• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含10mol%氧化硅的鈣磷酸鹽玻璃陶瓷的合成及其體外生物活性

    2012-09-15 11:46:50李文旭羅燕趙智博于德珍王福平姜承慧
    關(guān)鍵詞:氧化硅哈爾濱工業(yè)大學(xué)哈爾濱

    李文旭羅 燕趙智博于德珍王福平姜承慧

    (1哈爾濱工業(yè)大學(xué)化學(xué)系,哈爾濱 150001)

    (2哈爾濱工業(yè)大學(xué)材料科學(xué)與工程學(xué)院,哈爾濱 150001)

    (3哈爾濱工業(yè)大學(xué)化工學(xué)院,哈爾濱 150001)

    含10mol%氧化硅的鈣磷酸鹽玻璃陶瓷的合成及其體外生物活性

    李文旭*,1羅 燕1趙智博1于德珍2王福平3姜承慧3

    (1哈爾濱工業(yè)大學(xué)化學(xué)系,哈爾濱 150001)

    (2哈爾濱工業(yè)大學(xué)材料科學(xué)與工程學(xué)院,哈爾濱 150001)

    (3哈爾濱工業(yè)大學(xué)化工學(xué)院,哈爾濱 150001)

    采用高分子網(wǎng)絡(luò)凝膠法合成出SiO2-CaO-P2O5生物玻璃陶瓷,該材料具有較低含硅量和高鈣磷比(nCa/nP=1.57)的特點(diǎn),更接近人體硬組織的成分。將材料在SBF溶液浸泡研究材料的體外生物活性,通過(guò)TG/DTA,XRD,F(xiàn)TIR和SEM等方法對(duì)粉體和浸泡后的樣品表面進(jìn)行表征,ICP-AES對(duì)SBF溶液中鈣、磷、硅離子的濃度進(jìn)行檢測(cè)。結(jié)果表明,氧化硅的添加有利于玻璃陶瓷表面磷灰石晶相的形成;隨著浸泡時(shí)間的延長(zhǎng),沉積在樣品表面的碳酸羥基磷灰石層逐漸由球型突起變?yōu)槿~片狀,溶液中鈣、磷離子濃度降低,而硅離子濃度增加,說(shuō)明材料具有良好的生物活性,適宜作為牙齒和骨骼的替代或修復(fù)材料。

    生物玻璃陶瓷;高分子網(wǎng)絡(luò)凝膠法;SiO2-CaO-P2O5;體外生物活性

    0 Introduction

    Bioactive glass-ceramicsarespecialsystems generally composed of SiO2,CaO and P2O5.In the early 1970s,Hench et al.[1]developed the first bioactive glasses,suggesting a new conceptof bioactive materials.Kokubo et al.[2]studied the bioactive behavior of the prepared bioactive glasses based on CaO-P2O5and CaO-SiO2.The results showed that the CaO-SiO2-based glasses formed an apatite layer on the surface in a simulated body fluid,which contributes to the bioactivity instead of the CaO-P2O5-based glasses,indicating that silica provides special useful sites for the apatite nucleation.

    Inspired by the previous studies, recent researches have put more efforts on the bioactive glasses.Ma et al.[3]prepared 58S bioglass with the composition of 58 mol%SiO2,38 mol%CaO,and 4 mol% P2O5via the sol-gel technique at different sintering temperatures.After 7 days soaking in the SBF,the surface of the bioglass sintered at 700℃was fully covered by tiny spherical apatite particles,while that obtained at 1 200℃sintering was just partially covered with the apatite layer,which indicated that the crystallization decreased the bioactivity.Hong et al.[4]prepared BGC(bioactive glass ceramic)nanoparticles (nSi∶nCa∶nP≈66∶27∶7)via the combination of the sol-gel and coprecipitation processes.After soaking in the SBF (the simulated body fluid)for 14 days,the surfaces of BGC particles became coarser,which could be due to the formation of hydroxyapatite in the SBF solution,indicating their excellent bioactivity.Blamurugan et al.[5]developed the 58S bioactive glass(58wt%SiO2-33wt%CaO-9wt%P2O5) via the sol-gel technique.The bioactive properties of the material were determined through the immersion in the SBF solution and characterized by XRD.After soaking in the SBF for 7 days,the maximum diffraction due to the hydroxyapatite was detectable, which indicated the samples were biocompatible.In addition,since some trace elements such as Sr,Zn,Ag or Mg in the human body provide anabolic effects in bone metabolism[6-9],introduction of necessary trace elements into scaffold materials have been used to enhance their bioactivity.

    Even though some bioglasses have shown good biological activities,the high content of silica made them different from the hard tissue of human body.In 2010,Leonardi et al.[10]reported the preparation of a novel phosphate-based glass ceramics with a small amount of silica:45%P2O5,3%SiO2,26%CaO,7%MgO,15%Na2O,and 4%K2O,by the melting method.After soaking in the SBF for 3 months,the globular agglomerates of a new phase were clearly distinguished,which confirmed thatthe material prepared was bioactive.Although the lower content of silica of the materials makes it closer to human hard tissues,the biological activity decreases compared with other bioactive materials.

