• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NOVEL IMMERSED BOUNDARY-LATTICE BOLTZMANN METHOD BASED ON FEEDBACK LAW

    2012-10-08 12:10:36LiXiujuanZhaoRongguoZhongChengwen
    關(guān)鍵詞:眼界書籍動(dòng)力

    Li Xiujuan,Zhao Rongguo,Zhong Chen gwen

    (1.College of Civil Engineering and Mechanics,Xiang tan University,Xiangtan,411105,P.R.China;2.National Key Laboratory of Science and Technology on Aerodynamic Design and Research,Northwestern Polytechnical University,Xi’an,710072,P.R.China)

    INTRODUCTION

    The lattice Boltzmann method(LBM)has been developed to bean alternative and promising numerical scheme for simulating fluid flows and modeling physics in fluids since proposed in 1992.It provides many advantages,including clear physical pictures, easy implementation of boundary conditions, and fully parallel algorithms[1].This method is especially useful for low speed flows, multiphase flows, porous flows, micro channel flows, and particle suspension flows.

    The immersed boundary method(IBM)was first proposed by Pesk in in the 1970s when he studied the blood flow in the human heart[2-3].The blood flow is driven by heart valves,and valves immersed in the blood fluid flow can be considered as a deformable boundary.In IBM,the flow field is represented by a set of Eulerian points,which are in fact the fixed Cartesian mesh points,and the boundary of immersed object is represented by a set of Lagrangian points.And this scheme is suitable to simulate fluid structure interaction. The basic idea of IBM is that the effect of boundary on the surrounding fluids can be replaced by the restoring force which is added into governing equations.On the other hand,as an alternative numerical scheme to Navier-Stokes equation solver, LBM has attained wide popularity recently in solving various incompressible flow problems.It is applied to the Cartesian mesh instead of body-fitted mesh which is computationally expensive,so,it can simplify the boundary treatment and improve the computational accuracy.Since the birth of IBM,numerous modifications and a number of variants of this approach have been proposed and widely used in lots of fields,such as bio mechanics,fluid-structure-interaction and Multiphase flow.

    LBM is a regular lattice-based scheme,which is a little difficult to deal with the complex geometry.In 2002,IBM is first used in the LBM framework by Feng Zhigang, et al[4], this approach is called immersed boundary-lattice Boltzmann method(IB-LBM).Usually,IBM is coupling with N-S equations.While LBM is a mesoscopic method,its governing equation is the Boltzmann equation. These two methods are completely different. IB-LBM inherits the advantages of LBM:clear physical pictures,easy implementation of boundary conditions,and fully parallel algorithms.

    The conventional IB-LBM where the force density is computed explicitly by Hooke’s law and the non-slip boundary condition is approximately satisfied. As a result,obvious flow penetration to the immersed boundary can be observed at the boundary points. Flow penetration implies mass exchange across the boundary.As we know,this can lead into the error.Wu and Shu,et al[5]proposed a scheme called velocity correction to calculate the force term at the boundary points,which guaranteed the non-slip condition in 2009.The capability of that scheme for moving object is well validated in their paper. However, it seems a little complicated to interpolate between two types of coordinates.In this paper,the force density term is obtained by the feedback law.The method not only reduces the computation load for interpolation, but also satisfies the non-slip boundary condition.And,it can be found that the method can be used to simulate incompressible flows around complex geometry object,moving objects and so on.

    1 NUMERICAL METHOD FOR IB-LBM

    1.1 Lattice Boltzmann method

    As show n in Fig.1,the area of viscous flow field is K,which is represented by a set of

    Fig.1 Schematics of immersed boundary method

    Eulerian points.The elastic boundary isΓ,which is represented by a set of Lagrangian points X(s,t).

    In 2000,Hofler and Sch war zer proposed a new IB method to simulate the action of solid particles,which added a body force to the governing equations[6].The governing equations of viscous incompressible flows can be written as

    where u and f are the fluid velocity and the force density acting on the fluid,d is the fluid density,p the fluid pressure,and_the dynamic viscosity.

    In the lattice Boltzmann context,Eqs.(1,2)can be replaced by the lattice Boltzmann equation[7-8],shown as

    where f T is the density distribution function,its corresponding equilibrium state,f the single relaxation time,F the boundary force density of Lagrangian coordinates,F T the force term along the T discrete direction of F,eαthe lattice velocity,and k T the coefficient depending on the selected lattice model.

    Eq.(3)is called LBGK modeling.Starting from an initial state,the configuration of particles at each time step evolves in two sequential steps[9]:

    (1)Collision,which occurs when particles arriving at a node interact and possibly changes their velocity directions according to scattering rules.It can be written as

    (2)Streaming,where each particle moves to the nearest node in the direction of its velocity.It can be written as

    The diagram for the particle velocity of D2Q9 is sketched in Fig.2.In every lattice there are sets of particles, every set has different velocity[8].

