• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessment of Sericin Biosorbent for Selective Dye Removal*

    2012-10-31 03:35:04CHENXinqingLAMKoonFungMAKShukFongCHINGWaiKwongNGTszNokandYEUNGKingLun

    CHEN Xinqing, LAM Koon Fung, MAK Shuk Fong, CHING Wai Kwong, NG Tsz Nok and YEUNG King Lun,2,**

    1 Department of Chemical and Biomolecular Engineering, 2 Division of Environment, the Hong Kong University of Science and Technology, Hong Kong, China

    Assessment of Sericin Biosorbent for Selective Dye Removal*

    CHEN Xinqing1, LAM Koon Fung1, MAK Shuk Fong1, CHING Wai Kwong1, NG Tsz Nok1and YEUNG King Lun1,2,**

    1Department of Chemical and Biomolecular Engineering,2Division of Environment, the Hong Kong University of Science and Technology, Hong Kong, China

    The silk sericin is the main residue in silk production and it is found to be a low cost and efficient biosorbent. In this study, sericin was characterized with various techniques including SEM (scanning electron microscope), XRD, N2physisorption, FTIR (Fourier transformed infrared spectroscopy) and XPS (X-ray photoelectron spectroscopy). The nitrogen content of sericin was ca. 8.5 mmol·g?1according to elemental analysis. Dye adsorption by sericin biosorbent was investigated with the acid yellow (AY), methylene blue (MB) and copper (II)phthalocyanine-3,4′4″4′″-tetrasulfonic acid (CuPc) dyes from water. Sericin displayed large capacity for AY and CuPc adsorption with adsorption capacities of respectively 3.1 and 0.35 mmol·g?1, but it did not adsorbed methylene blue dye. This selectivity is due to the basicity of amide groups in sericin biosorbents.

    dye adsorption, silk protein, biosorbent

    1 INTRODUCTION

    Adsorption has long been recognized as a simple and economical process for removal of water pollutants. Adsorption properties of heavy metals and persistent organic compounds by numerous materials have been reported in the past decades. Although, in general, synthetic adsorbents such as resin, zeolite and mesoporous silica have large adsorption capacity and good selectivity for various pollutants [1-4], biosorbents are considered as attractive alternatives for environmental remediation because of their low cost and availability [5]. Pollutants including dyes [6], pesticides [7] and metal ions [8-10] were successfully treated by various biosorbents derived from agricultural and industrial biomass. Biomass-derived adsorbents have been examined for dye removal by several research groups [11-19]. Chuah et al. [11] and Malik [12] reported the use of rice husk activated carbon for removal of textile dyes such as malachite green and acid yellow 36. Sugar beet pulp is shown to be effective for removing the reactive dye, Gemazol turquoise blue-G [13], while Brazil nut shell [14], wood sawdust [15], orange bagasse [16] and aerobic sludge[17] have all been shown to have varying effectiveness for removing dye pollutants from water. Rocher and coworkers [18] showed that it is possible to prepare magnetic biosorbent by embedding magnetic nanoparticles and activated carbons in alginate for removal of methyl orange and methylene blue dyes.

    This work investigates the adsorption of acidic and basic dyes (acid yellow 34 and methylene blue)and large metal-organic complex dye [copper (II)phthalocyanine-3,4′4″4′″-tetrasulfonic acid] by the silk protein, sericin, a byproduct of silk manufacturing process. Emphasis is made to examine the potential of this biosorbent for the selective removal of dyes from water.

    2 EXPERIMENTAL

    2.1 Silk sericin biosorbent

    The silk sericin powder was supplied free-of-charge from Italy. Prior to the adsorption study, the sericin powder was dried overnight in an oven at 373 K. Repeated boiling was used to lower the solubility of sericin in powder by transforming the more soluble random coil structured protein into the less soluble β-sheets [20]. The biosorbent was examined by scanning electron microscope (JEOL 6300F). The sericin powder was attached to the specimen holder by conducting adhesive and sputter-coated with a 10 nm gold layer.Its specific surface area and pore structure were determined by N2physisorption (Coulter SA 3100),while its surface charge were measured by Zetaplus(Brookhaven Instruments Corp). The elemental and chemical compositions of the biosorbent were analyzed by various methods. The carbon, nitrogen, hydrogen and sulphur contents of the biosorbent were measured by Elementar Vario EL III. Six milligrams of sample powder were pyrolyzed at high temperature and the resulting composition of the flue gas was analyzed by a thermal conductivity detector. The surface elemental composition and their oxidation states were analyzed by Physical Electronics PHI 5000 X-ray photoelectron spectroscopy using a monochromatic Al X-ray source (1486.6 eV) at 350 W, 14 kV and 25 mA at a vacuum of 1×10?8Torr. Both regular and high resolution scans were performed and the data were plotted with respect to the binding energy. Fourier transformed infrared spectroscopy (Perkin-Elmer GX 2000) of the biosorbent was done using a Harrick praying mantis diffuse reflectance accessory. Eachspectrum was an average of 128 scans taken between 400 to 4000 cm?1at a resolution of 0.5 cm?1and optical path difference (OPD) velocity of 2 cm·s?1. The sample spectrum was plotted in transmittance for convenience.