    At present,a few methods are utilized to prepare the bioactive glasses.The melting method,as a conventional approach for the glasses preparation,is simple and suitable for massive production[11-12].However,glasses synthesis by this classical method has its own shortcomings,such as composition inhomogeneities and escape of some volatile components such as P2O5asa resultofhightemperature operation[13].Wet chemical methods such as sol-gel and modified sol-gel(Pechini),due to their atomic scale of operation,are more commonly used to avoid from these shortcomings and to obtain glasses with high purity and homogeneity[14].Therefore many efforts have been devoted to the study of the sol-gel derived bioactive glasses containing SiO2,CaO and P2O5as the main components[15-18].

    The polyacrylamide gel method used in the experiment is a further improvement of the modified sol-gel (Pechini).In contrasttotheprogressive transformation from viscous to resin in the classic solgel,this method is a time-saving method because the artificial gel formation at low temperature is rapid[19-20].It is also a cheap,reproducible and easily scaled up to obtain a number of fine powders in that the raw materials for polyacrylamide gel are inexpensive and the formation of gel is generally easy[21-22].

    This study chooses a ternary system of SiO2-CaO-P2O5with the molar ratio of Si∶Ca∶P of 10 ∶55 ∶35 to prepare the glass-ceramics by a polyacrylamide-gel method.The results show that the glass-ceramics synthesized with a low content of silica and a high calcium-phosphorus ratio present positive biological activity,which could be potentially applied as bone or teeth repair materials or fillers.

    1 Experimental

    1.1 Synthesis

    Firstly,calcium nitrate tetrahydrate (Ca(NO3)2·4H2O),ammonium dibasic phosphate((NH4)2HPO4)and Ethylsilicate (TEOS)was dissolved,respectively,in distilled water,and the Ca(NO3)2·4H2O solution was dropped into TEOS.Then proper citric acid and solution of (NH4)2HPO4were added into the vessel.After the clear sol was obtained,acrylamide (as the monomer)and N,N-methylenebisacrylamide(as lattice reagent)were added to the mixture,respectively.Then the initiator azobisisobutyronitrile was added at 80℃,and the white gels were formed.Finally the glass-ceramics powders were obtained after microwave drying for 10 min and sintering at 900℃for 6 h.

    Then the prepared glass-ceramic powders were pressed in cylindrical forms at 10 MPa for 1 min to make the ceramic substrate with 13 mm diameter.Finally the substrate was calcined at 1 200℃for 2 h.

    1.2 Characterization

    The Thermo gravimetric and differential thermal analyses(TG/DTA,SDT 2960,USA)were carried out with a 10℃·min-1heating rate to 1 200℃ under an air atmosphere.The crystallization of the samples was characterized by X-ray diffraction (Philips Analytical X-ray B.V)usingCu Kα radiation (λ=0.154 06 nm)produced at 40 kV and 55 mA with a step size of 0.02°and a scan peed of 5°·min-1.

    In vitro tests were performed by immersing the samples in SBF at 37℃in sterile incubator.During immersion,a constant solid superficial area/liquid volume(0.1 cm-1)ratio[10]was maintained.After being immersed for 7 days and 14 days,samples were rinsed with deionized water and acetone and then dried in air at room temperature.The concentration of calcium,phosphorus and silica in the SBF was monitored by inductively coupled plasma atomic emission spectrometry techniques (ICP-AES;IRISⅡ XSP;USA).The crystallization and structure changes of the samples surface were determined by XRD as described above.The microstructure of the samples immersed in the SBF solution was observed by a scanning electron microscope (SEM,HITACHI S-4800)after being gold sprayed.The IR spectra were measured with a Fourier transform infrared(FTIR,NEXUS-670,THERMONICOLET,USA)atroom temperature.

    2 Results and discussion

    2.1 Powder and pieces characterization

    Fig.1 shows the TG/DTA curves of the prepared dried gel.The 10%weight loss between 30℃and 300℃could be associated with the evaporation of physically absorbed water.The weight loss of 55%correlated to two big exothermic peaks at 336℃and 447℃,respectively,in the DTA curve could be due to the loss of organics (i.e.alkoxy group and carbon chain).The TG curve is stable after 500℃,indicating that almost all water absorbed by the gel powder and organics introduced during the experimental processes have been removed completely.In addition,an endothermic peak around 640℃shown on DTA curve could be due to the glass transition,and a small exothermal peak around 850℃observed might be attributed to the crystallization of the powder.Hence we chose 900℃as the sintering temperature to make the powder partially crystallized.

    There are only broad peaks presented in XRD pattern of the prepared powder sintered at 900℃,implying its low crystallinity(Fig.2(a)).The intensive diffraction peaks at 2θ=27.76°,31.04°,34.38°associated with β-TCP (PDF#70-2065)and weak diffraction peaks at 2θ=24.16°,22.90°,30.74°corresponding to α-TCP(PDF#70-0364)are detected,suggesting that the β-TCP is the principal phase.In addition,the diffraction peaks at 2θ=32.10°,32.44°,33.00°corresponding to Ca2SiO4(PDF#29-0369)are also observed as a result of the addition of silica.

    The maximum XRD diffraction peak of the glassceramic substrate becomes sharper and more independent after calcined at 1 200 ℃ (Fig.2(b)),indicating the further crystallization of the glassceramics.There are no obvious changes of the phase composition,suggesting the β-TCP is stillthe principal phase;similar diffraction peaks associated with Ca2SiO4(PDF#29-0369)and α-TCP (PDF#70-0364)are also seen in the XRD pattern.