    Fig.2 D2Q9 lattice model

    where c=W x/W t,W x and W t are the lattice spacing and time step,respectively.The corresponding equilibrium distribution function is

    where csis the sound speed of this model,and it is defined as c s=c/.The weight coefficient k T is written as

    The relaxation time is related to the viscosity by

    1.2 Velocity correction in IB-LBM

    In LBM,the macroscopic variables satisfied N-S equations are obtained by Chapman-Enskog expansion[8],which are defined in terms of the particle distribution function by[4,10]

    where u*is the intermediate velocity,and W u the velocity correction.

    Then Eq.(4)can be written as

    In the conventional IB-LBM,the force density is computed explicitly by the Hook’s law or the direct forcing method[11-14],taking Hook’s law for example,it can be written as

    where W(x- X(s,t))is called smoothly approximate function.It can distribute force term f at Eulerian points from the force term F at the boundary(Lagrangian)points.Suppose the force density f is unknown,which is determined by the velocity at the boundary point interpolated from the corrected velocity field satisfying the non-slip boundary condition, otherwise some flows penetrate the boundary.

    where u*can be obtained from Eq.(10).Set W Ul

    B be the velocity correction vector at every Lagrangian point,so the velocity W u at the Eulerian points can be obtained as same as Eqs.(13,14),shown as

    where the Dirac delta function interpolation can be smoothly approximated by continuous kernel distribution,shown as

    where W(x-X B(s,t))is proposed by Pesk in[15]in 2002 as

    From Eqs.(16-17),the velocity correction at Eulerian points can be expressed as

    By parity of reasoning,we have

    Substituting Eq.(19)into Eq.(15),we have

    輔助資源方面,希望豐富相關(guān)英語視頻和書籍,以豐富學(xué)生的英語輸入類型和數(shù)量,開拓學(xué)生的思維和眼界,激發(fā)學(xué)生學(xué)習(xí)英語的興趣和動(dòng)力。

    Substituting Eq.(21)into Eq.(20),we have

    Eq.(22)can be also expressed as

    where Dij=Dij(x ij-XlB(s,t)),Y=…,B={Δu1,Δu2,… ,Δu l,… ,Δu m}andΔu l=(x ij,t)DijΔxΔy(l=1,2,…,m).

    Eq.(23)can be simplified as AY=B.

    In this paper,the density and pressure are computed by

    The force term f at Eulerian points can be simply calculated as

    1.3 Feedback law in IB-LBM

    In order to solve two problems caused by velocity correction:the complex interpolation of velocity correction method, and partly interruption of intrinsic parallel nature in solving linear equations of corrected velocity. A new method which introduces feedback law is proposed in this paper.In terms of analysis of mechanics,F denotes the Lagrangian forcing exerted on the boundary by the surrounding fluid. The cylinder used in this paper is in extensible and massive.The governing equation for the cylinder is written in a Lagrangian form.The motion equation is

    where X is the position of the cylinder.According to the two hypotheses,Eq.(26)can be presented as

    where T is the tension force along the cylinder,V the bending rigidity,d 1 the additional boundary density of cylinder which is different between the structure and the fluid density.

    This paper introduces the following characteristic scale:diameter of the cylinder D for the length, free stream velocity U0for the velocity,for the pressure,and d 1for the force term exerted on fluid and boundary,respectively,_U0for the stretching and shearing coefficients, and _U0D2for the bending and twisting coefficients.Thus,Eq.(27)can be written as

    And the in extensibility condition[13,16-18]is expressed by

    Substituting Eq.(29)into Eq.(28),we can obtain

    Note that the tension force of cylinder can be ignored.The tension force T could be omitted from Eq.(30).

    The bending force can be expressed as

    Bending force F b can be also written as

    Set X*denote a pre-position of the cylinder,which is used to substitute Xnin Eq.(32).In order to satisfy the in extensibility condition,the predicted position can be obtained by X*=2Xn-Xn-1. In practice,the use of X*instead of Xnreduces the error further.

    Considering Eq.(17),Eq.(33)is similar to Eq.(14),namely

    The interaction force can be calculated explicitly by feedback law[19],which can satisfy the non-slip condition.The definition of the law is expressed as

    The velocity of the boundary can be computed by Uij,velocity of the points U B nearby are approximate to Uji. As the cylinder is stationary,

    The basic solution process of the method can be summarized as follows:

    (1)Set initial values.

    (2) Use Eq.(3) to get the density distribution function at time level(setting initially),and calculate the macroscopic variable,such as density,pressure,using Eqs.(4,24).

    (3)Obtain the force density using Eqs.(32,34),including bending force and Lagrangian force term.