    Figure 1 Molecular structures of (a) acid yellow, (b) copper (II) Phthalocyanine-3,4′4″4′″-tetrasulfonic acid and (c) methylene blue

    2.2 Dye adsorption experiments

    Acid Yellow 34 (AY, 75%, Aldrich) and a metallocomplex dye, copper (II) phthalocyanine-3,4′4″4′″-tetrasulfonic acid (CuPc, 85%, Aldrich) are acidic dyes, while methylene blue (MB, 85%, Aldrich) is a basic dye. Fig. 1 shows the molecular structure of the dyes, while Table 1 lists their molecular masses, size and characteristic peaks under UV-visible spectrometer. The dyes, AY and CuPc possess the same3RSO?functional groups but CuPc is roughly four times larger than AY [Figs. 1 (a) & (b)]. Adsorption of AY and CuPc could provide insights on the accessibility of the adsorption sites in the biosorbent. MB contains amine groups and is basic [Fig. 1 (c)]. It is also slightly smaller than AY. The similarity in the size of AY and MB means that both dyes could access similar sites within the biosorbent, and their adsorption will depends mainly on the chemical interactions between the dye molecules and the surface adsorption sites.

    Table 1 Physical properties of dyes used in this study

    The batch adsorption experiments were performed at room temperature (298±2 K) using 0.04 g of sericin for 40 ml aqueous dye solution. The pH of the solution was adjusted by diluted hydrochloric acid (HCl,Mallinckrodt) and sodium hydroxide (NaOH, BDH)solutions. The initial and final concentrations of the dyes were analyzed by UV/visible spectrophotometer(Ultrospec 4300pro). Calibrations between 0 to 30 mg·kg?1dye were made before each set of measurements and the intensities of the absorption bands at 416 nm (AY), 630 nm (CuPc) and 665 nm (MB) display a linear correlation with their concentration. Adsorption samples were diluted and three measurements taken and averaged to obtain the equilibrium adsorption capacity [Eq. (1)].

    where Co(mmol·L?1) and Ce(mmol·L?1) are the initial and final dye concentrations, respectively. V (L) is the solution volume and m (g) is the mass of adsorbent.

    The batch adsorption isotherm data were modeled by Langmuir and Freundlich equations [Eqs. (2)& (3) respectively].

    where Qe(mmol·g?1) is the calculated adsorption capacity. KL, bL, KFand n are the model parameters of the equations. The adsorption rates were determined by measuring the dye concentration at fixed time intervals during the adsorption. Pseudo-first-order adsorption (cf. Eq. 4) and the pseudo-second-order adsorption (cf. Eq. 5) were used to model the adsorption kinetic data [21].where Qeis the estimated steady state adsorption(mmol·g?1), Qtis the adsorption capacity at given time,t is the contact time (h), k1is the pseudo-first-order kinetic constant (h?1) and k2is the pseudo-second-order kinetic constant (mmol·g?1·h?1).

    3 RESULTS AND DISCUSSION

    3.1 Biosorbent characterization

    The silk sericin powder received from the supplier was recovered from the silk degumming process water by filtration. Although the original powder is slightly soluble in water, repeated boiling in water can render it insoluble. The SEM image in Fig. 2 (a) shows the irregular, elongated shape of the dried sericin powder. The particle size ranges from less than a micron to tens of microns. Based on the nitrogen physisorption measurement, the specific surface area of the silk sericin is only 1.5 m2·g?1and can be considered to be non-porous.

    The chemistry of sericin was examined by FTIR.Fig. 2 (b) plots the infrared spectrum of the silk protein.The sericin powder displays prominent peaks at 3339,2940, 1676 and 1568 cm?1corresponding to amide A,B, I and II as reported by Gulrajani and coworkers [22].The peaks at the vicinity of 2989 and 3298 cm?1are mainly from the N H stretching vibration belonging to amide A and B. The peak at 1676 cm?1in the spectrum is assigned to amide I peak and is believed to originate from the stretching vibrations of C O and C N groups. The peak found between 1530-1570 cm?1was reported to belong to amide II and arises from the in-plane N H bending while the peaks at 1071 (C OH), 1240 (N H), 1398 (O H), 1568 cm?1(N H) had been assigned to amides III and V.

    Figure 2 Characterization of sericin by (a) scanning electron microscopy, (b) Fourier-Transform Infra-Red and (c) X-ray photoelectron spectroscopy

    Table 2 Bulk and surface composition of silk sericin

    Figure 3 (a) AY isotherm at pH 2.5; (b) CuPc isotherm at pH 2.5; (c) MB isotherm at pH 2.5; (d) pH effect on AY adsorption; (e) pH effect on CuPc adsorption; (f) pH effect on MB adsorption Langmuir model; Freundlich model

    The bulk and surface elemental compositions of the silk sericin were determined by elemental analyzer and X-ray photoelectron spectroscopy and the results are presented in Fig. 2 (c) and Table 2. It can be seen from the C1 peak of sericin that the biosorbent contains carboxyl (287.8 eV), carbonyl (286.6 eV), alkyl(285 eV) and carbon (282.6 eV) [23]. Sericin consists of three polypeptides with molecular masses of 400000, 250000 and 150000 [24] and composed of 18 different amino acids including serine (30%-40%),aspartic acid (10%-20%) and glutamic acid (3%-15%)rich in hydroxyl groups [25]. Wu and coworkers [26]reported that sericin recovered from silk wastewater contains 92% protein, 1% sugar and 4% ash with a total nitrogen content of 14.6%. Similarly, Vaithanomsat and Kitpreechavanich [27] also reported the nitrogen content of sericin to be within 12%-14%. The sericin biosorbent prepared in this study has total nitrogen and sulphur contents of 11.9% and 5.0%, respectively.Nitrogen contents are comparable to literature values while most of the sulphur content is present in bulk phase instead of the surface by comparing the bulk and surface composition.