    2.2 In vitro bioactivity test

    To determine the bioactivity of the prepared materials,an in vitro test was carefully designed by using the SBF solution.The XRD patterns of the glass-ceramics before and after immersion in the SBF are compared in Fig.3.Before immersion,the XRD peaks are sharp and independent.After immersed for 7 days,few non-crystalbroad diffraction peaks between 30°and 32°corresponding to the main peaks(211), (112)and (300)and few minorpeaks corresponding to the(222)and(213)of hydroxyapatite(PDF#09-0432)appear,suggesting the formation of an apatite phase.In addition, the reflections corresponding to the β-TCP decrease,and the reflections corresponding to the Ca2SiO4are not detectable probably due to the dissolution of Ca2SiO4or the protection of Ca2SiO4by the apatite layer formed after the soaking.

    FTIR spectra ofthe resulting glass-ceramic material after immersed in the SBF for different times are presented in
    Fig.4.The broad and strong absorption band at around 1 020 cm-1could be ascribed to the stretch vibration of P-O.The small band appeared at 750~800 cm-1is the typical absorption band of the symmetric stretch vibration of Si-O-Si.

    After immersed in the SBF,the stretch vibration of P-O around 1 020 cm-1becomes significantly intensified,while the weak vibration around 1 650 cm-1due to the H-O and CO32-and adsorption bandsat around 1 460,1 420 and 868 cm-1appear.The FTIR spectra do not only suggest the formation of an apatite-like layer but also carbonate hydroxyapatite(CHA)as its composition is.With the extension of the immersion time,the absorption bands of H-O and CO32-intensify and become sharper,while the stretch vibration of Si-O-Si at 750~800 cm-1decreases,further confirming the increased generation ofthe CHA particles.

    The surface micrographs of the resulting glassceramic material before and after immersion in the SBF are presented in Fig.5.Before immersion,the surface of the sample is smooth (Fig.5(a,b));after immersed for 7 days,precipitation starts to take place from the initial separate granules to a dense layer with time (Fig.5(c)).High-magnication SEM image(Fig.5(d))further reveals that each spherical bump is consisted of a large number of tiny flake-like crystals of Ca-P similar to the findings reported earlier[23].After immersed for 14 days,the precipitates grow to blades scattered on the surface of the samples evenly,and the superficial area of the blades is about 0.25 μm2with a thickness of 50 nm(Fig.5(e,f)).The change in surface morphology is attributed to the formation of an apatite layer as confirmed by the results of XRD.

    The concentrations of Ca,P and Si ions in the SBF solution was measured by inductively coupled plasma atomic emission spectrometry techniques(ICPAES)and are shown in Fig.6.From the Fig.6,one can see that the concentration of Si ion increases(4.106→4.969 →5.385 →5.59 attributed to the dissolution of the Ca2SiO4,and that of P iron decreases (2.604→2.252→2.139→1.927)likely due to the precipitation of an apatite layer.The concentration of Ca iron is also decreased (86.67→85.03→82.69→75.98),butthe rate is different from that of P.This is because that the concentration of Ca ion is controlled by two opposite processes:the dissolution of Ca2SiO4makes it increased whereas the precipitation of an apatite layer makes it decreased.

    All the results of the characterization mentioned above(XRD,FTIR,SEM and ICP-AES)prove that the surface of the sample is covered with a layer of carbonate hydroxyapatite (CHA),which indicates that the prepared glass-ceramic material has good bioactivity.

    2.3 Process discussion of the apatite precipitation

    The change trend of the concentrations of Ca,P and Si ions in the SBF solution with time is in agreement with that reported by Hench and Ckark[24].They described that when the bioactive materials were exposed into the SBF solution,the bonding between them to bone would occur through a series of surface reactions.In general,silica provides a good nucleation site for the formation of the apatite as follows.The Si component on the surface of the sample firstly reacts with water,and then the silica network of≡Si-O-Si≡is depredated to lead to the formation of Si-OH groups at the glass-solution interface.The mechanism of the apatite formation induced by silanol involves electrostatic interactions[25-26].Since the pH value of the SBF (7.40)is much greater than the isoelectric point of the silica(2.0),the≡Si-OH groups formed at the interface could readily react as below:≡Si-OH+OH-=≡Si-O-+H2O.As a result,a negative charge is formed at the interface,which enhances electrostatic interaction with the positively charged Ca ions in the fluid.The surface then acquires a positive charge by accumulation of calcium ions.The positive charged surface continually interacts electrostatically with the negatively charged P ions in the SBF,consequently leading to the formation of an amorphous calcium phosphate[25,27].As long as the apatite nuclei are formed[25],they grow spontaneously by consuming the Ca and P ions from the surrounding body fluid.Finally, the amorphous calcium phosphate incorporates OH-and CO32-ions from the solution to form a CHA layer.Hence the existent of silica provides the favorable site for the nucleation of the apatite.

    TheCHA isabone-like apatite,which is conductive to the adhesion of the cells for further proliferation as well as new bone formation and reconstruction[28].Therefore,the formation of the CHA on the surfaces of the biomaterials is an important indicator to determine their biological activity.

    3 Conclusions

    In this study,silica was evenly added into the material by the polyacrylamide gel method.The glassceramic powder with a principal phase of β-TCP was obtained by sintering at 900℃,and the glassceramics were then prepared by calcining at 1 200℃.The resulting glass-ceramic materialwith a low content of silica and a high calcium-phosphorus ratio of 1.57 is closer to the hard tissues of organism.

