• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GRADE-LIFE PROGNOSTIC MODEL OF AIRCRAFT ENGINE BEARING

    2012-10-08 12:10:36MiaoXuewenNiuCongYangYunHanLeiHongJie

    Miao Xuewen,Niu Cong,Yang Yun,Han Lei,Hong Jie

    (1.Air Force Equipment Academy,Beijing,100076,P.R.China;2.School of Information and Electronics,Beijing Institute of Technology,Beijing,100081,P.R.China;3.School of Jet Propulsion,Beijing University of Aeronautics and Astronautics,Beijing,100083,P.R.China)

    INTRODUCTION

    Prognostics and health management(PHM)technology for potential applications on aircrafts is increasingly improved because of its support for safety,equipment reliability,and cost reduction.

    Current state-of-the-art in aircraft preventive maintenance includes health and usage monitoring systems(HUMS)for AH-64,UH260 and CH247 helicopter,integrated vehicle health management(IVHM)for B22 Bomber, F-35 joint strike fighter (JSF) program, Boeing company′s airplane health management(AHM)for B777,B7472400, A320, A330 and A340 aircraft,aircraft condition analysis and management system (ACAMS) for B757 aircraft, and integrated systems health management(ISHM)for space shuttle,which incorporates PHM into its design,using sensors,advanced processing and reasoning,and a fully integrated system of information and supplies management[1-6].

    The service life prediction of aircraft engines is vital for PHM technology.Currently,aircraft engine bearings highly rely on conservative life estimation to ensure that bearings can be replaced before failure.Due to the stochastic nature of a failure propagation process,the uncertain mission profile of aircrafts and uncertain factors in a bearing operating process,this method has two obvious deficiencies.First,the procedure reduces aircraft availability and leads to a significant labor cost to replace a bearing which is still quite useful. Second, although it has achieved extremely low failure rates,highly-conservative life estimation cannot avoid accidents due to those bearing failures outside scheduled maintenance hours under extreme and/or unpredictable circumstances. Therefore,the development of practical and verifiable prognostic models for the

    service life of bearings plays a critical role in improving the reliability and safety of aircraft engines.

    A new concept, grade-life(GL), is introduced to describe the service life of bearings.The entire service life is divided into four stages:good bearing condition(GBC),initial defect condition (IDC),damaged bearing condition(DBC)and failure coming condition(FCC).

    In prognostic issues,mathematical models have a limited predictive capability.Mathematical models can not provide accurate GL prediction because of the highly variable fatigue-propagating process of bearings,the difference of mission profile and the various environmental effects.Therefore, a diagnostic estimation model is developed based on vibration theory and damage mechanics.

    Finally,a GL prediction model of aircraft engine bearings is presented with the combination of the mathematical model and the diagnostic estimation model based on support vector machine(SVM)for the calculation of the physics-based GL (PGL)and the empirical GL (EGL).Experiments show that the methodology is scientific and reliable for predicting the lifetime of aircraft engine bearings.

    1 GRADE-LIFE PROGNOSTIC MODEL

    1.1 Mathematical model

    The mathematical model is for rolling contact fatigue.In order to obtain the PGL value,the model utilizes life-limited parameters,including load, rotate speed, etc. to calculate the cumulative damage which the bearing suffers.The parameters are derived from the load spectrum of the bearing based on the statistic analysis of sensors data.

    The PGL of bearings is defined as

    where L is the cumulative damage of bearings,which can be acquired by Eq.(2),L 0 the minimum life,L 1 the life with 99% survival probability,L10 the rated life of bearings and L50 the life with 50% survival probability.

    where LXis the bearing life at the load level X according to the dynamic capacity theory[7-8],tX the time under the load level X,which can be acquired by analyzing the sensors data[7].

    Based on Tallian′s research[9],the minimum life parameter can be estimated by

    According to ISO281/1.1977(E)[10],the life with 99% survival probability is

    Assume m=1.5,which is the shape parameter of the Weibull probability distribution,and according to Tallian′s method,L 50 can be represented as

    The relative consumption of lifeis defined as

    Therefore,according to the survival probability,the entire service life is divided into four stages as shown in Fig.1.

    Fig.1 PGL of bearing

    1.2 Diagnostic estimation model

    The diagnostic estimation model is an intelligent health-signal prognostic one,in which time-domain statistical parameters of vibration acceleration signature are selected as the input of SVM to obtain the EGL value.

    The service life of an aircraft engine bearing is based on the measured or calculated condition variables of the bearing and the limits of these variables. The condition variables include the measured vibration amplitude and frequency,the bearing temperature,acoustic emission,etc.

    These variables are GL feature vectors.After normalized,the vector can be defined as

    where xi is the value of the i th normalized condition variable.

    The limits of these variables are bearing condition limits,which are represented as

    The condition of a bearing depends on the GL feature vector rather than the service time.The bearing condition functionψcan be defined as

    When a condition variable of the GL feature vector exceeds its bearing condition limits of the corresponding stage,the bearing EGL can be described as follows:

    (1)0<j<1.5,if xi<h1i for all condition variables,EGL=1.