    3.2 Dye adsorption on biosorbent

    Acid yellow 34 (AY) is roughly quarter of the size of CuPc and has a single sulfonate group compared to four in CuPc, while MB is comparable in size to AY but differs in its chemistry. The adsorptions of the dyes on sericin are shown in Fig. 3. Silk sericin adsorbs 0.96 mmol·g?1(i.e. 400 mg·g?1) of AY and 0.18 mmol·g?1(i.e., 180 mg·g?1) of CuPc separately, but not MB at pH 2.5 and room temperature. The AY and CuPc adsorption occurs at pH below sericin’s point-of-zero charge (i.e., pH 3.5, Fig. 4) during which the amines become protonated. CuPc being larger than AY can only access sites located near the surface or in large pores. It is therefore not surprising that the adsorption capacity of sericin for CuPc [Fig. 3 (b)] is significantly lower than AY [Fig. 3 (a)]. The dyes were adsorbed by electrostatic interaction between the negatively charged sulfonate group (i.e.,3SO?) of the dye molecule and the positive protonated amino groups on sericin. Figs. 3 (d) and 3 (e) show that the adsorption capacities of the dyes are higher at lower pH, i.e. higher hydrogen ion concentration with adsorption capacity for AY reaching 3.1 mmol·g?1(i.e.,1280 mg·g?1) at pH 1.5. The Zeta-potential plot in Fig. 4 for sericin at various pHs shows its surface is positively charged below pH 3.5 and negatively charged above this pH due to deprotonated amino and carboxylgroups. According to Fig. 4, the surface charge of sericin at pH 1.5 is higher than that at pH 2.5, which could explained the higher adsorption capacity of sericin for the acid dyes at low pH.

    Table 3 Dye adsorption on various adsorbents listed in literature

    Figure 4 Zeta-potential of sericin against pH

    Methylene blue does not adsorb on sericin as shown by Figs. 3 (c) and 3 (f). This is likely due to the repulsion between the positively-charged surface of the biosorbent and the dye molecules at low pH. Thus,this study shows that sericin is selective for acid dye at low pH similar to modified mesoporous silica adsorbent [28]. Table 3 lists the adsorption capacities of acid dyes and methylene blue on various adsorbents.The sericin has a relatively high adsorption capacities for acidic dyes compared to other adsorbents, while it does not adsorb any MB. This adsorption selectivity of sericin is unique compared to most biosorbents.

    Langmuir and Freundlich models were used to fit the adsorption data and Table 4 shows that the Langmuir adsorption isotherm has better fit compared to Freundlich for the adsorption of AY and CuPc on sericin.

    The batch adsorption kinetics of both dyes on sericin were measured with initial AY and CuPc concentration of 2 mmol·L?1and L/S (liquid per solid ratio) of 1000 ml·g?1at pH 1.5. Figs. 5 (a) and 5 (b) plots the adsorp-tion with time and it can be seen that the adsorption rate of CuPc is faster than AY in spite of less CuPc being adsorbed on the biosorbent. This could be due to the stronger electrostatic charge of CuPc than AY and CuPc being mainly adsorbed on the surface. The correlation coefficient (R2) for the pseudo-second-order model has higher value (>0.99) from Table 5 suggesting that the dye adsorption on sericin is likely to be chemisorptive.

    Table 4 Langmuir and Freundlich model parameters of dye on silk sericin

    Figure 5 Adsorption kinetics (Pseudo-second order models are plotted on the graphs) of (a) AY and (b) CuPc on sericin (Experimental conditions: 0.1 g sericin in 100 mldye solution at pH 1.5)

    Table 5 Kinetic model parameters of dyes on sericin

    4 CONCLUSIONS

    Silk sericin derived from waste biomass is low cost and effective for removal of acidic dyes from water. Also, the strong similarity in structure and chemistry of AY and CuPc similar to many active pharmaceuticals suggests that sericin could have potential application for treatment of these pollutants as well. Sericin is complex biosorbent rich in amide groups that could be further altered to achieve different adsorption behaviour and selectivity for targeted remediation of polluted water. Indeed, it has been demonstrated that sericin biosorbent could selectively adsorb precious metals (i.e., gold, palladium) from solutions containing other metals [23]. Gold, palladium and platinum find uses in catalysis [37-40] and membranes [41-44] and improper disposal could lead to pollution by these heavy metals. We also believe that lesson learned from sericin biosorbents could be translated to synthetic adsorbents to achieve high adsorption capacity and selectivity [45-47].

    1 Lam, K.F., Yeung, K.L., McKay, G., “A new approach for Cd2+and Ni2+removal and recovery using mesoporous adsorbent with tunable selectivity”, Environ. Sci. Tech., 41, 3329-3334 (2007).

    2 Lam, K.F., Yeung, K.L., McKay, G., “Preparation of selective mesoporous adsorbents forand C u2+separation”, Microporous Mesoporous Mater., 100, 191-201 (2007).

    3 Chen, X.Q., Lam, K.F., Zhang, Q.J., Pan, B.C., Arruebo, M., Yeung,K.L., “Synthesis of highly selective magnetic mesoporous adsorbent”, J. Phys. Chem. C., 113, 9804-9813 (2009).

    4 Sun, W., Lam, K.F., Wong, L.W., Yeung, K.L., “Zeolite micropattern for biological applications”, Chem. Commun., 39, 4911-4912(2005).

    5 Park, D., Yun, Y.S., Park J.M., “The past, present, and future trends of biosorption”, Biotechnol. Bioproc. E., 15, 86-102 (2010).

    6 Khattri, S.D., Singh, M.K., “Colour removal from synthetic dye wastewater using a bioadsorbent”, Water Air Soil Pollut., 120,283-294 (2000).

