• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    摻鎂鈦酸鋇納米棒的水熱合成和光催化性能

    2012-09-15 11:46:52雪關(guān)慶豐李海波巴春華王丹丹孟繁駿
    關(guān)鍵詞:鈦酸鋇納米粉體四平

    林 雪關(guān)慶豐李海波巴春華王丹丹孟繁駿

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,鎮(zhèn)江 212013)

    (2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室,四平 136000)

    (3吉林師范大學(xué)物理學(xué)院,四平 136000)

    摻鎂鈦酸鋇納米棒的水熱合成和光催化性能

    林 雪1,2關(guān)慶豐*,1李海波3巴春華2王丹丹2孟繁駿2

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,鎮(zhèn)江 212013)

    (2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點(diǎn)實(shí)驗(yàn)室,四平 136000)

    (3吉林師范大學(xué)物理學(xué)院,四平 136000)

    用水熱法制備摻鎂鈦酸鋇(Ba1-xMgxTiO3(x=0,0.10,0.20,0.30,0.40),BMT)納米粉體。運(yùn)用X射線衍射儀(XRD)、場(chǎng)發(fā)射掃描電子顯微鏡(FESEM)、透射電子顯微鏡(TEM)、紫外可見漫反射光譜技術(shù)(DRS)等手段對(duì)樣品進(jìn)行了表征,并在可見光照射下于溶液中考察了其光催化降解甲基橙反應(yīng)活性。結(jié)果表明,通過控制氫氧根濃度可以得到不同形貌的納米粉體。基于不同條件下制備的樣品的微結(jié)構(gòu)分析,提出了這些不同形貌的形成機(jī)制。制備出的BMT材料的帶隙能約為2.61 eV。光催化反應(yīng)結(jié)果表明BMT的光催化活性比摻氮TiO2高得多。OH-濃度為8 mol·L-1時(shí)制備的BMT納米棒光催化效率最高,經(jīng)可見光照射360 min,濃度為0.01 mmol·L-1甲基橙溶液的降解率可達(dá)到93.0%,且循環(huán)使用4次后,其光催化活性并沒有明顯降低,表明BMT是一種穩(wěn)定有效的可見光催化劑.

    鈦酸鋇;摻鎂;納米結(jié)構(gòu);水熱合成;光催化降解;可見光照射

    The worldwide demand for clean and renewable energy sourceshasencouraged a greatdealof research activities and development in the field of solar energy in the last twenty years.Solar energy as a clean energy is inexhaustible in supply and always available for use.Therefore,high efficient catalyst,photochemical cell and solar cell have become the hotspot of scientific research.Since the discovery of the photocatalytic splitting of water on the TiO2electrodes by Fujishima and Honda (1972),the application of semiconductor photocatalysts on degradation of pollutants has received great attention[1-6].Among all photocatalysts,TiO2attractsthemost attention due to its chemical stability,low cost,nontoxicity, and high photocatalytic activity[7-10].However,the band gap energy of the TiO2is 3.2 eV.It absorbs only the ultraviolet light (λ≤386.5 nm)which only accounts for about 4%of the sunlight.In orderto improve the efficiency ofthe sunlight utilization,the development of photocatalysts with high activity under a wide range of visible light is highly desirable[11-14].

    Barium titanate(BaTiO3,BTO)is one of the most widely used ferroelectric materials and has been extensively studied[15-16].Nevertheless there have been few studies about the visible light-induced photocatalytic activity ofBTO.In heterogeneous photocatalysis,the morphology of the catalyst plays an important role in catalytic activity[17-24].One-dimensionalnanostructuresphotocatalystshave attracted extensive attentions in environmental remediation due to their great specific surface area[25-27].Furthermore,Metal elements doping is one of the typical approaches to extend the spectral response of semiconductor photocatalysts by providing defect states in the band gap[28].