    (2)1.5<j<2.5,if xi> h1ifor one condition variable,EGL=2.

    (3)2.5<j< 3.5,if xi> h2i for one condition variable,EGL=3.

    (4)j(t)> 3.5,if xi> h3i for one condition variable,EGL=4.

    Fig.2 shows the process of the service life of a bearing, which represents the relationship between the GL of the bearing and the service time of the condition variable. The condition limits H j are difficult to be acquired practically,so the method to determine the thresholds of each condition limit is proposed as follows:

    Fig.2 Illustration of GL of bearing

    (1)The bearing health condition is good and EGL=1.

    (2) The bearing appears defect characteristics,EGL=2.

    (3)As shown in Fig.2,the phenomenon that the value of a condition variable increases drastically over a short time interval indicates that the bearing comes into damaged bearing condition,and EGL=3.

    (4)That the value of the condition variable increases sharply indicates the failure of the bearing,and EGL=4.

    EGL is the defect severity estimation of the bearing. The diagnostic estimation model,in essence,is to assess the condition function j with the GL feature vector.

    1.2.1 Feature selection

    Many challenges stand in the way of predicting the GL of a bearing efficiently,including how to choose the features vector to evaluate the condition degradation of the bearing.

    In current researches,time features,such as RMS,Kurtosis,or Crest Factor,were often chosen.Ref.[11]adopted the RMS value and the Kurtosis Factor of the vibration.Ref.[12]used the average of the amplitudes of the defective frequency and its first six harmonics as the degradation index of thrush ball bearings.However,even though a large variety of features can be extracted to describe the characteristics of vibration signal from different aspects, the previous researches demonstrated that each feature could only affect a certain defect at a certain condition because of the highly stochastic nature of defect growth[13-14]. For instance,spikiness of the vibration signals denoted by Crest Factor and Kurtosis indicates incipient defects,the high energy level denoted by RMSindicates severe defects.Therefore,a good performance assessment method should take advantage of mutual information of multiple features for system degradation assessment.

    According to Ref. [15], the selection criterion of the condition variables should include diagnostic ability,sensitivity,consistency and amount of calculation. Finally, Kurtosis,Skewness,Shape Factor and RMSare selected as the condition variables in this paper.

    1.2.2 SVM model

    SVM model is adopted to realize the mapping between the GL feature vector and the GL of rolling bearings.For the identification model,the run-to-failure data acquired from accelerated life tests of an aircraft bearing are used as learning samples.

    A linearly separable binary classification problem can be represented as

    where x i is a n-dimensional feature vector belonging to either of the two classes w1,w2,and yithe corresponding class indicator(+ 1 for w1,-1 for w2).

    In order to achieve linear separation in classification,it is necessary to map the inputs x into a feature space H(x)by a mapping H(?).Therefore,with the maximum margin,SVM separates the points by an optimal hyper-plane where x is an input vector,w an adaptive weight vector and b a bias. The SVM searches the parameters w and b to maximize the geometric marginby solving the following optimization problem[16].

    In general case,the two classes are not separable. Hence, the slack variables a i is introduced.The objective function is given as

    where C is the penalty factor of training errors.

    By using Eq.(11),Lagrangian optimization function can be obtained, where Lagrangian multiplier is represented as T=[T1,T2,…,T n]T.The function is differentiated with respect to w,T,a to obtain the Karush-Kuhn-Tucker condition.Substituting the condition for the above equation,and holding k(x,y)= <H(x),H(y)> ,the dual optimi-sation function is given as

    The solution T*is guaranteed to be the global minima.These inputs x i at this T*ι≠0 are called the support vector(SV).Based on SVs,the SVM classification can be carried out as

    The typical kernel functions are polynomials,radial basic and hyperbolic tangent ones.In the study,the radial basic function is adopted.

    The SVM model input is the GL feature vector which is constructed by the four condition variables (Kurtosis,Skewness,Shape Factor and RMS).The model output is the value of condition function j. The EGL is acquired by discriminating the condition functions.

    The implementation process of diagnostic estimate model based on SVM is as follows.

    (1)Determinate the GL set,that is,status={GBC,IDC,DBC,FCC},whose corresponding value is f s={1,2,3,4}.Obtain the run-to-failure test data from the experiment.

    (2)Preprocess the run-to-failure test data and compute the GL feature vector x,which consists of Kurtosis, Skewness,Shape Factor and RMSof the signal.

    (3)Train SVM with the input parameter as the GL feature vector and the output as the corresponding value f s.

    (4)Obtain the EGL of the bearing when the feature vector x of the vibration signals of a bearing is input to the SVM model.

    2 GL FUZZY INFERENCE FUSION PROGNOSTIC MODEL

    ″GL″itself is fuzzy in nature.The fuzzy logic inference method[17]is adopted to fuse the mathematical model and diagnostic estimation model.The final GL of bearings is the fusion result of PGL and EGL. It can reduce uncertainties of the mathematical model. The architecture is shown in Fig.3.