    (4)Interpolate the Lagrangian force term into Eulerian force which is exerted on fluid by the boundary.

    (5)Compute the equilibrium distribution function using Eq.(7).

    (6)Repeat(2)-(5)until convergence is reached.

    2 RESULTSAND DISCUSSIONS

    2.1 Steady flow around stationary cylinder

    The capability of the method for solving fluid-solid boundary problem is well demonstrated through its application to simulate flows around a single circular stationary cylinder. The simulations at Reynolds numbers of 20 and 40 are carried out.The data in the test are shown as follow:

    (1)The computational domain is 500×241,and the fine-mesh block covers the area of cylinder and its wake.

    (2)The diameter of the cylinder is D=20 and its centre is located at(125,120).

    (3)Initial states are U0=0.1,V0=0.0,d0=1.0.

    (4)Setting of LBM isΔx=Δy=Δt=1.

    Here,Reynolds number and drag coefficient are defined as

    where U 0 is the free stream velocity,F d the drag force and it can be calculated by

    where f x is the x-component of the force density at the boundary points.

    The streamlines of Re=20,40 are presented in Fig.3. From Fig.3,it is clear that the separation flow is stable and symmetrical,and there area coupleof symmetrical vortexes behind thecylin-der.The results show that the length of the vortex is elongated with Reynolds number.

    Fig.3 Streamlines around cylinder

    The drag coefficient and length of recirculation bubbles(based on the cylinder diameter D)are compared with those of previous literatures in Table 1.

    Table 1 Comparison of flow around circular cylinder

    The good agreement of the result can be further confirmed by Fig.4,which compares the pressure profile on the surface of cylinder at Re=40.

    Fig.4 Pressure distribution on surface of cylinder at Re=40

    First of all,LBM is a mesoscopic numerical method. The number of meshes is related to Reynolds number. Then, the number of boundary points has effect on the results,shown in Table 2.Finally,the diameter of the cylinder is related to the accuracy of the results. To demonstrate the effect,numerical simulations for diameter with different mesh sizes are carried out.The results are shown in Table 3.It is shown that the distance of Lagrangian points can affect the accu-racy.If the relationship between arclength and space step satisfies the equationΔs < 0.5Δx,the results will be more accurate.

    Table 2 Influence of number of Lagrangian points on drag coefficient at Re=20

    Table 3 Influence of cylinder diameter on drag coef ficient at Re=40

    2.2 Flow around two circular cylinders in side by side arrangement

    For the case presented above,the stationary circular cylinder is single.In order to investigate the ability of the method for complex geometry flows, the simulation of flow around two stationary circular cylinders in a side by side arrangement is carried out at Re=40.

    The computational domain is set by 40D×22D with a mesh size of 801×441.The two circular cylinders are set normal to the free stream,and located with the centers at(201,201)and(201,241),respectively.That is to say,the non-dimensional gap spacing g*=g/D=1.The free stream velocity is taken as U0=0.1,V0=0.0 and the fluid density is d 0=1.0.The computation starts with the given free stream velocity.The density distribution function is set in its equilibrium state at the far field boundary and the in flow.

    The streamlines of Re=40,g* =1 are presented in Fig.5.From Fig.5,it is shown that the flow is steady and symmetric relative to the centerline,and the reis no vortex shedding behind the cylinders[22].

    Fig.5 Streamlines for two side by side cylinders at Re=40,g*=1

    3 CONCLUSION

    This paper proposes a novel IB-LBM method based on the feedback law. The method is sufficient to capture the important characteristics of flow fields,and the results are within the range of values reported by previous studies.Compared with the conventional IB-LBM or the velocity correction method[23-26],the force density is obtained by feedback law in the method,which not only satisfies the non-slip boundary condition,but also improves the accuracy of simulation for complex geometry by LBM.Furthermore,the method can be easily computed and reserve the advantages of LBM.

    [1] Chen S Y,Doolen G D.Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30(1):329-364.

    [2] Peskin C S.Flow patterns around heart valves:A numerical method[J]. Journal of Computational Physics,1972,10(2):252-271.

    [3] Peskin C S.Numerical analysis of blood flow in the heart[J].Journal of Computational Physics,1977,25(3):220-252.

    [4] Feng Z G,Michaelides E E.Hydrodynamic force on spheres in cylindrical and prismatic enclosures[J].Journal of Multiphase Flow,2002,28(3):479-496.

    [5] Wu J, Shu C, Zhang Y H. Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-lattice Boltzmann method[J].International Journal for Numerical Method in Fluids,2010,62(3):327-354.

    [6] Ho¨fler K,Schwarzer S.Navier-Stokes simulation with constraint forces: Finite-difference method for particle-laden flows and complex geometries[J].Physical Review E,2000,61(6):7146-7160.