    The results of the in vitro biological activity tests show that with the extension of immersion time,the concentration of Ca and P ions in the SBF solution decreases while the concentration of Si increases.In addition,after immersing for 7 days,the surface of the sample is covered with a dense apatite layer;after immersing for 14 days,the blade-like precipitate with the superficial area of 0.25 μm2and the thickness of 50 nm are firmly deposited,which provides the material prepared with significant physiological response and biological activity.

    [1]Hench L L,Splinter R J,Allen W C,et al.J.Biomed.Mater.Res.,1972,2:117-121

    [2]Ohtsuki C,Kokubo T,Yamamuro T.J.Non-Cryst.Solids.,1992,143:84-92

    [3]Ma J,Chen C Z,Wang D G,et al.Ceram.Int.,2010,36:1911-1916

    [4]Hong Z K,Liu A X,Li C.J.Non-Cryst.Solids.,2009,355:368-372

    [5]Balamurugan A,Sockalingum G J M,et al.Mater.Lett.,2006,60:3752-3757

    [6]Saeed Hesaraki,Mozhdeh Gholami,Sadaf Vazehrad,et al.Mater.Sci.Eng.C,2010,30:383-390

    [7]Balamurugan A,Balossier G,Kannan S,et al.Acta.Biomater.,2007,3:255-262

    [8]Salinas A J,Román J,Vallet-RegíM,et al.Biomaterials.,2000,21:251-257

    [9]Balamurugan A,Balossier G,Laurent-Maquin D,et al.Dent.Mater.,2008,24:343-1351

    [10]Leonardi E,Ciapetti G,Baldini N,et al.Acta Biomater.,2010,6:598-606

    [11]Franks K,Abrahams I,Georgious G,et al.Biomaterials,2001,22:497-501

    [12]Santos J D,Silva P L,Knowles J C,et al.J.Mater.Sci.:Mater.Med.,1996,7:187-189

    [13]Brink M,Turunen T,Haponen R P,et al.J.Biomed.Mater.Res.Part A,1997,114:114-121

    [14]Zhong J P,Greenspan D C,Biomed J.J.Biomed.Mater.Res.Part B,2000,53:694-701

    [15]Coleman N J,Hench L L.Ceram.Int.,2000,26:179-186

    [16]Peitl O,Zanotto E D,Hench L L.J.Non-Cryst.Solids.,2001,292:115-126

    [17]Sepulveda P,Jones J R,Hench L L.J.Biomed.Mater.Res.,2002,61(2):301-311

    [18]ZHANG Xiao-Kai(張曉凱),LIU Wei(劉瑋),CHEN Xiao-Feng(陳曉峰).Acta Phys.-Chim.Sinica(Wuli Huaxue Xuebao),2004,17(4):495-498

    [19]Song Y,Sun Q,Zhao L R,et al.Mater.Chem.Phys.,2009,113:645-649

    [20]Tarancon A,Dezanneau G,Arbiol J,et al.J.Power Sources,2003,118:256-264

    [21]Tahmasebpour M,Babaluo A A,Aghjeh M K R.J.Eur.Ceram.Soc.,2008,28:773-778

    [22]Tahmasebpour M,Babaluo A A,Shaei S,et al.Powder Technol.,2009,191:91-97

    [23]Fu X,Zhang H,Niu S,et al.J.Solid State Chem.,2005,178:603-607

    [24]Zhang Y L,Mizuno M,Yanagisawa M,et al.J.Mater.Res.,2003,18:433-441

    [25]HenchLL,CkarkDE.J.Non-Cryst.Solids.,1978,28:83-85

    [26]Takadama H,Kim H M,Kokubo T,et al.Chem.Mater.,2001,13:1108-1113

    [27]Takadama H,Kim H M,Miyaji F,et al.J.Ceram.Soc.Jpn.,2000,108(2):118-121

    [28]Vallés Lluch A,Gallego Ferrer G,Monleón Pradas M.Polymer,2009,50:2874-2884

    [29]Ducheyne P,Qiu Q.Biomaterials,2004,20:2287-2303

    Synthesis and in vitro Bioactivity of Calcium-Phosphate Bioglass-Ceramic with 10mol%Silica

    LI Wen-Xu*,1LUO Yan1ZHAO Zhi-Bo1YU De-Zhen2WANG Fu-Ping3JIANG Cheng-Hui3
    (1Department of Chemistry,Harbin Institute of Technology,Harbin,150001,China)
    (2School of Materials Science&Engineering,Harbin Institute of Technology,Harbin,150001,China)
    (3School of Chemical Engineering&Technology,Harbin Institute of Technology,Harbin,150001,China)

    The bioactive glass-ceramics based on a SiO2-CaO-P2O5system were synthesized using the polyacrylamide-gel method.The prepared glass-ceramic material is attractive for its low content of silica and high calciumphosphorus molar ratio of 1.57,which is closer to the composition of hard tissues in human body.The bioactivity of the material was assessed by simply immersing it in the simulated body fluid(SBF)for different time durations.The prepared powders and the samples surface after the immersion were characterized by using TG/DTA,XRD,FTIR and SEM techniques.The concentration of Ca,P and Si ions in the SBF were measured by ICP-AES.The results show that the addition of silica contributes to the formation of the apatite on the surface of the glass-ceramics.With the extension of immersion time,the carbonated hydroxyl apatite(CHA)layer deposited is changed from spherical bumps to blades,and the concentration of calcium and phosphorus in the SBF increases while that of silica decreases.The above results indicate that the prepared glass-ceramic material has good bioactivity and may be used as bone and teeth repair material or filler.