    Fig.3 Architecture of prognostic model

    2.1 Fuzzy rule generation

    The designed rules are based on the expert knowledge.The process consists of two parts:

    (1) Knowledge acquisition and rule formation.

    (2)Combination of rules.

    Rule 1:If EGL is 1 and PGL is 1,GL is 1

    Rule 2:If EGL is 1 and PGL is 2,GL is 1

    Rule 3:If EGL is 2 and PGL is 1,GL is 2

    Rule 4:If EGL is 2 and PGL is 2,GL is 2

    Rule 5:If EGL is 2 and PGL is 3,GL is 2

    Rule 6:If EGL is 1 and PGL is 3,GL is 2

    Rule 7:If EGL is 2 and PGL is 4,GL is 3

    Rule 8:If EGL is 1 and PGL is 4,GL is 3

    Rule 9:If EGL is 3 and PGL is 1,GL is 3

    Rule 10:If EGL is 3 and PGL is 2,GL is 3

    Rule 11:If EGL is 3 and PGL is 3,GL is 3

    Rule 12:If EGL is 3 and PGL is 4,GL is 4

    Rule 13:If EGL is 4 and PGL is 1,GL is 4

    Rule 14:If EGL is 4 and PGL is 2,GL is 4

    Rule 15:If EGL is 4 and PGL is 3,GL is 4

    Rule 16:If EGL is 4 and PGL is 4,GL is 4

    2.2 Fuzzy inference parameter selection

    2.2.1 Selection of quantization factor and fuzzy subset

    The fuzzifica tion of fuzzy variables consists of two processes: (1) Quantization factor selection in which the basic range is transformed into fuzzy range effectively,(2)Fuzzy variables fuzzifica tion based on fuzzy subset and membership function.

    The selection of quantization factor and fuzzy subset of PGL,EGL and GL is shown in Table 1-3 respectively.

    Table 1 Quantization f actor and fuzzy subset of PGL

    Table 2 Fuzzy subset of EGL

    Table 3 Fuzzy subset of GL

    2.2.2 Membership function

    A membership function(M F)is a curve that defines how each point in the input or output space is mapped to membership value(or degree of membership)between 0 and 1.

    The PGL,EGL and GL of bearings have four possible outcomes from a fuzzy set:GBC,IDC,DBC and FCC,which are defined and shown in Fig.4.

    Fig.4 Membership functions of variables

    Trapezoidal, bell and gaussi an curve membership functions are used.To some extent,the selection of this membership function is arbitrary.Other membership functions may yield better results.This problem needs to be further studied in future.

    2.3 Fuzzy inference engine

    After defining membership functions and generating the″if-then″rules,the fuzzy inference engine is built.Each rule is taken at a time,and the rules are employed using membership functions and fuzzy operators. For instance,when rules are applied or fired,the membership function outputs are shown in Fig.5. The numbers on the left hand of the figure refer to the Rule 1 to Rule 16 listed in Section 2.1.The input values and membership functions for PGL and EGL are listed in the first two columns(from the left to the right).Based on the inputs for each feature,the fired rules are shaded. The last column shows the output membership functions(GL)and the fired rules are shaded. For example,if EGL is 2.56 and PGL is 3.14,GL is 2.98.It shows the final GL of the bearing is 3.

    Fig.5 Test results for bearing GL

    3 EXPERIMENTAL VERIFICATION

    3.1 Setup

    The experimental equipment is constructed to perform the accelerated life test on bearings for the model verification.Test rig layout is shown in Fig.6.

    Fig.6 Test rig layout

    The setup has three sub-systems: a test housing system,an oil circulation system and a data acquisition sub-system.

    The test housing system consists of a test housing,a hydraulic loading mechanism and a drive mechanism. The test housing loads and spins four bearings,in which,two roller bearings NU1010 are used as auxiliary load bearings.During the experiment,continuous lubrication of the testing bearings is provided by the oil circulation system.The type of the test bearing used in this research is a 6008 bearing,which is a single-row deep-groove ball bearing of the Conrad type assembly.The dynamic load is 17.0 k N.

    Some undamaged 6008 test bearings run at a constant rotational speed(3 310 r/min)with an equivalent dynamical load of 8 kN to failure.The degradation databases are divided into two parts,a training set and a validation set.

    An accelerometer is attached to the housing of the bearings. The vibration signals are acquired by the DASP and then input into a computer.RMS,Kurtosis,Skewness and Shape Factor can be captured as the condition variables by analyzing the vibration signals, and the samples are divided into four categories.

    3.2 Result

    The accelerated life test of the massive 6008 bearing is carried on the test platform. Three bearings are used.They are the number 1#,2#and 3#.Bearing 1# and 2# are designated as validation bearings.Bearing 3# has a ″seeded″damage.According to the load level,PGL of the test bearings can be calculated by mathematical model,shown in Table 4.