    [7] Guo Z,Zheng C,Shi B.Discrete lattice effects on the forcing term in the lattice Boltzmann method[J].Physical Review E,2002,65(4):046308.

    [8] McNamara G R,Zanetti G.Use of the Boltzmann equation to simulate lattice gas automata[J].Physical Review Letters,1998,61(20):2332-2335.

    [9] Qian Y H,d’Humieres D,Lallemand P.Lattice BGK model for Navier-Stokes equation [J].Europhysics Letters,1992,17(6):479-484.

    [10]Shu C,Liu N Y,Chew Y T.A novel immersed boundary velocity correction—Lattice Boltzmann method and application to simulate flow past a circular cylinder[J]. Journal of Computational Physics,2007,226(2):1607-1622.

    [11]Feng Z G,Michaelides E E.Proteus: A direct forcing method in the simulations of particulateflows[J].Journal of Computational Physics,2005,202(1):20-51.

    [12]Fadlun E A, Verzicco R, Orlandi P, et al.Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J].Journal of Computational Physics,2000,161(1):35-60.

    [13]Niu X D,Shu C,Chew Y T,et al.A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows[J].Physics Letters A,2006,354(3):173-182.

    [14]Peskin C S.The immersed boundary method[J].Acta Numerica,2002,11:479-517.

    [15]Tornberg A-K, Shelley M J. Simulating the dynamics and interactions of flexible fibers in stokes flows[J].Journal of Computational Physics,2004,196(1):8-40.

    [16]Thess A,Zikanov O,Nepomnyashchy A.Finitetime singularity in the vortex dynamics of a string[J].Physical Review E,1999,59(3):3637-3640.

    [17]Belmonte A,Shelley M J, Eldakar S T,et al.Dynamic patterns and self-Knotting of a driven hanging chain[J].Physical Review Letters,2001,87(11):114301.

    [18]Huang W X,Sung H J. Simulation of flexible filaments in a uniform flow by the immersed boundary method[J]. Journal of Computational Physics,2007,226(2):2206-2228.

    [19]Goldstein D,Handler R,Sirovich L.Modeling a noslip flow boundary with an external force field[J].Journal of Computational Physics,1993,105(2):354-366.

    [20]Shukla R K,Tatineni M,Zhong X.V ery high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations[J].Journal of Computational Physics,2007,224(2):1064-1094.

    [21]Nieuw stadt F, Keller H B.Viscous flow past circular cylinders[J].Computers&Fluids,1973,1(1):59-71.

    [22]Kang S.Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers[J].Physics of Fluids,2003,15(9):2486-2498.

    [23]Wu J, Shu C, Zhang Y H. Simulation of incompressible viscous flows around moving objects by avari ant of immersed boundary-lattice Boltzmann method[J]. International Journal of Numerical Methods for Heat and Fluid Flow,2010,62(3):327-354.

    [24]Wu J,Shu C.An improved immersed boundary lattice Boltzmann method for simulating three dimensional incompressible flows[J]. Journal of Computational Physics,2010,229(13):5022-5042.

    [25]Choi J I,Oberoi R C,Edwards J R,et al.An immersed boundary method for complex incompressible flows[J].Journal of Computational Physics,2007,224(2):757-784.

    [26]Lu J,Han H,Shi B,et al.Immersed boundary lattice Boltzmann model based on multiple relaxation times[J].Physical Review E,2012,85(1):016711.