    bioglass-ceramic;polyacrylamide-gel method;SiO2-CaO-P2O5;in vitro bioactivity

    TB321;O611.4

    A

    1001-4861(2012)10-2264-07

    2012-03-23。收修改稿日期:2012-04-10。

    哈爾濱工業(yè)大學(xué)科研創(chuàng)新基金(No.HIT.NSRIF.2010066);黑龍江省自然科學(xué)基金(No.E201006)和黑龍江省科技攻關(guān)課題(No.GC10A107)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:liwx@hit.edu.cn

    猜你喜歡
    氧化硅哈爾濱工業(yè)大學(xué)哈爾濱
    我平等地嫉妒每一個(gè)去哈爾濱的人
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    奇妙的哈爾濱之旅
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    一種含有適量硅和氧的氧化硅的制備方法
    納米氧化硅對(duì)RAW264.7細(xì)胞的DNA損傷作用
    《老哈爾濱的回憶》國(guó)畫(huà)
    新聞傳播(2016年13期)2016-07-19 10:12:05
    哈爾濱工業(yè)大學(xué)設(shè)計(jì)學(xué)系
    感受哈爾濱的冬天
    99re6热这里在线精品视频| 一级a做视频免费观看| 免费观看无遮挡的男女| 丰满饥渴人妻一区二区三| 美女中出高潮动态图| 免费av不卡在线播放| 如日韩欧美国产精品一区二区三区 | av卡一久久| 国产无遮挡羞羞视频在线观看| h视频一区二区三区| 一级毛片黄色毛片免费观看视频| 3wmmmm亚洲av在线观看| 免费大片18禁| 另类精品久久| 人妻一区二区av| 中文天堂在线官网| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 中文字幕免费在线视频6| 亚洲性久久影院| 男女啪啪激烈高潮av片| 一级毛片电影观看| 亚洲精品第二区| 男人添女人高潮全过程视频| 国产成人精品无人区| 我的女老师完整版在线观看| 欧美日韩国产mv在线观看视频| 飞空精品影院首页| 精品人妻熟女毛片av久久网站| 蜜臀久久99精品久久宅男| 日本猛色少妇xxxxx猛交久久| 大香蕉97超碰在线| 91成人精品电影| 免费av不卡在线播放| 精品国产一区二区久久| 黄色毛片三级朝国网站| 午夜精品国产一区二区电影| videosex国产| 亚洲国产精品专区欧美| 丰满少妇做爰视频| 涩涩av久久男人的天堂| 免费观看在线日韩| 国产欧美另类精品又又久久亚洲欧美| 久久午夜福利片| 蜜桃久久精品国产亚洲av| 久久鲁丝午夜福利片| 欧美精品一区二区免费开放| av天堂久久9| 51国产日韩欧美| 国产淫语在线视频| 人成视频在线观看免费观看| 多毛熟女@视频| 曰老女人黄片| 国产精品国产av在线观看| 母亲3免费完整高清在线观看 | 欧美精品一区二区大全| 一级毛片电影观看| 欧美3d第一页| 精品人妻熟女毛片av久久网站| 亚洲天堂av无毛| 日本av手机在线免费观看| 丰满饥渴人妻一区二区三| 亚洲性久久影院| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 女的被弄到高潮叫床怎么办| 国产精品一区二区三区四区免费观看| 亚洲国产av新网站| 高清欧美精品videossex| 国产日韩欧美亚洲二区| 寂寞人妻少妇视频99o| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美一区二区三区国产| 91精品一卡2卡3卡4卡| 最新的欧美精品一区二区| a级毛片免费高清观看在线播放| 熟女人妻精品中文字幕| 久久这里有精品视频免费| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 人妻少妇偷人精品九色| 在线播放无遮挡| 欧美精品一区二区免费开放| 国产免费视频播放在线视频| 久久精品国产鲁丝片午夜精品| 色网站视频免费| 我的女老师完整版在线观看| 国产精品99久久99久久久不卡 | 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 美女脱内裤让男人舔精品视频| 我的女老师完整版在线观看| 水蜜桃什么品种好| 国产精品不卡视频一区二区| 久久99蜜桃精品久久| 午夜免费鲁丝| 日韩伦理黄色片| 91久久精品国产一区二区成人| 中文字幕免费在线视频6| 夫妻性生交免费视频一级片| 又粗又硬又长又爽又黄的视频| 亚洲国产色片| 国产伦理片在线播放av一区| 人人妻人人澡人人看| videossex国产| 又黄又爽又刺激的免费视频.