    7 Boucher, J., Steiner, L., Marison, I.W., “Bio-sorption of atrazine in the press-cake from oilseeds”, Water Res., 41, 3209-3216 (2007).

    8 Mcafee, B.J., Douglas Gould, W., Nadeau, J. C. , da Costa, A. C. A.,“Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae”, Sep. Sci. Technol., 36 (14), 3207-3222 (2001).

    9 Mata, Y. N., Gavrilescu, M., “Removal of heavy metals from the environment by biosorption”, Eng. Life Sci., 4, 219-232 (2004).

    10 Torres, E., Blazquez, M.L., Ballester, A., Gonzalez, F., Munoz, J.A.,“Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus”, J. Hazardous Mater., 166, 612-618 (2009).

    11 Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S., Thomas Choong,S.Y., “Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview”, Deaslination, 175, 305-316 (2005).

    12 Malik, P.K., “Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: A case study of Acid Yellow 36”, Dyes Pigments, 56, 239-249 (2003).

    13 Aksu, Zumriye, Isoglu Alper, I., “Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution”, J. Hazard. Mater., B137, 418-430 (2006).

    14 de Oliveria Brito, S.M., Andrade, H.M.C., Soares, L.F., de Azevedo,R.P., “Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions”, J. Hazard. Mater.,174, 84-92 (2010).

    15 Ofomaja, A.E., “Equilibrium sorption of methylene blue using mansonia wood sawdust as biosorbent”, Desalination Water Treat., 3,1-10 (2009).

    16 Fiorentin, L.D., Trigueros, D.E.G., Modenes, A.N.,Espinoza-Quinones, F.R., Pereira, N.C., Barros, S.T.D., Santos,O.A.A., “Biosorption of reactive blue 5G dye onto drying orange bagasse in batch system: Kinetic and equilibrium modeling”, Chem.Eng. J., 163, 68-77 (2010).

    17 Gao, J., Zhang, Q., Su, K., Chen, R., Peng, Y., “Biosorption of acid yellow 17 from aqueous solution by non-living aerobic granular sludge”, J. Hazard. Mater., 174, 215-225 (2010).

    18 Rocher, V., Bee, A., Siaugue, J.M., Cabuil, V., “Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin”, J. Hazard. Mater., 178, 434-439 (2010).

    19 Gadd, G.M., “Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment”, J.Chem. Technol Biotechnol., 34, 13-28 (2009).

    20 Zhu, L.J., Yao, J., Youlu, L., “Structural transformation of sericin disolved from cocoon layer in hot water”, Zhejiang Nongye Daxue Xuebao, 24, 268-272 (1998). (in Chinese)

    21 Ho, Y.S., McKay, G., “The kinetics of sorption of divalent metal ions onto sphagnum moss peat”, Water Res., 34, 735-742 (2000).

    22 Gulrajani, M.L., Brahma, K.P., Senthil Kumar, P., Purwar, R.,“Application of silk sericin to polyester fabric”, J. Appl. Polym. Sci.,109, 314-321 (2008).

    23 Chen, X.Q., Lam, K.F., Mak, S.F., Yeung, K.L., “Precious metal recovery by selective adsorption using biosorbents”, J. Hazard. Mater.,186, 902-910 (2011).

    24 Takasu, Y., Yamada, H., Tsubouchi, K., “Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori”,Biosci. Biotechnol. Biochem., 66, 2715-2718 (2002).

    25 Kwang, Y.C., Jae, Y.M., Yong, W.L., Kwang, G.L., Joo, H.Y., Hae,Y.K., “Preparation of self-assembled silk sericin nanoparticles”, Int.J. Biol. Macromol., 32, 36-42 (2003).

    26 Wu, J.H., Wang, Z., Xu, S.Y., “Preparation and characterization of sericin powder extracted from silk industry wastewater”, Food Chem., 103, 1255-1262 (2007).

    27 Vaithanomsat, P., Kitpreechavanich, V., “Sericin separation from silk degumming wastewater”, Sep. Purif. Technol., 59, 129-133 (2008).

    28 Ho, K.Y., McKay, G., Yeung, K.L., “Selective adsorbents from ordered mesoporous silica”, Langmuir, 19, 3019-3024 (2003).

    29 Russo, M.E., Marzocchella, A., Olivieri, G., Prigione, V., Salation, P.,Tigini, V., Varese, G.C., “Characterization of dyes biosorption on fungal biomass”, Chem. Eng. Trans., 17, 1071-1076 (2009).

    30 Iqbal, J., Wattoo, F.H., Wattoo, M.H.S., Malik, R., Tirmizi, S., Imran,M., Ghangro, A.B., “Adsorption of acid yellow dye on flaskes of chitosan prepared from fishery wastes”, Arabian J. Chem., 4,389-395 (2011).

    31 Ozacar, M., Sengil, I.A., “Adsorption of metal complex dyes from aqueous solutions by pine sawdust”, Biores. Techno., 96, 791-795.

    32 Anbia, M., Mohammadi, N., Mohammadi,K., “Fast and efficient mesoporous adsorbents for the separation of toxic compounds from aqueous media”, J. Hazard. Mater., 176, 965-972 (2010).

    33 Gusmao, K.A.G., Gurgel, L.V.A., Melo, T.M.S., Gil, L.F., “Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions-kinetic and equilibrium studies”, Dyes Pigments, 92, 967-974 (2012).

    34 Liu,T., Li,Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y.,Zhang, W., Wang, K., Zhu, H., Wu, D., “Adsorption of methylene blue from aqueous solution by graphene”, Colloids Surf. B., 90,197-203 (2012).