    Table 4 PGL of test bearings

    The analysis results of the 1#,2# and 3#bearings are shown in Figs.7-9 respectively.In these figures,once the load level is confirmed,the PGL curve is a deterministic curve.The EGL curve represents the results acquired by diagnostic estimation model. It indicates that bearing 1# comes into stageⅡ(EGL=2)in 2 420 min,stageⅢ (EGL=3)in 3 450 min and stageⅣ(EGL=4)in 3 782 min,and that bearing 2#comes into stageⅡ(EGL=2)in 2 722 min,stageⅢ (EGL=3)in 4 885 min and stageⅣ (EGL=4)in 10 250 min.The GL curve is generated by fuzzy logic inference.It reduces the affection of the uncertainty of the mathematical model.In Figs.(7-9),points A,B and C are the″critical point″of the GL stages.

    Fig.7 PGL,EGL and GL of test bearing 1#

    Fig.8 PGL,EGL and GL of test bearing 2#

    Fig.9 PGL,EGL and GL of test bearing 3#

    It should be noted that bearing 3# with a″seeded″damage does not experience the GL stage 1,which illustrates that the assessment based on vibration features reduces the uncertainty′s affection towards prediction results.

    4 CONCLUSIONS

    (1)GL model is better than traditional life model when describing the service life.Since the service life of bearings is vastly different,the traditional life definition based on time,obviously,is not suitable for prediction of an individual bearing life.

    (2)GL model fuses the mathematical model and diagnostic estimation model to provide reliable lifetime prediction of bearings.

    [1] Hess A,Fila L.Prognostics,from the need to reality from the fleet users and PHM system designer/developers perspectives[C]∥Proceedings of the IEEE Aerospace Conference.Montana,USA:IEEE,2002(6):2791-2797.

    [2] Belcastro CM,Allen C L.Aviation safety program integrated vehicle health management[EB/OL].http://www.eng.morgan.edu/~ cibac/events/Day1/7-IV HM%20Overview%20(Srivastava).pdf,2007-11-10/2012-5-10.

    [3] McCollom N.F-35 joint strike fighter autonomic logistics and prognostics and health management[EB/OL]. http://www.sae. org/events/dod/presentations /2006-nealmc collom.pdf,2006-10-14/2011-5-10.

    [4] Brother ton T.Prognosis of faults in gas turbine engines[C]//Aerospace Conference Proceedings.San Diego,USA:IEEE,2000(6):163-171.

    [5] Byingt on C S,Roemer M J,Galie T.Prognostic enhancements to diagnostic systems for improved condition-based maintenance[C]∥Proceedings of the IEEE Aerospace Conference.Montana,USA:IEEE,2002(6):2815-2824.

    [6] Ryan M, David I. Integrated system health management(ISHM) technology demonstration project final report[R].NASA/TM-2006-213482,2006.

    [7] Wan Changsen. Rolling bearing analysis[M].Beijing:Mechanism Industry Publishing Company,1987:20-40.(in Chinese)

    [8] Ioannides E,Harris T A.A new fatigue life model for rolling bearing[J].ASM E Journal of Tribology,1985,107:367-378.

    [9] Tallian T E.Weibull distribution of rolling contact fatigue life and deviations the ref rom[J]. ASLE Trans,1962,5(1):103-113.

    [10]International Standards Organization. International Standard ISO281/I—1991,Rolling bearings dynamic load ratings and rating life[S].Switzerland:ISO Copyright Office,1991.

    [11]Williams T, Ribadeneira X,Billing to S. Rolling element bearing diagnostics in run-to-failurelife time testing [J]. Mechanical Systems and Signal Processing,2001,115(5):979-993.

    [12]Lawley M,Liu R,Parmeshwaran V.Residual life predictions from vibration-based degradation signals:A neural network approach[J].IEEE Transactions on Industrial Electronics,2004,51(3):694-699.

    [13]Huang Runqing, Xia Lifeng, Li Xinglin, et al.Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods [J]. Mechanical Systems and Signal Processing,2007(21):193-207.

    [14]Qiu Hai,Lee J,Lin Jing,et al.Robust performance degradation assessment methods for enhanced rolling element bearing prognostics [J]. Advanced Engineering Informatics,2003(17):127-140.

    [15]Shao Y,Nezu K.Prognosis of remaining bearing life using neural networks[J].Proc Instn Mech Engrs,2000,214(I):217-231.

    [16]Cherkassky V,Yunqian M A.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.

    [17]Zadeh L A.Fuzzy sets[J].Inform and Control,1965(8):338-353.