| 日本黄大片高清| 国产精品三级大全| 国产一级毛片在线| 亚洲中文av在线| 久久久久久久久大av| 国产亚洲精品久久久com| 国产色婷婷99| 亚洲精品日韩在线中文字幕| 人人妻人人添人人爽欧美一区卜| 久久久久久久久久久丰满| 精品国产露脸久久av麻豆| 日韩中文字幕视频在线看片| 老司机影院成人| 另类亚洲欧美激情| 日本av免费视频播放| 久久97久久精品| 成年av动漫网址| 99视频精品全部免费 在线| 亚州av有码| 日本欧美国产在线视频| 国产又色又爽无遮挡免| 国产一区二区在线观看日韩| 好男人视频免费观看在线| 一个人免费看片子| 亚洲av国产av综合av卡| 中文字幕av电影在线播放| 精品亚洲乱码少妇综合久久| 久久热精品热| 黄色毛片三级朝国网站| 国产高清三级在线| 国产黄色免费在线视频| 久久97久久精品| 在线观看人妻少妇| 这个男人来自地球电影免费观看 | 欧美最新免费一区二区三区| 97在线视频观看| 久久久精品区二区三区| 性高湖久久久久久久久免费观看| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 国产精品一区二区三区四区免费观看| 精品久久久久久久久av| 中文字幕免费在线视频6| 国产精品久久久久久久电影| 男女边吃奶边做爰视频| 欧美日韩亚洲高清精品| 久久99一区二区三区| 亚洲精品国产色婷婷电影| 国产69精品久久久久777片| 伦理电影大哥的女人| 国产精品国产三级国产av玫瑰| 丝袜脚勾引网站| 午夜福利,免费看| 欧美bdsm另类| 人妻少妇偷人精品九色| 伦理电影大哥的女人| 大码成人一级视频| 美女视频免费永久观看网站| 午夜福利在线观看免费完整高清在| 男女边吃奶边做爰视频| 老熟女久久久| 只有这里有精品99| 91久久精品国产一区二区成人| 97在线人人人人妻| 街头女战士在线观看网站| 美女福利国产在线| 80岁老熟妇乱子伦牲交| 亚洲美女视频黄频| 日韩 亚洲 欧美在线| 国产成人午夜福利电影在线观看| 国产一区二区在线观看av| 在线 av 中文字幕| 日韩电影二区| 一级,二级,三级黄色视频| 国产综合精华液| 欧美精品亚洲一区二区| 亚洲在久久综合| 女人精品久久久久毛片| 日韩一区二区三区影片| 日韩熟女老妇一区二区性免费视频| 大码成人一级视频| 欧美 日韩 精品 国产| 国产av码专区亚洲av| 一级毛片电影观看| 久久久a久久爽久久v久久| 亚洲精品视频女| 日日爽夜夜爽网站| 国产av一区二区精品久久| 五月伊人婷婷丁香| av国产久精品久网站免费入址| av视频免费观看在线观看| 少妇人妻 视频| 国产片特级美女逼逼视频| 热99久久久久精品小说推荐| 一本—道久久a久久精品蜜桃钙片| 亚洲人与动物交配视频| 国产成人精品在线电影| 国产片内射在线| 老熟女久久久| 国产一区二区三区av在线| 能在线免费看毛片的网站| 精品一品国产午夜福利视频| 免费观看a级毛片全部| 免费观看的影片在线观看| 日韩在线高清观看一区二区三区| 国产成人91sexporn| 狂野欧美激情性bbbbbb| 欧美最新免费一区二区三区| 国产视频首页在线观看| 国产日韩欧美亚洲二区| 日本色播在线视频| 少妇 在线观看| 久久久久久久久久久免费av| 亚洲欧洲日产国产| 老熟女久久久| 美女主播在线视频| 少妇熟女欧美另类| 狠狠婷婷综合久久久久久88av| 中国国产av一级| videos熟女内射| 只有这里有精品99| 国产片特级美女逼逼视频| 亚洲中文av在线| 一级a做视频免费观看| 女的被弄到高潮叫床怎么办| 在线观看免费日韩欧美大片 | av网站免费在线观看视频| 久久97久久精品| 日韩欧美一区视频在线观看| 日本vs欧美在线观看视频| 久久99热6这里只有精品| 国产有黄有色有爽视频| 午夜福利视频精品| 久久久欧美国产精品| 精品国产一区二区久久| 日本黄色片子视频| 99国产综合亚洲精品| 18禁在线播放成人免费| 国产淫语在线视频| 日韩三级伦理在线观看| 国产精品蜜桃在线观看| 国产精品 国内视频| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添av毛片| 免费久久久久久久精品成人欧美视频 | 在现免费观看毛片| 久久国产精品大桥未久av| 亚洲情色 制服丝袜| 一级爰片在线观看| 日日撸夜夜添| 国产精品久久久久久精品古装| 两个人的视频大全免费| 人妻人人澡人人爽人人| 日韩熟女老妇一区二区性免费视频| 国产国拍精品亚洲av在线观看| 欧美成人午夜免费资源| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 九九在线视频观看精品| 日日爽夜夜爽网站| 人人妻人人爽人人添夜夜欢视频| √禁漫天堂资源中文www| 乱人伦中国视频| 亚洲色图 男人天堂 中文字幕 | 日本黄色片子视频| 亚洲激情五月婷婷啪啪| a级毛片黄视频| 色94色欧美一区二区| 国产精品女同一区二区软件| 80岁老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 