloid Surface Physicochem Eng Aspect, 322, 97-102(2008).

    9 Machnikova1, E., Whitmire, K.H., Hackerman, N., “Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives”,Electrochimica Acta, 53, 6024-6032 (2008).

    10 Avci, G., “Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5M HCl”, Colloid. Surf. Physicochem. Eng. Aspect., 317,730-736 (2008).

    11 Satpati, A.K., Ravindran, P.V., “Electrochemical study of the inhibition of corrosion of stainless steel by 1,2,3-benzotriazole in acidic media”, Mater. Chem. Phys., 109, 352-359 (2008).

    12 Lebrini, M., Traisnel, M., Lagrene’e, M., Mernari, B., Bentiss, F.I.,“Inhibitive properties, adsorption and a theoretical study of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles as corrosion inhibitors for mild steel in perchloric acid”, Corros. Sci., 50, 473-479 (2008).

    13 Solmaz, R., Kardas, G., Culha, M., Yazici, B., Erbil, M., “Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media”, Electrochimica Acta, 53 , 5941-5952 (2008).

    14 Ramesh, S.V., Adhikari, A.V., “Quinolin-5-ylmethylene-3-{[8-(trifluoromethyl) quinolin-4-yl]thio}propanohydrazide as an effective inhibitor of mild steel corrosion in HCl solution”, Corros. Sci.,50, 55-61 (2008).

    15 Achary, G., Sachin, H.P., Naik, Y.A., Venkatesha, T.V., “The corrosion inhibition of mild steel by 3-formyl-8-hydroxy quinoline in hydrochloric acid medium”, Mater. Chem. Phys., 107, 44-50 (2008).

    16 Ergun, U., Yüzer, D., Emregül, K.C., “The inhibitory effect of bis-2,6-(3,5-dimethylpyrazolyl) pyridine on the corrosion behaviour of mild steel in HCl solution”, Mater. Chem. Phys., 109, 492-499(2008).

    17 Li, Y., Zhao, P., Hou, B.R., “Berberine as a natural source inhibitor for mild steel in 1 M H2SO4”, Appl. Surf. Sci., 252 (5), 1245-1253(2005).

    18 Matamala ,G., Smeltzerand, W., Droguett, G., “Comparison of steel anticorrosive protection formulated with natural tannins extracted from acacia and from pine bark”, Corros. Sci., 42 (8), 1351-1362 (2000).

    19 Lin, X.Z., Gong, M., Wu, J.P., “Study about use of abstracted oil from plant scrapas corrosion inhibitor for hydrochloric acid cleaning”, Corro. Sci. Prot. Tech., 18 (3), 222-224 (2006). (in Chinese)

    20 Arenas, A., Bethencourt, M., Botana, F.J., Damborenea, de. J., Marcos, M., “Inhibition of 5083 aluminium alloy and galvanised steel by lanthanide salts”, Corros. Sci., 43 (1), 157-170 (2001).

    21 Aballe, A., Bethencourt, M., Botana, F.J., Marcos, M.J., “CeCl3and LaCl3binary solutions as environment-friendly corrosion inhibitors of AA5083 Al-Mg alloy in NaCl solutions”, Alloys. Comp., 323/324,855-858 (2001). (in Chinese)

    22 El-Sawy, S.M., Abu-Ayana, Y.M., Abdel-Mohdy, F.A., “Some chitin/chitosan derivatives for corrosion protection and waste water treatments”, Anticorros. Meth. Mat., 48 (4), 227-235 (2001). (in Chinese)

    23 Feng, Y.F., Li, K.X., Xie, F., Sun, C.H., “HPLC determination of active metabolite of prulifloxacin: NM394 in human plasma with fluorescence detection”, Chin. J. Pharm. Ana., 26 (6), 755-757 (2006). (in Chinese)

    24 Shen, J.Z., Li, J.S., Liang, B., Zhong, Q.F., Xiao, X.L., Liu, J.F.,“Study on the reproductive teratogenic toxicity of sarafloxacin to wistar rats”, Acta. Veter. Zoo. Sinica, 32 (4), 375-378 (2001). (in Chinese)

    25 Lebrini, M., Lagrenée, M., Vezin, H., Gengembre, L., Bentiss, F.,“Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium”, Corros. Sci., 47 (2), 485-505 (2005).