    猜你喜歡
    眼界書籍動(dòng)力
    魯迅與“書籍代購”
    學(xué)習(xí)動(dòng)力不足如何自給自足
    大開眼界
    AOS在書籍編寫的應(yīng)用
    書籍
    胖胖一家和瘦瘦一家(10)
    動(dòng)力船
    書籍是如何改變我們的
    大看眼界
    基于多動(dòng)力總成的六點(diǎn)懸置匹配計(jì)算
    日日啪夜夜撸| 国产免费又黄又爽又色| 免费看a级黄色片| 国产又黄又爽又无遮挡在线| 插逼视频在线观看| 少妇人妻精品综合一区二区| 亚洲伊人久久精品综合 | 欧美变态另类bdsm刘玥| 精品一区二区三区视频在线| 国产精品乱码一区二三区的特点| 免费看av在线观看网站| 一级毛片电影观看 | 国产一区二区在线观看日韩| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品成人久久小说| 色吧在线观看| 久久精品91蜜桃| 级片在线观看| 国产精华一区二区三区| www.色视频.com| 亚洲av二区三区四区| 成人鲁丝片一二三区免费| 18禁在线播放成人免费| 人人妻人人澡欧美一区二区| 日韩成人伦理影院| 国产v大片淫在线免费观看| 国产麻豆成人av免费视频| 99久国产av精品国产电影| 久久午夜福利片| 精品久久国产蜜桃| 国产一区二区在线av高清观看| 日本五十路高清| 少妇被粗大猛烈的视频| 91av网一区二区| 国产成人精品一,二区| 国产久久久一区二区三区| 性插视频无遮挡在线免费观看| 国产一区亚洲一区在线观看| 男人舔奶头视频| 黄色一级大片看看| 国产成人a区在线观看| 超碰97精品在线观看| 熟女人妻精品中文字幕| 春色校园在线视频观看| 最近2019中文字幕mv第一页| 日日干狠狠操夜夜爽| 亚洲精品乱久久久久久| 日韩av不卡免费在线播放| 亚洲国产精品合色在线| 精品久久久噜噜| 超碰97精品在线观看| 久久99热这里只频精品6学生 | 国内揄拍国产精品人妻在线| 久久精品91蜜桃| 久久久久免费精品人妻一区二区| 欧美3d第一页| 春色校园在线视频观看| 九九热线精品视视频播放| 国产午夜精品久久久久久一区二区三区| 免费av不卡在线播放| 久久精品熟女亚洲av麻豆精品 | 国产一区二区亚洲精品在线观看| 亚洲真实伦在线观看| 一个人看的www免费观看视频| 午夜精品一区二区三区免费看| 啦啦啦韩国在线观看视频| 天堂网av新在线| 成年av动漫网址| 九九爱精品视频在线观看| kizo精华| 丝袜喷水一区| 人妻系列 视频| 乱人视频在线观看| 国产成人91sexporn| 黄片无遮挡物在线观看| 欧美区成人在线视频| 国产黄片视频在线免费观看| 一个人看的www免费观看视频| av黄色大香蕉| 水蜜桃什么品种好| av国产久精品久网站免费入址| 麻豆av噜噜一区二区三区| 久久精品久久久久久久性| 看片在线看免费视频| 伦理电影大哥的女人| 全区人妻精品视频| 色噜噜av男人的天堂激情| 亚洲国产欧美人成| 能在线免费看毛片的网站| 青春草国产在线视频| 一级爰片在线观看| 久久人妻av系列| 亚洲一区高清亚洲精品| 我要看日韩黄色一级片| 男女啪啪激烈高潮av片| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区av在线| 不卡视频在线观看欧美| 99热这里只有是精品50| 一二三四中文在线观看免费高清| 久久婷婷人人爽人人干人人爱| 一级爰片在线观看| 免费大片18禁| 色网站视频免费| 99热6这里只有精品| 99久久精品热视频| 汤姆久久久久久久影院中文字幕 | 少妇猛男粗大的猛烈进出视频 | 天堂影院成人在线观看| 青春草国产在线视频| 国产亚洲av嫩草精品影院| 听说在线观看完整版免费高清| 日日撸夜夜添| 日韩欧美精品v在线| 免费观看在线日韩| 黄色配什么色好看| 秋霞伦理黄片| 国产av一区在线观看免费| 国产中年淑女户外野战色| 亚洲va在线va天堂va国产| 偷拍熟女少妇极品色| 变态另类丝袜制服| 九九久久精品国产亚洲av麻豆| 在线观看av片永久免费下载| 色网站视频免费| 日韩国内少妇激情av| 赤兔流量卡办理| 真实男女啪啪啪动态图| 美女高潮的动态| 国产精品一区www在线观看| 亚洲av熟女| 男女国产视频网站| 丰满人妻一区二区三区视频av| 哪个播放器可以免费观看大片| 国产精品综合久久久久久久免费| 国产精品.