    亚洲成国产人片在线观看| 日韩制服丝袜自拍偷拍| 免费看不卡的av| 精品国产一区二区三区久久久樱花| 国产黄色免费在线视频| 操美女的视频在线观看| 亚洲,欧美精品.| www.av在线官网国产| 视频在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 色播在线永久视频| 丝瓜视频免费看黄片| 高清视频免费观看一区二区| 亚洲av国产av综合av卡| 在线观看国产h片| 夜夜骑夜夜射夜夜干| 自线自在国产av| 久久天堂一区二区三区四区| 一区二区三区精品91| 男女边吃奶边做爰视频| 亚洲欧美激情在线| 国产伦理片在线播放av一区| 日本av免费视频播放| 高清av免费在线| 美国免费a级毛片| 中文字幕制服av| 高清视频免费观看一区二区| 观看av在线不卡| 国产日韩一区二区三区精品不卡| 一区二区三区激情视频| 一二三四社区在线视频社区8| 亚洲精品自拍成人| 国产日韩一区二区三区精品不卡| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| 久久性视频一级片| 成人18禁高潮啪啪吃奶动态图| 中文乱码字字幕精品一区二区三区| 国产亚洲精品第一综合不卡| 男女之事视频高清在线观看 | 国产人伦9x9x在线观看| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 美女大奶头黄色视频| 91麻豆av在线| 下体分泌物呈黄色| 91麻豆精品激情在线观看国产 | 亚洲综合色网址| 日韩免费高清中文字幕av| 99久久人妻综合| 九草在线视频观看| 国产欧美日韩综合在线一区二区| 午夜免费鲁丝| 老汉色∧v一级毛片| 人妻一区二区av| 超色免费av| 国产视频首页在线观看| 又紧又爽又黄一区二区| 久久九九热精品免费| 精品欧美一区二区三区在线| 国产精品99久久99久久久不卡| 国产淫语在线视频| 亚洲激情五月婷婷啪啪| av一本久久久久| 国产精品免费视频内射| 91麻豆精品激情在线观看国产 | 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区国产| 高清视频免费观看一区二区| 亚洲av成人精品一二三区| 在线观看免费高清a一片| 纯流量卡能插随身wifi吗| 亚洲国产日韩一区二区| 久久这里只有精品19| 在线观看免费高清a一片| 伊人久久大香线蕉亚洲五| 大香蕉久久网| av片东京热男人的天堂| 无限看片的www在线观看| 97在线人人人人妻| 欧美在线一区亚洲| 欧美久久黑人一区二区| 建设人人有责人人尽责人人享有的| 午夜老司机福利片| 欧美 亚洲 国产 日韩一| 无遮挡黄片免费观看| 精品久久久久久久毛片微露脸 | 国产一区亚洲一区在线观看| 日韩 亚洲 欧美在线| 热99久久久久精品小说推荐| 欧美日韩视频精品一区| 美女福利国产在线| 搡老岳熟女国产| 久久精品国产亚洲av高清一级| av又黄又爽大尺度在线免费看| 国产精品久久久久成人av| 亚洲国产毛片av蜜桃av| 亚洲激情五月婷婷啪啪| 黑人欧美特级aaaaaa片| 18禁观看日本| 肉色欧美久久久久久久蜜桃| 激情五月婷婷亚洲| 每晚都被弄得嗷嗷叫到高潮| 叶爱在线成人免费视频播放| 国产精品免费大片| 国产精品久久久久久精品古装| 国产欧美日韩精品亚洲av| 婷婷色综合大香蕉| 一本久久精品| 男人添女人高潮全过程视频| 亚洲精品久久久久久婷婷小说| 国产精品一区二区在线不卡| 飞空精品影院首页| 精品国产一区二区三区久久久樱花| 一本—道久久a久久精品蜜桃钙片| 高清欧美精品videossex| 国产xxxxx性猛交| 纵有疾风起免费观看全集完整版| 青春草亚洲视频在线观看| 热99久久久久精品小说推荐| 午夜av观看不卡| 日日夜夜操网爽| 狠狠精品人妻久久久久久综合| 一二三四社区在线视频社区8| 女警被强在线播放| 中文乱码字字幕精品一区二区三区| 国产av一区二区精品久久| 欧美亚洲 丝袜 人妻 在线| 青青草视频在线视频观看| 国产亚洲一区二区精品| 国产有黄有色有爽视频| 国产视频首页在线观看| 乱人伦中国视频| 亚洲欧美精品自产自拍| 欧美国产精品一级二级三级| 国产一级毛片在线| 肉色欧美久久久久久久蜜桃| 国产一区二区 视频在线| 晚上一个人看的免费电影| 国产免费现黄频在线看| 国产精品 欧美亚洲| 日韩 亚洲 欧美在线| 一本一本久久a久久精品综合妖精| 后天国语完整版免费观看| 亚洲精品久久午夜乱码| 黑人巨大精品欧美一区二区蜜桃| 老汉色av国产亚洲站长工具| 欧美亚洲 丝袜 人妻 在线| 成人国产av品久久久| 久久毛片免费看一区二区三区| 