    26 Pang, X.H., Guo, W.J., Li, W.H., Xie, J.D., Hou, B.R., “Electrochemical, quantum chemical and SEM investigation of the inhibiting effect and mechanism of ciprofloxacin, norfloxacin and ofloxacin on the corrosion for mild steel in hydrochloric acid”, Science in China Series B: Chemistry, 51 (10), 928-936 (2008).

    27 Khaled, K.F., “Experimental and theoretical study for corrosion inhibition of mild steel in hydrochloric acid solution by some new hydrazine carbodithioic acid derivatives”, Appl. Surf. Sci., 252 (12),4120-4128 (2006).

    28 Wang, D.X., Li, S.Y., Ying, Y., Wang, M.G., Xiao, H.M., Chen, Z.X.,“Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives”, Corros. Sci., 41, 1911-1919 (1999).

    29 Chebabe, D., Chikh, Z.A., Dermaj, A., Rhattas, K., Jazouli, T.,Hajjaji, N., Mdari, F.E., Srhiri, A., “Synthesis of bolaamphiphile surfactants and their inhibitive effect on carbon steel corrosion in hydrochloric acid medium”, Corros. Sci., 46, 2701-2713 (2004).

    30 Bentiss, F., Traisnel, M., Chaibi, N., Mernari, B., Vezin, H., Lagrenée, M., “2,5-Bis(n-methoxyphenyl)-1,3,4-oxadiazoles used as corrosion inhibitors in acidic media, correlation between inhibition efficiency and chemical structure”, Corros. Sci., 44, 2271-2289 (2002).

    31 Tebbji, K., Hammouti, B., Oudda, H., Ramdani, A., Benkadour, M.,“The inhibitive effect of bipyrazolic derivatives on the corrosion of steel in hydrochloric acid solution”, Appl. Surf. Sci., 252, 1378-1385(2005).

    32 Hosseini, M., Mertens, S.F.L., Ghorbani, M., Arshadi, M.R., “Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media”, Mater. Chem. Phys., 78 (3), 800-808 (2003).

    33 Cruz, J., Martínez, R., Genesca, J., Garc, E., “Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media”, J. Electroanal.Chem., 566 (1), 111-121 (2004).

    34 McCafferty, E., Hackerman, N., “Double layer capacitance of iron and corrosion iInhibition with polymethylene diamines”, J. Electrochem. Soc., 119 (2), 146-154 (1972).

    35 Liu, S.H., Wang, D.H., Pan, C.H., X-ray Photoelectron Spectroscopy Analysis, Science Press, Beijing (1988). (in Chinese)

    36 Olivares, O., Likhanova, N.V., Gómez, B., Navarrete, J.,Llanos-Serrano, M.E., Arce, E., Hallen, J.M., “Electrochemical and XPS studies of decylamides of a-amino acids adsorption on carbon steel in acidic environment”, Appl. Surf. Sci., 252, 2894-2909 (2006).

    37 Bentiss, F., Traisnel, M., Gengembre, L., Lagrenee, M., “Inhibition of acidic corrosion of mild steel by 3,5-diphenyl-4H-1,2,4-triazole”,Appl. Surf. Sci., 161, 194-202 (2000).

    38 Bommersbach, P., Alemany-Dumont, C., Millet, J.P., Normand, B.,“Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods”, Electrochim Acta., 51,1076-1084 (2005).

    39 Pang, X.H., Hou, B.R., Li, W.H., Liu, F.Q., Yu, Z.G., “2,3,5-Triphenyl-2H-tetrazolium chloride and 2,4,6-tri(2-pyridyl)-striazine on the corrosion of mild steel in HCl”, Chin. J. Chem. Eng., 15, 909-915 (2007).