久久久| 亚洲,欧美,日韩| av专区在线播放| 天堂影院成人在线观看| 99久国产av精品| 少妇人妻精品综合一区二区| 春色校园在线视频观看| 一个人观看的视频www高清免费观看| 99九九线精品视频在线观看视频| 99在线人妻在线中文字幕| 国产精品久久久久久精品电影| 美女大奶头视频| 亚洲真实伦在线观看| 男的添女的下面高潮视频| 熟女电影av网| 亚洲成色77777| 特级一级黄色大片| 免费一级毛片在线播放高清视频| 又黄又爽又刺激的免费视频.| 亚洲欧美日韩东京热| 亚洲在线自拍视频| 国产久久久一区二区三区| 欧美成人精品欧美一级黄| 一级黄片播放器| 国产美女午夜福利| 亚洲最大成人手机在线| 丰满少妇做爰视频| 少妇猛男粗大的猛烈进出视频 | 欧美一级a爱片免费观看看| av线在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 久久精品久久久久久久性| 99热全是精品| 水蜜桃什么品种好| 精品一区二区三区视频在线| 亚洲最大成人手机在线| 午夜免费激情av| 性插视频无遮挡在线免费观看| 一区二区三区四区激情视频| av在线天堂中文字幕| 中文字幕熟女人妻在线| 国产精品三级大全| 久久精品影院6| 久久精品影院6| 亚洲国产欧美在线一区| 国产成人免费观看mmmm| 国产成人91sexporn| 精品久久久久久电影网 | 少妇人妻精品综合一区二区| 国产黄色视频一区二区在线观看 | 在线观看66精品国产| 国产精品一区二区在线观看99 | 男女边吃奶边做爰视频| 高清av免费在线| 男女边吃奶边做爰视频| 国产精品日韩av在线免费观看| 成年女人永久免费观看视频| 一级毛片电影观看 | 亚洲欧美清纯卡通| 国内精品宾馆在线| 久久久久网色| 国产淫片久久久久久久久| 一本一本综合久久| 久久久国产成人免费| 久久久国产成人免费| 水蜜桃什么品种好| 免费在线观看成人毛片| 人妻系列 视频| 又爽又黄无遮挡网站| 如何舔出高潮| 国产久久久一区二区三区| 国产在视频线在精品| 中文字幕人妻熟人妻熟丝袜美| 在线播放国产精品三级| 午夜久久久久精精品| 久久久精品大字幕| 天堂网av新在线| 99热精品在线国产| 天堂网av新在线| 国产在线男女| 中国美白少妇内射xxxbb| 亚洲在久久综合| 亚洲经典国产精华液单| 一级黄色大片毛片| 天堂中文最新版在线下载 | 日韩制服骚丝袜av| 免费不卡的大黄色大毛片视频在线观看 | 99久国产av精品国产电影| 精品一区二区三区视频在线| 最近的中文字幕免费完整| 亚洲一区高清亚洲精品| 成人亚洲精品av一区二区| 在线播放国产精品三级| 天堂网av新在线| 国产午夜精品一二区理论片| 国产精品99久久久久久久久| 日本熟妇午夜| 欧美区成人在线视频| 午夜福利网站1000一区二区三区| 国产三级中文精品| 亚洲欧美精品专区久久| 色噜噜av男人的天堂激情| 最近最新中文字幕免费大全7| 高清av免费在线| 我要看日韩黄色一级片| 99国产精品一区二区蜜桃av| 国产精品久久视频播放| av女优亚洲男人天堂| 国产亚洲一区二区精品| 亚洲美女搞黄在线观看| 精品久久久久久久久久久久久| 99久国产av精品| 日本一本二区三区精品| 国产在线男女| www.av在线官网国产| 全区人妻精品视频| 亚洲精品自拍成人| 久久精品国产自在天天线| av免费在线看不卡| 一级毛片电影观看 | 精品一区二区三区视频在线| 三级毛片av免费| 成人亚洲精品av一区二区| 一级爰片在线观看| 亚洲国产日韩欧美精品在线观看| 大香蕉久久网| 日本-黄色视频高清免费观看| 日韩精品青青久久久久久| 26uuu在线亚洲综合色| av又黄又爽大尺度在线免费看 | 日韩亚洲欧美综合| 人妻系列 视频| 国产乱人偷精品视频| 国产午夜精品一二区理论片| 国产毛片a区久久久久| 欧美三级亚洲精品| 免费看a级黄色片| 少妇被粗大猛烈的视频| 国产精品,欧美在线| 久久久精品94久久精品| 青青草视频在线视频观看| 亚洲精品色激情综合| 国产真实伦视频高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产成人午夜福利电影在线观看| 高清在线视频一区二区三区 | 亚洲欧美中文字幕日韩二区| 欧美激情在线99| 精品久久国产蜜桃| 国产精品久久久久久精品电影| 国产亚洲5aaaaa淫片| 精品国产露脸久久av麻豆 | 亚洲精品乱久久久久久| 日本色播在线视频| 国产精品综合久久久久久久免费| 欧美一区二区精品小视频在线| www日本黄色视频网| 国产精品三级大全| 精品久久久久久久末码| 在现免费观看毛片| 老司机福利观看| 99久久精品一区二区三区| 色综合色国产| 日韩精品青青久久久久久| 亚洲综合色惰| 日韩成人av中文字幕在线观看| 久久久久网色| 日本三级黄在线观看| 中文字幕av在线有码专区| 网址你懂的国产日韩在线| 日日啪夜夜撸| 七月丁香在线播放| 日本爱情动作片www.