亚洲欧洲国产日韩| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 久久久精品区二区三区| av在线观看视频网站免费| 热99国产精品久久久久久7| 国产精品一区二区三区四区免费观看| 成人漫画全彩无遮挡| 十八禁高潮呻吟视频| 国产精品偷伦视频观看了| 女性被躁到高潮视频| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站| 欧美激情极品国产一区二区三区 | 国产视频内射| 一级,二级,三级黄色视频| 国内精品宾馆在线| 国产av精品麻豆| 黄色怎么调成土黄色| 精品人妻在线不人妻| 国产一区亚洲一区在线观看| 涩涩av久久男人的天堂| 99热网站在线观看| 十八禁高潮呻吟视频| av福利片在线| 亚洲国产欧美日韩在线播放| 亚洲天堂av无毛| 国产乱来视频区| 国产免费一级a男人的天堂| 插阴视频在线观看视频| 国产精品.久久久| 校园人妻丝袜中文字幕| 十八禁网站网址无遮挡| 在线观看美女被高潮喷水网站| 99久久精品一区二区三区| 最近最新中文字幕免费大全7| 亚洲国产成人一精品久久久| 91aial.com中文字幕在线观看| 日韩亚洲欧美综合| 免费观看av网站的网址| 国产精品久久久久成人av| 国产欧美亚洲国产| 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 欧美性感艳星| 日日摸夜夜添夜夜添av毛片| 9色porny在线观看| 久久亚洲国产成人精品v| 大片电影免费在线观看免费| 国产免费又黄又爽又色| av免费在线看不卡| videos熟女内射| 亚洲怡红院男人天堂| 女的被弄到高潮叫床怎么办| 国产极品粉嫩免费观看在线 | 久久久亚洲精品成人影院| 在线 av 中文字幕| 中文天堂在线官网| 久久精品夜色国产| 亚洲精品亚洲一区二区| 亚洲五月色婷婷综合| 午夜福利网站1000一区二区三区| 简卡轻食公司| 成人毛片a级毛片在线播放| 国产老妇伦熟女老妇高清| 精品熟女少妇av免费看| 国产精品嫩草影院av在线观看| 一级毛片黄色毛片免费观看视频| 国内精品宾馆在线| 永久免费av网站大全| 国产精品嫩草影院av在线观看| 一级毛片黄色毛片免费观看视频| 2021少妇久久久久久久久久久| 一级毛片黄色毛片免费观看视频| 国产精品久久久久成人av| 精品国产露脸久久av麻豆| 99九九在线精品视频| 国产精品.久久久| 日日摸夜夜添夜夜爱| 久久久久国产网址| 美女福利国产在线| 99精国产麻豆久久婷婷| 大香蕉97超碰在线| 久久99一区二区三区| 在现免费观看毛片| 久久久久久久久久久久大奶| 国产精品99久久99久久久不卡 | 午夜精品国产一区二区电影| 亚洲怡红院男人天堂| 丝瓜视频免费看黄片| 少妇被粗大猛烈的视频| 纯流量卡能插随身wifi吗| 日本色播在线视频| 亚洲不卡免费看| 亚洲美女视频黄频| 日本91视频免费播放| 亚洲一级一片aⅴ在线观看| 午夜福利视频在线观看免费| 最近最新中文字幕免费大全7| 午夜福利视频在线观看免费| 一级片'在线观看视频| 久久久久久久亚洲中文字幕| 2018国产大陆天天弄谢| 80岁老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 亚洲性久久影院| 观看美女的网站| 欧美激情国产日韩精品一区| 啦啦啦中文免费视频观看日本| 九草在线视频观看| 欧美日韩国产mv在线观看视频| 精品国产一区二区三区久久久樱花| 久久午夜福利片| 熟女电影av网| 简卡轻食公司| 大香蕉久久成人网| 中文字幕亚洲精品专区| 日本wwww免费看| 亚洲精品一区蜜桃| 国产成人91sexporn| 国产亚洲精品第一综合不卡 | 亚洲精品日本国产第一区| 亚洲精品aⅴ在线观看| 曰老女人黄片| 只有这里有精品99| 亚洲国产成人一精品久久久| 久久久久久久久大av| 国产精品麻豆人妻色哟哟久久| 777米奇影视久久| 精品一区二区三卡| 久久午夜综合久久蜜桃| 免费大片黄手机在线观看| 毛片一级片免费看久久久久| 肉色欧美久久久久久久蜜桃| av女优亚洲男人天堂| 亚洲精品视频女| 久久精品久久久久久久性| 69精品国产乱码久久久| 亚洲图色成人| 国产成人精品婷婷| 熟女av电影| 啦啦啦中文免费视频观看日本| 久久久国产精品麻豆| 最后的刺客免费高清国语| 肉色欧美久久久久久久蜜桃| 狂野欧美激情性bbbbbb| 亚洲色图 男人天堂 中文字幕 | 久久精品熟女亚洲av麻豆精品| 男女高潮啪啪啪动态图| 国产成人freesex在线| 精品少妇内射三级| 成年美女黄网站色视频大全免费 | 亚洲色图 男人天堂 中文字幕 | 观看av在线不卡| 99热这里只有精品一区| 国产成人91sexporn| 精品久久久噜噜| 丰满乱子伦码专区| 成年人免费黄色播放视频| 美女内射精品一级片tv| 在线看a的网站| 国产精品一区www在线观看| 亚洲精品日韩在线中文字幕| 亚洲av不卡在线观看| 久久久久久伊人网av| 