    35 Vadivelan, V., Kumar, K.V., “Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk”, J.Colloids Inter. Sci., 286, 90-100 (2005).

    36 Kavitha,D., Namasivayam, C., “Experimental and kinetic studies on methylene blue adsorption by coir pith carbon”, Bioresource Tech.,98, 14-21 (2007).

    37 Ho, K.Y., Yeung, K.L., “Effects of ozone pretreatment on the performance of Au/TiO2catalyst for CO oxidation reaction”, J. Catat.,242, 131-141 (2006).

    38 Yeung, K.L., Wolf, E.E., “A scanning tunneling microscopy study of the platinum catalysts particles supported on graphite”, J. Vac. Sci.Technol. B., 9, 798-803 (1991).

    39 Yeung, K.L., Wolf, E.E., “Scanning tunneling microscopy studies of sized and morphology of Pt graphite catalysts”, J. Catat., 135, 13-26(1992).

    40 Cheng, Y.S., Yeung, K.L., “Effects of electroless plating chemistry on the synthesis of palladium membranes”, J. Membrane Sci., 182,195-203 (2001).

    41 Yeung, K.L., Sebastian, J.M., Varma, A., “Novel preparation of Pd/Vycor composite membranes”, Catat. Today, 25, 231-236 (1995).

    42 Yeung, K.L., Aravind, R., Szegner, J., Varma, A., “Metal composite membranes: Synthesis, characterization and reaction studies”, Stud.Surf. Sci. Catal., 101, 1349-1358 (1996).

    43 Yeung, K.L., Cheng, Y.S., “Effects of electroless plating chemistry on the synthesis of palladium membranes”, J. Membrane Sci., 182,195-203 (2001).

    44 Guo, Y., Zhang, X.F., Zou, H., Liu, H., Wang, J., Yeung, K.L.,“Pd-silicalite-1 composite membrane for direct hydroxylation of benzene”, Chem. Commun., 39, 5898-5900 (2009).

    45 Chen, X.Q., Lam, K.F., Yeung, K.L., “Selective removal of chromium from different aqueous systems using magnetic MCM-41 nanosorbents”, Chem. Eng. J., 172, 728-734 (2011).

    46 Pan, B.C., Chen, X.Q., Pan, B.J., Zhang, W.M., Zhang, X., Zhang,Q.X., “Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water”, J. Hazard. Mater.,137, 1236-1240 (2006).

    47 Lam, K.F., Chen, X.Q., McKay, G., Yeung, K.L., “Anion effect on Cu2+adsorption on NH2-MCM-41”, Ind. Eng. Chem. Res., 47,9376-9383 (2008).

    2012-03-15, accepted 2012-04-04.

    * Supported by the Hong Kong Research Grant Council (605009), the Hong Kong Innovation Technology Fund (ITS/108/09FP)and the Environment and Conservation Fund (ECWW11EG02).