女性生殖器流出的白浆| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看国产h片| 一本大道久久a久久精品| 免费看av在线观看网站| 欧美黑人欧美精品刺激| 超色免费av| 亚洲综合色网址| 国产成人精品久久二区二区免费| 久久精品久久久久久久性| 国产xxxxx性猛交| 亚洲成色77777| 在线观看免费日韩欧美大片| 如日韩欧美国产精品一区二区三区| 亚洲av日韩在线播放| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲 | 美女主播在线视频| 多毛熟女@视频| 亚洲自偷自拍图片 自拍| 黑人巨大精品欧美一区二区蜜桃| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 天天躁日日躁夜夜躁夜夜| 女人被躁到高潮嗷嗷叫费观| 久久亚洲国产成人精品v| 成年美女黄网站色视频大全免费| 国产极品粉嫩免费观看在线| 久久热在线av| 又紧又爽又黄一区二区| 精品一品国产午夜福利视频| 国产亚洲精品久久久久5区| 午夜久久久在线观看| 欧美亚洲日本最大视频资源| 精品福利永久在线观看| 午夜免费鲁丝| 一区二区日韩欧美中文字幕| 日本vs欧美在线观看视频| a 毛片基地| 国产一区二区激情短视频 | 在现免费观看毛片| av有码第一页| av网站在线播放免费| 蜜桃国产av成人99| 日韩人妻精品一区2区三区| 亚洲色图综合在线观看| 国产精品国产av在线观看| 久久精品久久久久久噜噜老黄| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av涩爱| 一本色道久久久久久精品综合| 国产亚洲av高清不卡| 亚洲成色77777| 男女国产视频网站| 午夜影院在线不卡| 日韩制服骚丝袜av| 美女视频免费永久观看网站| 亚洲黑人精品在线| 久久精品国产综合久久久| 午夜福利乱码中文字幕| 国产一区二区在线观看av| 少妇 在线观看| 波野结衣二区三区在线| av一本久久久久| 亚洲伊人色综图| 伊人亚洲综合成人网| 中文字幕av电影在线播放| 久久精品熟女亚洲av麻豆精品| 99精品久久久久人妻精品| 久久精品亚洲熟妇少妇任你| 看十八女毛片水多多多| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 国产欧美亚洲国产| 免费不卡黄色视频| 国产在视频线精品| 韩国高清视频一区二区三区| 国产野战对白在线观看| 亚洲国产欧美日韩在线播放| 亚洲视频免费观看视频| 岛国毛片在线播放| www.999成人在线观看| 精品久久久久久久毛片微露脸 | 看免费成人av毛片| 久久精品久久久久久噜噜老黄| xxx大片免费视频| 国产精品av久久久久免费| 观看av在线不卡| 少妇猛男粗大的猛烈进出视频| 嫩草影视91久久| 在线精品无人区一区二区三| 纵有疾风起免费观看全集完整版| 国产激情久久老熟女| 下体分泌物呈黄色| 热99久久久久精品小说推荐| 免费高清在线观看视频在线观看| 国产精品人妻久久久影院| 久久国产亚洲av麻豆专区| 婷婷色av中文字幕| 在线精品无人区一区二区三| 两性夫妻黄色片| 50天的宝宝边吃奶边哭怎么回事| 久久久久久人人人人人| 国产成人精品在线电影| 操美女的视频在线观看| 高清av免费在线| e午夜精品久久久久久久| 国产成人a∨麻豆精品| 自线自在国产av| 久久久国产精品麻豆| 国产成人av教育| 夜夜骑夜夜射夜夜干| 国产高清视频在线播放一区 | 99久久人妻综合| 女性生殖器流出的白浆| 别揉我奶头~嗯~啊~动态视频 | 王馨瑶露胸无遮挡在线观看| 午夜免费成人在线视频| 欧美xxⅹ黑人| xxx大片免费视频| 悠悠久久av| 老鸭窝网址在线观看| 精品少妇内射三级| 亚洲精品美女久久av网站| 日本猛色少妇xxxxx猛交久久| 亚洲精品一区蜜桃| 亚洲欧洲国产日韩| 纯流量卡能插随身wifi吗| 国产黄色免费在线视频| 狂野欧美激情性bbbbbb| 国产女主播在线喷水免费视频网站| 亚洲av片天天在线观看| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 少妇被粗大的猛进出69影院| 亚洲成国产人片在线观看| 午夜精品国产一区二区电影| 国产熟女午夜一区二区三区| 性色av一级| 99国产精品一区二区蜜桃av | 国产女主播在线喷水免费视频网站| 午夜日韩欧美国产| 欧美激情极品国产一区二区三区| 亚洲精品久久午夜乱码| 99国产精品免费福利视频| 国产精品三级大全| h视频一区二区三区| 在线av久久热| 男人舔女人的私密视频| 美女主播在线视频| 欧美 日韩 精品 国产| 久久精品成人免费网站| 亚洲欧美中文字幕日韩二区| 欧美xxⅹ黑人| av不卡在线播放| 国产一卡二卡三卡精品| 国产成人一区二区三区免费视频网站 | 男女高潮啪啪啪动态图| 久久久久久久大尺度免费视频| 波野结衣二区三区在线| 久久久精品94久久精品| 91字幕亚洲| 天堂中文最新版在线下载| www.