    40 Yang, K., Chu, G., Shao, L., Xiang, Y., Zhang, L., Chen, J.F., “Micromixing efficiency of viscous media in micro-channel reactor”,Chin. J. Chem. Eng., 17, 546-551 (2009).

    2009-06-05, accepted 2009-11-02.

    * Supported by the National Science & Technology Pillar Program (082603101c), China Postdoctoral Science Foundation(O92623101H), Shandong Postdoctoral Foundation (200902040), Open Project Program of Marine Corrosion and Protection Research Center of Institute of Oceanology, Chinese Academy of Science (200901005) and Doctor Foundation of University of Jinan (XBS0899).

    ** To whom correspondence should be addressed. E-mail: pxh791118@163.com

    国产一区二区在线观看日韩 | 日韩大尺度精品在线看网址| 在线天堂最新版资源| 午夜福利在线在线| 在线免费观看的www视频| av视频在线观看入口| 熟女人妻精品中文字幕| 天堂网av新在线| 手机成人av网站| 婷婷精品国产亚洲av在线| 99热只有精品国产| 国产亚洲av嫩草精品影院| 精品午夜福利视频在线观看一区| 欧美日韩瑟瑟在线播放| 在线观看一区二区三区| 免费看美女性在线毛片视频| 国产单亲对白刺激| 天天一区二区日本电影三级| 色在线成人网| 亚洲av电影在线进入| 亚洲国产色片| 可以在线观看毛片的网站| 亚洲成人免费电影在线观看| 深夜精品福利| 麻豆成人午夜福利视频| 免费观看精品视频网站| 又紧又爽又黄一区二区| 91麻豆精品激情在线观看国产| 成人午夜高清在线视频| 欧美中文综合在线视频| 女同久久另类99精品国产91| 亚洲av美国av| av女优亚洲男人天堂| 男女那种视频在线观看| 国语自产精品视频在线第100页| 国产午夜精品久久久久久一区二区三区 | 久久国产精品人妻蜜桃| 成年免费大片在线观看| 久久久久性生活片| 男插女下体视频免费在线播放| 久久久久国内视频| 久久九九热精品免费| 日本 欧美在线| 青草久久国产| 18美女黄网站色大片免费观看| 桃红色精品国产亚洲av| 国产真实乱freesex| 国产v大片淫在线免费观看| 99久国产av精品| 日韩欧美国产在线观看| 亚洲在线自拍视频| 免费av观看视频| 国内精品一区二区在线观看| 精品不卡国产一区二区三区| av在线蜜桃| 久久人人精品亚洲av| 18禁国产床啪视频网站| 超碰av人人做人人爽久久 | 真实男女啪啪啪动态图| 免费观看的影片在线观看| 蜜桃久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 日韩成人在线观看一区二区三区| 噜噜噜噜噜久久久久久91| 国产麻豆成人av免费视频| 成人欧美大片| 女人高潮潮喷娇喘18禁视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲第一欧美日韩一区二区三区| 无限看片的www在线观看| 午夜影院日韩av| 黄色视频,在线免费观看| 国内精品久久久久久久电影| 久久精品国产亚洲av涩爱 | 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 日韩国内少妇激情av| 久久人人精品亚洲av| 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 国产老妇女一区| 