在线观看| 成人av在线播放网站| 国产在线一区二区三区精 | 永久免费av网站大全| 日韩精品有码人妻一区| 色综合站精品国产| 最后的刺客免费高清国语| 亚洲一区高清亚洲精品| 免费人成在线观看视频色| 亚洲无线观看免费| 日本黄色视频三级网站网址| av免费观看日本| 国产亚洲最大av| 插阴视频在线观看视频| 久久久国产成人精品二区| 一级爰片在线观看| 黄色日韩在线| 亚洲国产精品sss在线观看| 97在线视频观看| 男人的好看免费观看在线视频| 中文字幕制服av| 欧美三级亚洲精品| 久久精品久久久久久噜噜老黄 | 看片在线看免费视频| 日韩中字成人| 午夜福利视频1000在线观看| 国产探花在线观看一区二区| 亚洲精品亚洲一区二区| 欧美激情在线99| 免费黄网站久久成人精品| 日本黄大片高清| 日日摸夜夜添夜夜爱| 国产欧美日韩精品一区二区| 国产亚洲5aaaaa淫片| 亚洲精品国产av成人精品| 在线播放国产精品三级| 国产色婷婷99| 亚洲精品亚洲一区二区| 婷婷色综合大香蕉| 岛国在线免费视频观看| 国产精品一二三区在线看| 免费人成在线观看视频色| 一级黄色大片毛片| 美女国产视频在线观看| 欧美成人一区二区免费高清观看| 99久国产av精品| 黄色配什么色好看| 热99在线观看视频| 国产成人aa在线观看| 亚洲欧洲日产国产| 午夜爱爱视频在线播放| 欧美人与善性xxx| 菩萨蛮人人尽说江南好唐韦庄 | 一区二区三区免费毛片| 国产69精品久久久久777片| 欧美高清成人免费视频www| 国产极品天堂在线| 久久久久久久午夜电影| 国产精品一区www在线观看| 免费一级毛片在线播放高清视频| 日韩人妻高清精品专区| 色哟哟·www| 亚洲成人久久爱视频| 亚洲人成网站在线观看播放| 午夜日本视频在线| 99九九线精品视频在线观看视频| 色视频www国产| 亚洲欧美日韩东京热| 日韩精品有码人妻一区| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 国产毛片a区久久久久| 草草在线视频免费看| 欧美成人a在线观看| 色尼玛亚洲综合影院| 国产熟女欧美一区二区| 亚洲国产欧美在线一区| 国产人妻一区二区三区在| 赤兔流量卡办理| 国产午夜精品久久久久久一区二区三区| 国产黄色小视频在线观看| 精品99又大又爽又粗少妇毛片| 成年版毛片免费区| 免费av毛片视频| 美女cb高潮喷水在线观看| 大又大粗又爽又黄少妇毛片口| 国产乱人视频| 舔av片在线| 青春草国产在线视频| 免费看光身美女| 亚洲欧美成人综合另类久久久 | 大香蕉久久网| 婷婷六月久久综合丁香| 亚洲欧美清纯卡通| 可以在线观看毛片的网站| 亚洲自拍偷在线| 69av精品久久久久久| 精品人妻一区二区三区麻豆| 亚洲av日韩在线播放| 久久久久久国产a免费观看| 美女高潮的动态| 国产精品一区二区三区四区免费观看| 99热网站在线观看| 国产淫片久久久久久久久| 小蜜桃在线观看免费完整版高清| 男女啪啪激烈高潮av片| 日韩成人av中文字幕在线观看| 亚洲不卡免费看| 三级国产精品欧美在线观看| 国产精品爽爽va在线观看网站| 如何舔出高潮| 亚洲中文字幕日韩| 色综合站精品国产| 成人鲁丝片一二三区免费| 网址你懂的国产日韩在线| 亚洲精品色激情综合| 99热6这里只有精品| 亚洲欧美日韩东京热| 我的女老师完整版在线观看| 午夜福利视频1000在线观看| 欧美变态另类bdsm刘玥| 欧美日韩精品成人综合77777| 一区二区三区乱码不卡18| 成人午夜精彩视频在线观看| 久久国产乱子免费精品| 好男人视频免费观看在线| 欧美97在线视频| 亚洲欧美日韩无卡精品| 一级毛片我不卡| 秋霞伦理黄片| 美女大奶头视频| 免费观看的影片在线观看| 在线播放无遮挡| 久久99热这里只有精品18| 国产精品一区www在线观看| 伊人久久精品亚洲午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产在视频线在精品| 波多野结衣高清无吗| 卡戴珊不雅视频在线播放| 国产免费又黄又爽又色| 亚洲欧美日韩无卡精品| 最近手机中文字幕大全| 欧美日本视频| 国产伦精品一区二区三区视频9| 国产真实乱freesex| 一个人看视频在线观看www免费| 国产私拍福利视频在线观看| 国产成人a∨麻豆精品| 国产片特级美女逼逼视频| 少妇熟女aⅴ在线视频| 亚洲熟妇中文字幕五十中出| 美女高潮的动态| 夜夜看夜夜爽夜夜摸| 免费看美女性在线毛片视频| 级片在线观看| 