精华液| 亚洲精品在线美女| 免费观看人在逋| 国产成人啪精品午夜网站| 亚洲三区欧美一区| 丝袜美腿诱惑在线| 9色porny在线观看| 韩国精品一区二区三区| 久久免费观看电影| 国产成人精品久久二区二区免费| 自线自在国产av| 国产一区二区三区综合在线观看| 少妇的丰满在线观看| 啦啦啦视频在线资源免费观看| 国产又爽黄色视频| 国产成人影院久久av| xxxhd国产人妻xxx| 女人被躁到高潮嗷嗷叫费观| 久久中文字幕一级| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 男的添女的下面高潮视频| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 电影成人av| 国产99久久九九免费精品| 波多野结衣av一区二区av| 最新的欧美精品一区二区| 91精品伊人久久大香线蕉| 欧美黑人精品巨大| 久久精品久久久久久噜噜老黄| 美女国产高潮福利片在线看| 国产欧美日韩精品亚洲av| 国产一区亚洲一区在线观看| 亚洲欧美激情在线| 丝袜人妻中文字幕| 在线观看www视频免费| 十八禁人妻一区二区| 一级黄色大片毛片| 久久久久久久久久久久大奶| 一级黄片播放器| 亚洲精品自拍成人| 激情视频va一区二区三区| 亚洲一区二区三区欧美精品| 亚洲精品第二区| 老鸭窝网址在线观看| 欧美日韩精品网址| 国产黄色免费在线视频| 精品一区在线观看国产| 久久亚洲精品不卡| 成人影院久久| 欧美激情 高清一区二区三区| 国产日韩一区二区三区精品不卡| 99国产精品免费福利视频| 精品一区二区三区av网在线观看 | 99久久99久久久精品蜜桃| 午夜福利在线免费观看网站| 最近手机中文字幕大全| 亚洲欧美一区二区三区黑人| 亚洲欧美中文字幕日韩二区| 亚洲精品久久久久久婷婷小说| 一边摸一边做爽爽视频免费| 午夜av观看不卡| 丝袜在线中文字幕| 又大又黄又爽视频免费| 十八禁高潮呻吟视频| 十分钟在线观看高清视频www| 女人高潮潮喷娇喘18禁视频| 成年女人毛片免费观看观看9 | 菩萨蛮人人尽说江南好唐韦庄| 韩国精品一区二区三区| 国产精品亚洲av一区麻豆| 亚洲国产毛片av蜜桃av| 男女边吃奶边做爰视频| 1024香蕉在线观看| 久久精品久久精品一区二区三区| 久久精品人人爽人人爽视色| 一本大道久久a久久精品| 亚洲欧美精品自产自拍| 亚洲欧美精品综合一区二区三区| 亚洲人成电影观看| 午夜视频精品福利| 久久性视频一级片| 一二三四在线观看免费中文在| 欧美变态另类bdsm刘玥| avwww免费| 国产精品一区二区在线观看99| 99热网站在线观看| 少妇 在线观看| 黄色一级大片看看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品国产精品| 大话2 男鬼变身卡| 精品熟女少妇八av免费久了| 精品福利观看| 亚洲精品美女久久久久99蜜臀 | 婷婷色av中文字幕| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区久久| 一本一本久久a久久精品综合妖精| 自拍欧美九色日韩亚洲蝌蚪91| 国产爽快片一区二区三区| 国产精品国产三级专区第一集| 99久久精品国产亚洲精品| 午夜激情久久久久久久| 国产深夜福利视频在线观看| 欧美日韩成人在线一区二区| 精品少妇一区二区三区视频日本电影| 久久精品人人爽人人爽视色| 国产精品一区二区在线不卡| 好男人电影高清在线观看| 欧美激情 高清一区二区三区| 国产精品 国内视频| 99国产精品一区二区三区| 成人亚洲精品一区在线观看| 久久综合国产亚洲精品| 在线观看一区二区三区激情| 最黄视频免费看| 最近手机中文字幕大全| 性高湖久久久久久久久免费观看| 两个人看的免费小视频| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 成人国产一区最新在线观看 | 国产在视频线精品| 性高湖久久久久久久久免费观看| 黑人欧美特级aaaaaa片| 久久久精品免费免费高清| 最新在线观看一区二区三区 | 只有这里有精品99| 嫩草影视91久久| 亚洲成国产人片在线观看| 黑人巨大精品欧美一区二区蜜桃| av福利片在线| 日韩制服丝袜自拍偷拍| 又粗又硬又长又爽又黄的视频| 午夜免费男女啪啪视频观看| 夫妻午夜视频| 午夜影院在线不卡| 欧美亚洲 丝袜 人妻 在线| 一级毛片女人18水好多 | 久久久亚洲精品成人影院| 成年美女黄网站色视频大全免费| 大片免费播放器 马上看| 2018国产大陆天天弄谢| 久久久久久人人人人人| 观看av在线不卡| 免费在线观看影片大全网站 | 高清av免费在线| 亚洲成人免费av在线播放| 精品国产乱码久久久久久小说| 国产黄色视频一区二区在线观看| 亚洲av电影在线进入| 啦啦啦在线免费观看视频4| 亚洲av美国av| 久久午夜综合久久蜜桃| 美女中出高潮动态图| av片东京热男人的天堂| 999久久久国产精品视频| 后天国语完整版免费观看| 久久久精品区二区三区| 1024视频免费在线观看| 中文乱码字字幕精品一区二区三区| 少妇裸体淫交视频免费看高清 | 久久精品熟女亚洲av麻豆精品| www.精华液| 国产一卡二卡三卡精品| 夫妻午夜视频| 男女无遮挡免费网站观看| 美女中出高潮动态图| 久久免费观看电影| 中文乱码字字幕精品一区二区三区| 国产三级黄色录像| 青春草亚洲视频在线观看| 男人添女人高潮全过程视频| 亚洲国产av影院在线观看| 亚洲国产成人一精品久久久| 制服诱惑二区| 蜜桃国产av成人99| 亚洲色图 男人天堂 中文字幕| 久久久精品区二区三区| 成人手机av| 亚洲熟女毛片儿| 免费看十八禁软件| 秋霞在线观看毛片| 又大又爽又粗| 国产日韩欧美视频二区| 日韩人妻精品一区2区三区| 在现免费观看毛片| 脱女人内裤的视频| 久久天堂一区二区三区四区| av一本久久久久| kizo精华| 大片电影免费在线观看免费| 国产精品久久久av美女十八| 色婷婷av一区二区三区视频| 99久久人妻综合| 国产麻豆69| 巨乳人妻的诱惑在线观看| 黄片播放在线免费| 中文字幕另类日韩欧美亚洲嫩草| 建设人人有责人人尽责人人享有的| 亚洲国产av影院在线观看| 午夜免费观看性视频| 日日爽夜夜爽网站| 国产女主播在线喷水免费视频网站| 蜜桃国产av成人99| 中文精品一卡2卡3卡4更新| 中文字幕人妻丝袜一区二区| 老司机深夜福利视频在线观看 | 日韩大码丰满熟妇| www日本在线高清视频| 97精品久久久久久久久久精品| 亚洲黑人精品在线| 欧美日韩av久久| 免费观看人在逋| 91精品国产国语对白视频| 亚洲中文av在线| 国语对白做爰xxxⅹ性视频网站| 肉色欧美久久久久久久蜜桃| 好男人视频免费观看在线| 黄色视频不卡| 黄色毛片三级朝国网站| 日本黄色日本黄色录像| av国产精品久久久久影院| 国产一区二区激情短视频 | 91老司机精品| 老汉色av国产亚洲站长工具| 国产1区2区3区精品| 人人妻人人澡人人爽人人夜夜| 99九九在线精品视频| 国产伦人伦偷精品视频| 老司机亚洲免费影院| 欧美精品人与动牲交sv欧美| 少妇 在线观看| 亚洲五月婷婷丁香| 久久久久久久大尺度免费视频| 国产成人一区二区三区免费视频网站 | 国产爽快片一区二区三区| 精品国产一区二区久久| 97在线人人人人妻| 可以免费在线观看a视频的电影网站| 巨乳人妻的诱惑在线观看| 久久影院123| 国产亚洲精品久久久久5区| 亚洲精品中文字幕在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本黄色日本黄色录像| 老司机在亚洲福利影院| 国产精品秋霞免费鲁丝片| 国产不卡av网站在线观看| 一本综合久久免费| 制服诱惑二区| 在线观看免费视频网站a站| 精品高清国产在线一区| 日韩大码丰满熟妇| 欧美精品高潮呻吟av久久| 一级毛片女人18水好多 | 欧美亚洲日本最大视频资源| 熟女少妇亚洲综合色aaa.| 国产精品九九99| 亚洲专区国产一区二区| 亚洲免费av在线视频| 精品少妇黑人巨大在线播放| 丝袜脚勾引网站| 亚洲伊人久久精品综合| 久久亚洲国产成人精品v| 99国产精品一区二区三区| 亚洲人成电影免费在线| 国产午夜精品一二区理论片| 国产在视频线精品| 美女主播在线视频| 另类亚洲欧美激情| 一区二区三区乱码不卡18| 男人操女人黄网站| 久久亚洲精品不卡| 欧美日韩国产mv在线观看视频| 久久99精品国语久久久| 欧美在线黄色| 午夜日韩欧美国产| 成年人黄色毛片网站| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美网| 国产黄频视频在线观看| 欧美在线黄色| 亚洲国产欧美网| 如日韩欧美国产精品一区二区三区| 日韩电影二区| 天天躁日日躁夜夜躁夜夜| 一区在线观看完整版| 欧美变态另类bdsm刘玥| 高清欧美精品videossex| 精品国产乱码久久久久久小说| 国产不卡av网站在线观看| 免费日韩欧美在线观看| 国产麻豆69| 99re6热这里在线精品视频| 国产精品一区二区精品视频观看| 99热网站在线观看| 在线天堂中文资源库| 亚洲精品第二区|