国产91精品成人一区二区三区| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 国产亚洲精品久久久久久毛片| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| 国产色爽女视频免费观看| 亚洲人成网站在线播放欧美日韩| 变态另类丝袜制服| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 99久久精品热视频| 欧美日韩福利视频一区二区| 一本综合久久免费| 亚洲美女视频黄频| 欧美色视频一区免费| 99精品在免费线老司机午夜| 12—13女人毛片做爰片一| 久久精品综合一区二区三区| 99久国产av精品| 国产黄片美女视频| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 夜夜躁狠狠躁天天躁| 两个人的视频大全免费| 一个人免费在线观看电影| 老司机午夜福利在线观看视频| 国产精品乱码一区二三区的特点| 亚洲激情在线av| 久久九九热精品免费| 可以在线观看毛片的网站| 欧美又色又爽又黄视频| 久久久久久久精品吃奶| 久久久久久久亚洲中文字幕 | 哪里可以看免费的av片| 国产视频内射| 99久久九九国产精品国产免费| 久久精品夜夜夜夜夜久久蜜豆| 中国美女看黄片| 国产色爽女视频免费观看| 国产精品综合久久久久久久免费| 国产一区二区三区在线臀色熟女| 免费大片18禁| 长腿黑丝高跟| av国产免费在线观看| 欧美在线黄色| 国产欧美日韩一区二区三| 一a级毛片在线观看| 12—13女人毛片做爰片一| 最新中文字幕久久久久| 国产精品三级大全| 狠狠狠狠99中文字幕| 久久九九热精品免费| 首页视频小说图片口味搜索| 九色国产91popny在线| 又黄又粗又硬又大视频| 亚洲一区二区三区色噜噜| 最新中文字幕久久久久| 黄色视频,在线免费观看| aaaaa片日本免费| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 一个人免费在线观看的高清视频| 精品久久久久久成人av| 国产伦一二天堂av在线观看| 人人妻,人人澡人人爽秒播| 亚洲精品粉嫩美女一区| 18美女黄网站色大片免费观看| 啦啦啦观看免费观看视频高清| 亚洲专区中文字幕在线| 啪啪无遮挡十八禁网站| 中文字幕av在线有码专区| 国产91精品成人一区二区三区| 日韩av在线大香蕉| 精品人妻一区二区三区麻豆 | 少妇裸体淫交视频免费看高清| 亚洲avbb在线观看| 国产乱人视频| 日本 欧美在线| 国产色婷婷99| 日韩欧美精品v在线| 男女视频在线观看网站免费| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 听说在线观看完整版免费高清| 国产精品久久电影中文字幕| 亚洲专区中文字幕在线| 在线观看午夜福利视频| 91在线观看av| 久久精品国产亚洲av香蕉五月| 久久九九热精品免费| 久久久精品大字幕| 啦啦啦免费观看视频1| 18禁裸乳无遮挡免费网站照片| 啦啦啦韩国在线观看视频| 国产男靠女视频免费网站| 亚洲精华国产精华精| 啦啦啦观看免费观看视频高清| 国产精品影院久久| 高清毛片免费观看视频网站| 亚洲一区二区三区不卡视频| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜亚洲精品久久| 白带黄色成豆腐渣| 黄色视频,在线免费观看| 在线播放国产精品三级| 午夜免费成人在线视频| 18美女黄网站色大片免费观看| 国产伦精品一区二区三区四那| 成人三级黄色视频| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 丰满乱子伦码专区| 制服人妻中文乱码| 久久精品国产自在天天线| 好男人在线观看高清免费视频| 内射极品少妇av片p| www.