    ** To whom correspondence should be addressed. E-mail: kekyeung@ust.hk

    国产免费福利视频在线观看| 久久精品国产亚洲av天美| 男女那种视频在线观看| 天天一区二区日本电影三级| 91aial.com中文字幕在线观看| 国产精品人妻久久久影院| 丰满乱子伦码专区| 高清欧美精品videossex| 国产v大片淫在线免费观看| 亚洲精品一二三| 国产免费一级a男人的天堂| av免费在线看不卡| 国产精品久久久久久av不卡| 亚洲国产精品国产精品| 最近中文字幕2019免费版| 成人国产麻豆网| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 亚洲在线观看片| 成人高潮视频无遮挡免费网站| 国产精品福利在线免费观看| 最近中文字幕高清免费大全6| 韩国av在线不卡| 日韩一区二区视频免费看| 日本黄大片高清| 亚洲av.av天堂| 午夜福利视频精品| 国产在线一区二区三区精| 日韩,欧美,国产一区二区三区| av播播在线观看一区| 日本猛色少妇xxxxx猛交久久| 国内精品宾馆在线| 成年女人在线观看亚洲视频 | 91aial.com中文字幕在线观看| 国产高清国产精品国产三级 | 午夜免费激情av| 欧美日韩亚洲高清精品| 国产精品一区二区在线观看99 | 久久久久性生活片| 国产又色又爽无遮挡免| 国产真实伦视频高清在线观看| av在线天堂中文字幕| 97精品久久久久久久久久精品| av专区在线播放| 成人毛片a级毛片在线播放| 五月玫瑰六月丁香| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 熟女电影av网| 国产黄a三级三级三级人| 国产老妇伦熟女老妇高清| 国产成人精品一,二区| 美女脱内裤让男人舔精品视频| 免费av毛片视频| 久久午夜福利片| 亚洲精品乱码久久久v下载方式| 国产一区二区三区综合在线观看 | 亚洲av中文av极速乱| 国产亚洲最大av| 最近的中文字幕免费完整| 天堂av国产一区二区熟女人妻| 中文天堂在线官网| 淫秽高清视频在线观看| 国产亚洲一区二区精品| 国产精品一区二区三区四区免费观看| 日韩不卡一区二区三区视频在线| 国内精品宾馆在线| 91精品一卡2卡3卡4卡| 亚洲精品日韩在线中文字幕| 精品久久久久久久久av| 51国产日韩欧美| 亚洲人成网站在线观看播放| 亚洲欧美精品专区久久| 大片免费播放器 马上看| 直男gayav资源| 亚洲成人av在线免费| 久久久久久伊人网av| 亚洲va在线va天堂va国产| 中文在线观看免费www的网站| 国产av码专区亚洲av| 亚洲精品乱久久久久久| 最近的中文字幕免费完整| 免费av观看视频| 蜜臀久久99精品久久宅男| 色综合站精品国产| 三级国产精品片| 特级一级黄色大片| 男人舔女人下体高潮全视频| 日本一二三区视频观看| 久久久欧美国产精品| 国产亚洲5aaaaa淫片| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 国产成人一区二区在线| 99久久精品热视频| 久久久久精品性色| 99re6热这里在线精品视频| 3wmmmm亚洲av在线观看| 男插女下体视频免费在线播放| 成人美女网站在线观看视频| 蜜臀久久99精品久久宅男| 国产综合精华液| 亚洲av不卡在线观看| 老司机影院毛片| 亚洲精品乱久久久久久| 国产精品国产三级国产专区5o| 亚洲在久久综合| 男女下面进入的视频免费午夜| 91在线精品国自产拍蜜月| 欧美极品一区二区三区四区| 成年女人看的毛片在线观看| 2018国产大陆天天弄谢| 成人二区视频| 亚洲电影在线观看av| 中文精品一卡2卡3卡4更新| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 插阴视频在线观看视频| 日韩视频在线欧美| 亚洲精品久久久久久婷婷小说| 深爱激情五月婷婷| 日日啪夜夜爽| 男女啪啪激烈高潮av片| 国产高清有码在线观看视频| 国产精品麻豆人妻色哟哟久久 | 欧美成人精品欧美一级黄| 网址你懂的国产日韩在线| 亚洲av男天堂| 亚洲精品第二区| 一个人看视频在线观看www免费| 五月伊人婷婷丁香| 欧美日韩国产mv在线观看视频 | 精品亚洲乱码少妇综合久久| 国产永久视频网站| 国产精品久久视频播放| 亚洲在线自拍视频| 亚洲成人精品中文字幕电影| 性色avwww在线观看| 天堂网av新在线| 中文天堂在线官网| 国产免费视频播放在线视频 | 国产高清国产精品国产三级 | 国产亚洲一区二区精品| 国产有黄有色有爽视频| 99九九线精品视频在线观看视频| 久久久久久久大尺度免费视频| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 亚洲精品中文字幕在线视频 | 日本爱情动作片www.在线观看| 亚洲不卡免费看| 精品熟女少妇av免费看| 青青草视频在线视频观看| 欧美高清性xxxxhd video| 欧美日韩一区二区视频在线观看视频在线 | 女的被弄到高潮叫床怎么办| 身体一侧抽搐| av一本久久久久| 国产精品久久久久久久久免| 日韩欧美 国产精品| 欧美一区二区亚洲| 国产成人精品一,二区| 午夜福利在线在线| 一区二区三区乱码不卡18| 精品久久久久久久人妻蜜臀av| 国产精品无大码| 欧美成人a在线观看| 国产免费又黄又爽又色| 91aial.com中文字幕在线观看| 久久午夜福利片| 可以在线观看毛片的网站| 亚洲真实伦在线观看| 欧美成人a在线观看| 一级毛片aaaaaa免费看小| 亚洲成人精品中文字幕电影| 中文乱码字字幕精品一区二区三区 | 亚洲av男天堂| 超碰97精品在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲自偷自拍三级| 女的被弄到高潮叫床怎么办| ponron亚洲| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 国产 一区精品| 亚洲欧美清纯卡通| 久久鲁丝午夜福利片| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 高清午夜精品一区二区三区| 国产黄片视频在线免费观看| 