自拍偷自拍亚洲精品老妇| 久久久久九九精品影院| 色5月婷婷丁香| 久久久久久久久久黄片| 韩国av在线不卡| 高清午夜精品一区二区三区| 在线观看美女被高潮喷水网站| 国产一区有黄有色的免费视频 | 天天一区二区日本电影三级| 国产男人的电影天堂91| 久热久热在线精品观看| 一区二区三区高清视频在线| 亚洲人成网站在线观看播放| 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| 国产av码专区亚洲av| 久久久久久大精品| 国产综合懂色| 亚洲国产精品sss在线观看| 中文乱码字字幕精品一区二区三区 | 人妻系列 视频| 亚洲电影在线观看av| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 久久亚洲精品不卡| 国产精品国产三级国产专区5o | 一边摸一边抽搐一进一小说| 色5月婷婷丁香| 长腿黑丝高跟| 成年av动漫网址| 亚洲真实伦在线观看| 国产精品嫩草影院av在线观看| 黄色一级大片看看| 综合色av麻豆| 国产高清三级在线| 午夜a级毛片| 成年免费大片在线观看| 我的老师免费观看完整版| 亚洲五月天丁香| 欧美激情国产日韩精品一区| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| av福利片在线观看| 一夜夜www| 人人妻人人看人人澡| 日韩欧美三级三区| 国产精品久久电影中文字幕| 国产精品福利在线免费观看| 国产人妻一区二区三区在| 亚洲国产高清在线一区二区三| 色播亚洲综合网| 国产探花在线观看一区二区| 国产一区二区三区av在线| 六月丁香七月| 久久久久久久久中文| 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 欧美一区二区精品小视频在线| 日韩亚洲欧美综合| 日本黄大片高清| 精品欧美国产一区二区三| 国产免费一级a男人的天堂| 久久国内精品自在自线图片| 你懂的网址亚洲精品在线观看 | 国产成人freesex在线| 国产视频首页在线观看| 成人综合一区亚洲| 国产精品,欧美在线| 极品教师在线视频| 永久免费av网站大全| 亚洲av熟女| 秋霞伦理黄片| 搡女人真爽免费视频火全软件| 欧美色视频一区免费| 黄色配什么色好看| 精品久久国产蜜桃| 99久久人妻综合| 日日啪夜夜撸| 最近手机中文字幕大全| 熟妇人妻久久中文字幕3abv| 精品午夜福利在线看| 国产v大片淫在线免费观看| 麻豆久久精品国产亚洲av| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 亚洲欧洲国产日韩| 国产麻豆成人av免费视频| 欧美最新免费一区二区三区| 最近视频中文字幕2019在线8| 国产亚洲av片在线观看秒播厂 | 精品久久久久久成人av| 又粗又爽又猛毛片免费看| 午夜老司机福利剧场| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 午夜福利成人在线免费观看| 男女啪啪激烈高潮av片| 日韩欧美精品免费久久| 亚洲在久久综合| 成年女人永久免费观看视频| 午夜久久久久精精品| 久久国产乱子免费精品| 乱系列少妇在线播放| 人体艺术视频欧美日本| 国产高清有码在线观看视频| 欧美变态另类bdsm刘玥| 日韩欧美三级三区| 午夜精品国产一区二区电影 | 午夜福利在线在线| 一本一本综合久久| 三级男女做爰猛烈吃奶摸视频| 69av精品久久久久久| 免费看光身美女| 视频中文字幕在线观看| 91狼人影院| 成人漫画全彩无遮挡| 人人妻人人看人人澡| 欧美一区二区国产精品久久精品| 成人一区二区视频在线观看| 国产成人精品婷婷| 丝袜喷水一区| 亚洲一级一片aⅴ在线观看| av黄色大香蕉| 亚洲伊人久久精品综合 | 亚洲成av人片在线播放无| 一级毛片电影观看 | 夫妻性生交免费视频一级片| 日韩av在线大香蕉| 你懂的网址亚洲精品在线观看 | 成年女人看的毛片在线观看| 成人性生交大片免费视频hd| 小说图片视频综合网站| 色播亚洲综合网| 欧美激情久久久久久爽电影| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 国产高清国产精品国产三级 | 午夜久久久久精精品| 五月玫瑰六月丁香| 一级毛片aaaaaa免费看小| 久久久久久大精品| 国产成人一区二区在线| 一个人免费在线观看电影| 成人高潮视频无遮挡免费网站| 亚洲av熟女| h日本视频在线播放| 国模一区二区三区四区视频| 在线a可以看的网站| av国产久精品久网站免费入址|