色视频.com| 精品熟女少妇八av免费久了| 黄色日韩在线| 久久久精品欧美日韩精品| 内地一区二区视频在线| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av| 亚洲中文日韩欧美视频| 欧美黑人欧美精品刺激| 色av中文字幕| 国产爱豆传媒在线观看| 亚洲精品久久国产高清桃花| 少妇的逼水好多| 九九久久精品国产亚洲av麻豆| 成人av在线播放网站| 亚洲最大成人中文| 舔av片在线| 国产精品永久免费网站| 久久国产乱子伦精品免费另类| 嫁个100分男人电影在线观看| 中文资源天堂在线| 精品乱码久久久久久99久播| 精品午夜福利视频在线观看一区| 人人妻,人人澡人人爽秒播| 亚洲精品久久国产高清桃花| 国产亚洲精品一区二区www| 97超视频在线观看视频| 亚洲av电影不卡..在线观看| 男女午夜视频在线观看| 禁无遮挡网站| 婷婷亚洲欧美| 观看美女的网站| 男女那种视频在线观看| 久久99热这里只有精品18| 国内精品久久久久久久电影| 国产高潮美女av| 老鸭窝网址在线观看| 精品久久久久久久人妻蜜臀av| 久久精品国产亚洲av香蕉五月| 亚洲人成伊人成综合网2020| 国内精品美女久久久久久| 亚洲av第一区精品v没综合| 免费观看精品视频网站| 久久中文看片网| 国产亚洲欧美98| 亚洲中文字幕日韩| 啪啪无遮挡十八禁网站| 国产探花极品一区二区| 午夜福利免费观看在线| 成人一区二区视频在线观看| 97超视频在线观看视频| 黄色丝袜av网址大全| 午夜免费成人在线视频| 亚洲成人久久爱视频| 麻豆成人av在线观看| 最近视频中文字幕2019在线8| 99热这里只有是精品50| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 三级国产精品欧美在线观看| 夜夜爽天天搞| 国产伦在线观看视频一区| 久久久久久久久久黄片| 亚洲不卡免费看| 2021天堂中文幕一二区在线观| 男人和女人高潮做爰伦理| 一个人看视频在线观看www免费 | 欧美不卡视频在线免费观看| 制服丝袜大香蕉在线| 国内精品久久久久精免费| avwww免费| 国产中年淑女户外野战色| 精品一区二区三区视频在线观看免费| 亚洲黑人精品在线| 欧美绝顶高潮抽搐喷水| 免费看美女性在线毛片视频| 午夜免费男女啪啪视频观看 | 免费人成在线观看视频色| 久久精品夜夜夜夜夜久久蜜豆| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 欧美激情在线99| 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 亚洲精品乱码久久久v下载方式 | 国产亚洲欧美98| 免费av不卡在线播放| 男人舔女人下体高潮全视频| 午夜亚洲福利在线播放| 美女高潮的动态| 国产av麻豆久久久久久久| 国产午夜精品久久久久久一区二区三区 | 国产亚洲精品久久久久久毛片| 日韩 欧美 亚洲 中文字幕| 欧美性感艳星| 国产亚洲欧美98| 少妇高潮的动态图| 久久婷婷人人爽人人干人人爱| 欧美成人a在线观看| 欧美中文综合在线视频| 国产老妇女一区| 久久精品夜夜夜夜夜久久蜜豆| 给我免费播放毛片高清在线观看| 内地一区二区视频在线| 国产老妇女一区| 亚洲内射少妇av| 亚洲人成电影免费在线| 久久久久久久久久黄片| 一本一本综合久久| 黄色日韩在线| 天美传媒精品一区二区| 国产熟女xx| 久久久久久久午夜电影| 国产探花在线观看一区二区| 国产成年人精品一区二区| 高清在线国产一区| 亚洲片人在线观看| 成人亚洲精品av一区二区| 亚洲乱码一区二区免费版| 国产成人aa在线观看| 亚洲 欧美 日韩 在线 免费| 日本一二三区视频观看| 一级毛片高清免费大全| 床上黄色一级片| 99热这里只有是精品50| 国产高清视频在线观看网站| 美女高潮的动态| 在线观看免费视频日本深夜| 丰满乱子伦码专区| 亚洲人成伊人成综合网2020| 天天一区二区日本电影三级| 国产91精品成人一区二区三区| 日韩有码中文字幕| 亚洲成av人片在线播放无| 久久精品国产亚洲av香蕉五月| 男人的好看免费观看在线视频| xxx96com| 欧美bdsm另类| 亚洲成av人片免费观看| 亚洲欧美日韩东京热| 午夜免费观看网址| 日本一二三区视频观看| 精品国内亚洲2022精品成人| 日韩成人在线观看一区二区三区| 国产高清有码在线观看视频| 亚洲欧美激情综合另类| 