亚洲丝袜综合中文字幕| 日日撸夜夜添| 麻豆乱淫一区二区| 日本黄大片高清| 国产黄色小视频在线观看| 乱码一卡2卡4卡精品| 亚洲av国产av综合av卡| 午夜福利视频1000在线观看| 免费大片黄手机在线观看| 国产成年人精品一区二区| 麻豆av噜噜一区二区三区| 久久久久久久久久人人人人人人| 国产综合精华液| 免费黄频网站在线观看国产| 亚洲精品成人久久久久久| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| xxx大片免费视频| 嘟嘟电影网在线观看| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| a级一级毛片免费在线观看| 男女下面进入的视频免费午夜| 简卡轻食公司| 插逼视频在线观看| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品 | 一级黄片播放器| 亚洲av二区三区四区| 麻豆国产97在线/欧美| 久久久久久久大尺度免费视频| 永久免费av网站大全| 女人十人毛片免费观看3o分钟| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 高清毛片免费看| 在线观看av片永久免费下载| 禁无遮挡网站| 黄色日韩在线| 校园人妻丝袜中文字幕| 国产色婷婷99| 亚洲国产精品专区欧美| 99久国产av精品| av网站免费在线观看视频 | 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| 亚洲成人一二三区av| 午夜福利在线观看免费完整高清在| 一个人免费在线观看电影| 亚洲av成人精品一区久久| 日本色播在线视频| 人妻系列 视频| 精品熟女少妇av免费看| 好男人视频免费观看在线| 亚洲精品一二三| 国产成年人精品一区二区| 亚洲av不卡在线观看| 国产乱人视频| 亚洲精品日本国产第一区| 色综合色国产| 视频中文字幕在线观看| 日韩一区二区视频免费看| 亚洲国产精品专区欧美| 精品久久久久久成人av| 亚洲成人中文字幕在线播放| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 国语对白做爰xxxⅹ性视频网站| 国产伦一二天堂av在线观看| 国产成人福利小说| 夜夜爽夜夜爽视频| 男人舔女人下体高潮全视频| 日本黄色片子视频| 汤姆久久久久久久影院中文字幕 | 亚洲经典国产精华液单| 亚洲精品久久午夜乱码| 国产伦理片在线播放av一区| 国产精品爽爽va在线观看网站| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 成人二区视频| 国产午夜精品久久久久久一区二区三区| av女优亚洲男人天堂| 亚洲色图av天堂| 免费大片18禁| 国产亚洲精品av在线| 国产av不卡久久| 天堂影院成人在线观看| 亚洲国产av新网站| 亚洲精品国产av蜜桃| 国产亚洲5aaaaa淫片| 久久久久精品性色| 亚洲精品aⅴ在线观看| 成人无遮挡网站| 欧美人与善性xxx| 久久久精品94久久精品| a级一级毛片免费在线观看| 在线免费观看的www视频| 美女cb高潮喷水在线观看| 99久久九九国产精品国产免费| 日韩强制内射视频| 免费看不卡的av| 国产亚洲91精品色在线| 国产综合懂色| 国产成人91sexporn| 极品教师在线视频| 天堂影院成人在线观看| 成人毛片60女人毛片免费| 一个人免费在线观看电影| 丝袜喷水一区| 欧美人与善性xxx| 日日摸夜夜添夜夜添av毛片| 日韩av不卡免费在线播放| 九色成人免费人妻av| 乱系列少妇在线播放| kizo精华| 人人妻人人澡欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲av片在线观看秒播厂 | 美女大奶头视频| 最后的刺客免费高清国语| 亚洲三级黄色毛片| 免费看a级黄色片| 日韩av在线大香蕉| 丝袜喷水一区| 国产极品天堂在线| 在线观看免费高清a一片| av在线老鸭窝| ponron亚洲| 成人午夜高清在线视频| 成人美女网站在线观看视频| 深夜a级毛片| 亚洲精品成人av观看孕妇| av在线蜜桃| 婷婷色综合www| 亚洲成人av在线免费| 91精品伊人久久大香线蕉| 内射极品少妇av片p| 中国国产av一级| 国产激情偷乱视频一区二区| 久久人人爽人人爽人人片va| 成人综合一区亚洲| 麻豆国产97在线/欧美| 午夜精品一区二区三区免费看| 色吧在线观看| 午夜久久久久精精品| 久久久成人免费电影| 亚洲人成网站在线播| 免费观看a级毛片全部| 国产精品一二三区在线看| 国产爱豆传媒在线观看| 在线免费观看不下载黄p国产| 午夜福利高清视频| av女优亚洲男人天堂| av在线蜜桃| 久久久色成人| 日韩欧美 国产精品| 亚洲精品日本国产第一区| 国产成人精品久久久久久| 国产在视频线精品| 日本黄大片高清| 亚洲av免费高清在线观看| 美女脱内裤让男人舔精品视频| 国产精品久久视频播放| 日本免费在线观看一区| 日本欧美国产在线视频| 中文天堂在线官网| 一级黄片播放器| 亚洲av中文av极速乱| 午夜激情福利司机影院| 免费看a级黄色片| 韩国高清视频一区二区三区| 中文欧美无线码| 啦啦啦啦在线视频资源| 哪个播放器可以免费观看大片| 嘟嘟电影网在线观看| 亚洲精品成人久久久久久| 91精品国产九色| av国产免费在线观看| 又爽又黄无遮挡网站| 国产黄频视频在线观看| 91精品国产九色| 欧美日韩精品成人综合77777| 久久久久久久大尺度免费视频| eeuss影院久久| 久久久久久久大尺度免费视频| 国产一区二区在线观看日韩| 久久精品国产亚洲av天美| 精品久久久久久电影网| 国产大屁股一区二区在线视频| 高清日韩中文字幕在线| 国产色婷婷99| 国产亚洲最大av| 日日摸夜夜添夜夜添av毛片| 91在线精品国自产拍蜜月| 欧美激情久久久久久爽电影| 成人无遮挡网站| 日本免费在线观看一区| 国产精品一区www在线观看| 欧美精品一区二区大全| 日韩一区二区三区影片| 精品久久久久久久久亚洲| 午夜精品国产一区二区电影 | 床上黄色一级片| av专区在线播放| 综合色av麻豆| 久久久久久久久久成人| 毛片一级片免费看久久久久| 肉色欧美久久久久久久蜜桃 | 