大又大粗又爽又黄少妇毛片口| 黑人猛操日本美女一级片| 高清视频免费观看一区二区| 亚洲婷婷狠狠爱综合网| 两个人的视频大全免费| 妹子高潮喷水视频| 少妇人妻 视频| 在线观看一区二区三区激情| 男女高潮啪啪啪动态图| 免费大片黄手机在线观看| 日韩欧美精品免费久久| 18禁观看日本| 亚洲精品乱久久久久久| av专区在线播放| 国产综合精华液| 亚洲av二区三区四区| 亚洲精品国产av成人精品| 欧美精品人与动牲交sv欧美| 丝袜在线中文字幕| 色婷婷av一区二区三区视频| 午夜免费观看性视频| 丰满迷人的少妇在线观看| 国产成人freesex在线| 亚洲国产最新在线播放| 日韩一本色道免费dvd| 亚洲精品456在线播放app| 人人妻人人澡人人看| 国产成人精品一,二区| 亚洲欧洲精品一区二区精品久久久 | 亚洲av中文av极速乱| 亚洲国产欧美日韩在线播放| 18禁裸乳无遮挡动漫免费视频| 人妻 亚洲 视频| 久久久久人妻精品一区果冻| 亚洲成色77777| a级毛片黄视频| 91午夜精品亚洲一区二区三区| 丝袜在线中文字幕| 亚州av有码| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 成人亚洲欧美一区二区av| 国产 精品1| 欧美人与性动交α欧美精品济南到 | 精品国产乱码久久久久久小说| 国产亚洲av片在线观看秒播厂| 中文精品一卡2卡3卡4更新| 欧美激情 高清一区二区三区| 国产精品久久久久久av不卡| 我的老师免费观看完整版| 人妻系列 视频| 国产精品秋霞免费鲁丝片| 日韩电影二区| av国产精品久久久久影院| 免费观看av网站的网址| 久久精品久久久久久久性| 美女国产视频在线观看| 午夜免费男女啪啪视频观看| 亚洲高清免费不卡视频| 大话2 男鬼变身卡| 国产精品久久久久久精品古装| 99久久中文字幕三级久久日本| 亚洲人成网站在线观看播放| 99久久综合免费| 91久久精品电影网| 中文字幕制服av| 啦啦啦在线观看免费高清www| 久久久久久久久久成人| 99久久精品国产国产毛片| 亚洲精品,欧美精品| 精品人妻一区二区三区麻豆| 国产高清国产精品国产三级| 亚洲成人av在线免费| 午夜激情福利司机影院| 亚洲欧美成人综合另类久久久| 黄色欧美视频在线观看| xxxhd国产人妻xxx| 久久人妻熟女aⅴ| 在线观看www视频免费| 久久久久久伊人网av| kizo精华| 人妻人人澡人人爽人人| 大香蕉久久成人网| 一个人免费看片子| 色视频在线一区二区三区| 久久人妻熟女aⅴ| 国产无遮挡羞羞视频在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品999| 成人无遮挡网站| 国产黄色免费在线视频| av在线app专区| 久久久精品94久久精品| 国产白丝娇喘喷水9色精品| 熟女人妻精品中文字幕| 草草在线视频免费看| 日韩欧美一区视频在线观看| 精品少妇内射三级| 婷婷色麻豆天堂久久| 久久精品国产亚洲av天美| 男女国产视频网站| 精品国产一区二区三区久久久樱花| 麻豆乱淫一区二区| 亚洲一级一片aⅴ在线观看| 高清视频免费观看一区二区| 亚洲av免费高清在线观看| 日本av免费视频播放| 天天影视国产精品| 日韩成人av中文字幕在线观看| 日本-黄色视频高清免费观看| 超碰97精品在线观看| 亚洲精品乱久久久久久| 国产在线视频一区二区| 下体分泌物呈黄色| 国产精品秋霞免费鲁丝片| 18+在线观看网站| av电影中文网址| 国产精品一国产av| 国产淫语在线视频| 亚洲成人手机| 超色免费av| 午夜影院在线不卡| 日日爽夜夜爽网站| 亚洲精品视频女| 国产亚洲av片在线观看秒播厂| 天堂8中文在线网| 国产免费一级a男人的天堂| 国产欧美日韩一区二区三区在线 | 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 又大又黄又爽视频免费| 免费看不卡的av| 美女cb高潮喷水在线观看| 哪个播放器可以免费观看大片| 精品一品国产午夜福利视频| 精品卡一卡二卡四卡免费| 亚洲精品,欧美精品| 精品久久久噜噜| 在线观看免费高清a一片| 这个男人来自地球电影免费观看 | 成人漫画全彩无遮挡| 亚洲第一区二区三区不卡| 中文字幕亚洲精品专区| 丰满乱子伦码专区| 日本免费在线观看一区| 亚洲精品456在线播放app| 一级a做视频免费观看| 成人亚洲欧美一区二区av| 另类精品久久| 有码 亚洲区| .国产精品久久| 欧美3d第一页| 日本猛色少妇xxxxx猛交久久| 老司机影院毛片| 韩国高清视频一区二区三区| 黑人高潮一二区| 日韩,欧美,国产一区二区三区| 狂野欧美激情性bbbbbb| 成人国语在线视频| 黄色一级大片看看| 最近的中文字幕免费完整| 日韩不卡一区二区三区视频在线| 日韩成人伦理影院| 美女国产高潮福利片在线看| 极品人妻少妇av视频| 亚洲国产精品999| 曰老女人黄片| 亚洲av男天堂| 久久精品国产亚洲av涩爱| 51国产日韩欧美| 国产欧美另类精品又又久久亚洲欧美| 五月开心婷婷网|