亚洲一区二区三区不卡视频| 久久精品国产清高在天天线| 日韩有码中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区在线观看成人免费| a在线观看视频网站| 美女被艹到高潮喷水动态| 日韩 欧美 亚洲 中文字幕| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 搡老熟女国产l中国老女人| 高清日韩中文字幕在线| 久久人妻av系列| 18禁国产床啪视频网站| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 欧美大码av| 国产蜜桃级精品一区二区三区| 日韩欧美在线二视频| 国产一区在线观看成人免费| 婷婷丁香在线五月| 少妇丰满av| 亚洲人成网站在线播| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 在线免费观看的www视频| 久久国产精品人妻蜜桃| 十八禁网站免费在线| 国内精品久久久久精免费| 长腿黑丝高跟| 一区二区三区国产精品乱码| 噜噜噜噜噜久久久久久91| 9191精品国产免费久久| 亚洲av电影在线进入| 欧美日本视频| 国内毛片毛片毛片毛片毛片| 搞女人的毛片| 69人妻影院| 日韩精品中文字幕看吧| 中国美女看黄片| 在线观看免费视频日本深夜| 午夜精品在线福利| 日韩免费av在线播放| 黄色片一级片一级黄色片| 日韩欧美国产一区二区入口| 亚洲成a人片在线一区二区| 嫩草影视91久久| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 色视频www国产| 欧美av亚洲av综合av国产av| 99热这里只有精品一区| 黄色女人牲交| 亚洲欧美日韩高清在线视频| 久久久国产精品麻豆| 91在线观看av| 亚洲av熟女| 亚洲国产精品合色在线| 嫩草影院入口| 国产一级毛片七仙女欲春2| 一本一本综合久久| 男人舔奶头视频| 狂野欧美白嫩少妇大欣赏| av天堂在线播放| 久久久国产成人精品二区| 一级a爱片免费观看的视频| 国产v大片淫在线免费观看| 男人舔女人下体高潮全视频| 国产又黄又爽又无遮挡在线| 亚洲国产欧洲综合997久久,| av黄色大香蕉| 99精品欧美一区二区三区四区| 免费人成在线观看视频色| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 男女之事视频高清在线观看| 在线观看66精品国产| 99riav亚洲国产免费| 欧美日韩黄片免| 女警被强在线播放| 日本与韩国留学比较| 色视频www国产| 午夜福利欧美成人| 九色国产91popny在线| 国产国拍精品亚洲av在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 国内久久婷婷六月综合欲色啪| 一进一出好大好爽视频| 亚洲欧美日韩高清在线视频| 最近视频中文字幕2019在线8| 欧美绝顶高潮抽搐喷水| 久久精品91无色码中文字幕| 悠悠久久av| 老司机午夜十八禁免费视频| 亚洲精品日韩av片在线观看 | svipshipincom国产片| www日本黄色视频网| 欧美另类亚洲清纯唯美| 88av欧美| 亚洲国产欧美网| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看 | 淫妇啪啪啪对白视频| АⅤ资源中文在线天堂| 搡老熟女国产l中国老女人| 成人午夜高清在线视频| 欧美三级亚洲精品| 免费在线观看亚洲国产| 欧美在线黄色| 黑人欧美特级aaaaaa片| 精品久久久久久久毛片微露脸| 亚洲va日本ⅴa欧美va伊人久久| 亚洲五月天丁香| 亚洲国产高清在线一区二区三| 操出白浆在线播放| 搡老岳熟女国产| 亚洲人成网站在线播| 国产一区在线观看成人免费| 国产成人欧美在线观看| 在线观看av片永久免费下载| 久久久久九九精品影院| 91在线观看av| 一个人免费在线观看的高清视频| 国产激情偷乱视频一区二区| 欧美bdsm另类| 久久午夜亚洲精品久久| 麻豆成人av在线观看| 日本 欧美在线| 亚洲无线观看免费| 国产国拍精品亚洲av在线观看 | 亚洲自拍偷在线| 最新在线观看一区二区三区| 亚洲国产精品999在线| 日日干狠狠操夜夜爽| 国产精品一区二区三区四区免费观看 | 禁无遮挡网站| av在线蜜桃| bbb黄色大片| 精品人妻1区二区| 欧美中文日本在线观看视频| www日本黄色视频网| 亚洲国产精品久久男人天堂| 一进一出好大好爽视频| 亚洲av成人精品一区久久| 少妇的逼好多水| 国产色婷婷99| 琪琪午夜伦伦电影理论片6080| netflix在线观看网站| 噜噜噜噜噜久久久久久91| 美女被艹到高潮喷水动态| 亚洲国产欧美人成| 看黄色毛片网站| 免费高清视频大片| 国产精品 欧美亚洲| 91av网一区二区| 久久草成人影院| 精品电影一区二区在线| 国产精品美女特级片免费视频播放器| 久久久久久人人人人人| 亚洲av免费高清在线观看| 国产午夜福利久久久久久| 91久久精品国产一区二区成人 | www日本黄色视频网| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 在线播放国产精品三级| 99久久精品热视频| 亚洲天堂国产精品一区在线| 欧美+亚洲+日韩+国产| 很黄的视频免费| 日韩成人在线观看一区二区三区| 老司机福利观看| 男女做爰动态图高潮gif福利片| 18禁黄网站禁片午夜丰满| 精品国产超薄肉色丝袜足j| 真人一进一出gif抽搐免费| 色哟哟哟哟哟哟| 最后的刺客免费高清国语| 久久香蕉精品热| 亚洲五月婷婷丁香| 国产视频一区二区在线看| a在线观看视频网站| 亚洲中文字幕日韩| 欧美色视频一区免费| ponron亚洲| 热99re8久久精品国产| 97碰自拍视频| av片东京热男人的天堂| 99视频精品全部免费 在线| av视频在线观看入口| 国语自产精品视频在线第100页| 中亚洲国语对白在线视频| 婷婷精品国产亚洲av| 日韩高清综合在线| 九九在线视频观看精品| 老鸭窝网址在线观看| 九九在线视频观看精品| 给我免费播放毛片高清在线观看| av在线蜜桃| 无人区码免费观看不卡| 国产野战对白在线观看| 中出人妻视频一区二区| 日韩免费av在线播放| 非洲黑人性xxxx精品又粗又长| 男女午夜视频在线观看| 99久国产av精品| 国产精品av视频在线免费观看| 日韩欧美国产在线观看| www.999成人在线观看| 丁香六月欧美| 99国产综合亚洲精品| 757午夜福利合集在线观看| 亚洲精品影视一区二区三区av| 亚洲精品一卡2卡三卡4卡5卡| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 少妇人妻精品综合一区二区 | www国产在线视频色| 少妇丰满av| 国产aⅴ精品一区二区三区波| 香蕉av资源在线| 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 久久久久免费精品人妻一区二区| 国产高清有码在线观看视频| 免费av不卡在线播放| 成年人黄色毛片网站| 12—13女人毛片做爰片一| 很黄的视频免费| 中文字幕人成人乱码亚洲影| 精品99又大又爽又粗少妇毛片 | 精品久久久久久久人妻蜜臀av| 国产精品精品国产色婷婷| 亚洲国产精品合色在线| 99riav亚洲国产免费| 国产高清视频在线播放一区| 97超级碰碰碰精品色视频在线观看| 亚洲成人中文字幕在线播放| 亚洲av电影不卡..在线观看| 欧美午夜高清在线| 窝窝影院91人妻| 香蕉丝袜av| av福利片在线观看| 午夜免费激情av| ponron亚洲| 久久草成人影院| 亚洲激情在线av| 欧美最黄视频在线播放免费| 综合色av麻豆| 国产精品国产高清国产av| 亚洲精品影视一区二区三区av| 国产av在哪里看| 日韩大尺度精品在线看网址| 天天躁日日操中文字幕| 男女午夜视频在线观看| 啦啦啦观看免费观看视频高清| 欧美成人a在线观看| 国产野战对白在线观看| 脱女人内裤的视频| 夜夜爽天天搞| 欧美日本亚洲视频在线播放| 国产探花在线观看一区二区| 欧美成人一区二区免费高清观看| 亚洲欧美日韩无卡精品| 99久久精品一区二区三区| 母亲3免费完整高清在线观看| 日本与韩国留学比较| 窝窝影院91人妻| 高清毛片免费观看视频网站|