天堂av国产一区二区熟女人妻| 丰满乱子伦码专区| 国产精品99久久久久久久久| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 亚洲最大成人手机在线| 日韩av在线免费看完整版不卡| 麻豆乱淫一区二区| 国产不卡一卡二| 欧美高清性xxxxhd video| 久久久久久久久大av| 国产成人a区在线观看| 国产黄a三级三级三级人| 国产在线男女| 一夜夜www| 精品酒店卫生间| 日韩欧美精品免费久久| 我的老师免费观看完整版| 精品人妻熟女av久视频| 只有这里有精品99| 蜜桃久久精品国产亚洲av| 国产精品一及| a级一级毛片免费在线观看| 听说在线观看完整版免费高清| 亚洲无线观看免费| 欧美zozozo另类| av天堂中文字幕网| 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| 久久精品久久久久久久性| 少妇被粗大猛烈的视频| 最近最新中文字幕大全电影3| 2018国产大陆天天弄谢| 国产午夜精品论理片| 欧美zozozo另类| 99视频精品全部免费 在线| 在现免费观看毛片| 免费看a级黄色片| 中文字幕制服av| 一级毛片 在线播放| 成人美女网站在线观看视频| 嫩草影院精品99| 黄色配什么色好看| 国产亚洲精品久久久com| 久久热精品热| 国产一级毛片在线| 国产 亚洲一区二区三区 | 午夜精品一区二区三区免费看| 欧美另类一区| 黄色配什么色好看| 亚洲最大成人手机在线| 国产亚洲5aaaaa淫片| 久久久久久久国产电影| 日韩av免费高清视频| 美女高潮的动态| 成人国产麻豆网| 亚洲av成人精品一区久久| 欧美另类一区| 国内精品一区二区在线观看| 欧美zozozo另类| 全区人妻精品视频| 秋霞在线观看毛片| 久久精品夜夜夜夜夜久久蜜豆| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 久久鲁丝午夜福利片| 午夜老司机福利剧场| ponron亚洲| 婷婷色av中文字幕| 国产 亚洲一区二区三区 | 国产免费又黄又爽又色| 美女xxoo啪啪120秒动态图| 三级经典国产精品| 日韩亚洲欧美综合| 深夜a级毛片| 精品久久久久久久久久久久久| 2018国产大陆天天弄谢| 十八禁网站网址无遮挡 | 日韩精品青青久久久久久| 又爽又黄无遮挡网站| 色综合亚洲欧美另类图片| 亚洲丝袜综合中文字幕| 国产高清有码在线观看视频| 亚洲欧美精品自产自拍| 人妻系列 视频| 亚洲欧洲国产日韩| 美女被艹到高潮喷水动态| 欧美日韩视频高清一区二区三区二| 夫妻性生交免费视频一级片| 乱系列少妇在线播放| 哪个播放器可以免费观看大片| 中文在线观看免费www的网站| 久久久久久国产a免费观看| 欧美人与善性xxx| 精品久久久精品久久久| 久久久亚洲精品成人影院| 国产v大片淫在线免费观看| 国产精品国产三级国产av玫瑰| 人人妻人人看人人澡| 一级二级三级毛片免费看| 三级经典国产精品| 国产精品美女特级片免费视频播放器| 黄片无遮挡物在线观看| 十八禁国产超污无遮挡网站| 乱人视频在线观看| 久久久久久久久久人人人人人人| 国产精品一区www在线观看| 美女主播在线视频| 久久久久久久亚洲中文字幕| 偷拍熟女少妇极品色| 欧美区成人在线视频| 国产美女午夜福利| 亚洲欧洲国产日韩| 小蜜桃在线观看免费完整版高清| 欧美成人a在线观看| 国产爱豆传媒在线观看| 成年av动漫网址| 国产精品国产三级国产av玫瑰| 亚洲国产日韩欧美精品在线观看| 天天躁日日操中文字幕| 91午夜精品亚洲一区二区三区| 女的被弄到高潮叫床怎么办| 高清av免费在线| 看免费成人av毛片| 精品一区二区三区视频在线| 国产一区二区在线观看日韩| 美女被艹到高潮喷水动态| 亚洲aⅴ乱码一区二区在线播放| 永久免费av网站大全| 欧美日韩亚洲高清精品| 日韩av免费高清视频| 大香蕉久久网| 欧美xxxx性猛交bbbb| 婷婷六月久久综合丁香| 人人妻人人看人人澡| 一区二区三区免费毛片| 国产极品天堂在线| 久久久a久久爽久久v久久| 深爱激情五月婷婷| 天堂中文最新版在线下载 | 亚洲人成网站高清观看| 一个人免费在线观看电影| 国产免费福利视频在线观看| 国产精品蜜桃在线观看| 国产国拍精品亚洲av在线观看| www.av在线官网国产| 亚洲精品日本国产第一区| 精品久久久久久久久亚洲| 可以在线观看毛片的网站| 在线观看免费高清a一片| 日韩av不卡免费在线播放| av线在线观看网站| 亚洲最大成人av| 在线天堂最新版资源| 免费看av在线观看网站| 午夜激情久久久久久久| 特级一级黄色大片| 国产老妇伦熟女老妇高清| 少妇丰满av| 中文字幕av在线有码专区| 午夜老司机福利剧场| 久久99蜜桃精品久久| 99热这里只有是精品50| 免费观看性生交大片5| ponron亚洲| 亚洲av在线观看美女高潮| 国产视频首页在线观看| 熟女电影av网| 蜜桃亚洲精品一区二区三区| 日韩av免费高清视频| 一个人看的www免费观看视频| 51国产日韩欧美| 国产成人91sexporn| 国产伦在线观看视频一区| 久久国内精品自在自线图片| 黄片wwwwww| 成人午夜精彩视频在线观看| 精品久久久精品久久久| 97人妻精品一区二区三区麻豆| 美女被艹到高潮喷水动态| 18禁在线无遮挡免费观看视频| 人人妻人人澡欧美一区二区| 国产免费又黄又爽又色| 男女视频在线观看网站免费| 亚洲真实伦在线观看| 午夜精品一区二区三区免费看| 色播亚洲综合网| 男人舔奶头视频| 中文在线观看免费www的网站| 一夜夜www| 中文字幕av成人在线电影| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩视频高清一区二区三区二| 边亲边吃奶的免费视频| 色尼玛亚洲综合影院| 青青草视频在线视频观看| 成人毛片60女人毛片免费| 99久久人妻综合| 免费大片18禁| 22中文网久久字幕| 日韩欧美国产在线观看| 日日干狠狠操夜夜爽| 国产乱人视频| av在线老鸭窝| 卡戴珊不雅视频在线播放| 自拍偷自拍亚洲精品老妇| 精品国内亚洲2022精品成人| 亚洲婷婷狠狠爱综合网| 深夜a级毛片| 欧美变态另类bdsm刘玥| 免费观看的影片在线观看| 久久精品久久久久久噜噜老黄| 日韩成人伦理影院| 亚洲四区av|