    Methyl orange (MO)has a variety of uses in texitiles,paper,pulp and environment thus causing toxicity problems.Many efforts have been made to study the photodegradation of MO.In this work,we have introduced a low-temperature solution-phase route without the use of any surfactants or templates to synthesize Magnesium doped barium titanate(BMT)photocatalysts with well controlled shapes. As stimulated by the promising applications,the synthesis of BMT nanorods is a subject of considerable research interest.There are two significant aspects of the work described in this paper.Firstly,the synthesis of shape-controlled BMT nanostructures has been found to be extremely evasive to date.Hence,the facile and template-free hydrothermal synthesis of BMT nanostructures with well controlled shapes should be an important progress that may inspire subsequent catalytic materials synthesis.Secondly,the test of BMT nanorods associated opticalproperties and photocatalytic activities in the degradation of MO under visible-light irradiation has been rarely reported.Hence,this work may be of interest to both materials scientists and those working in the area of catalyst design.

    1 Experimental

    1.1 Preparation of BMT photocatalysts

    All the chemicals were analytical grade(purchased from Shanghai Chemical Industrial Company)and used withoutfurther purification.Barium chloride (BaCl2·2H2O),magnesium chloride(MgCl2·6H2O)and titanium tetrachloride (TiCl4)were chosen as starting materials.The BMT synthesis was as follows:a 10 mL TiCl4was dissolved in 50 mL cold H2O under vigorous stirring,then mixed with BaCl2and MgCl2.The concentration of the alkali solution was adjusted using NaOH.Before being transferred to a 20 mL stainless steel autoclave,the solution mixture was prepared under an ultrasonic water bath for 30 min in order to avoid the premature formation of bismuth titanate nuclei induced by NaOH and kept at a filling ratio of 70% (volume ratio).The autoclave was kept at 230℃for 24 h,and cooled to room temperature after the reaction.The precipitates were washed with deionized water and ethanol three times,separately.The final products were dried at 100℃for 2 h in a vacuum box.The sample prepared for comparison is N-TiO2synthesized according to Hou et al[29].

    1.2 Characterization of BMT photocatalysts

    The crystalstructures ofthe samples werecharacterized by X-ray diffraction (XRD)on a PE D/max 2500 X-ray diffractometer(Cu Kα radiation,λ=0.154 18 nm),employing a scanning rate of 4.00°·min-1,in the 2θ range from 20°to 80°.The operation voltage and current were maintained at 40 kV and 30 mA,respectively.The sizes and morphologies of the resulting samples were studied by field emission scanning electron microscope (FESEM,JEOL JSM-6700F)ataccelerating voltage of10 kV and transmission electron microscope (TEM,JEOL JEM-2100F)ataccelerating voltageof200 kV.The chemical composition of the compound was determined by scanning electron microscope-X-ray energy dispersion spectrum (SEM-EDX).The UV-Vis diffuse reflectance spectra (DRS)were recorded for the dry-pressed disk sample using a scan UV-Vis spectrophotometer (SHIMADZU UV-2550)equipped with an integrating sphere.Raman spectrum of BMT was obtained by a micro laser Raman spectrometer(LabRam inva).Raman spectrum was excited with 514 nm line of an Ar+laser at an incident power of 20 mW.Theopticalpropertywasobtained bythe photoluminescence (PL)measurement using HR800 LabRam Infinity Spectro photometer excited by a continuous He-Cd laser with a wavelength of 325 nm at a power of 50 mW.

    1.3 Photocatalytic activities test

    The photocatalytic degradation ofMO was employed to evaluate the photocatalytic activities of the samples.A 1 000 W halogen lamp with a 420 nm cutoff filter was employed to provide visible light irradiation.0.10 g of photocatalyst was added to 100 mL MO solution (0.01 mmol·L-1).Before irradiation,the suspensions were magnetically stirred in the dark for30 min to ensure the adsorption-desorption equilibrium between the photocatalysts and MO.Then the solution was exposed to visible light irradiation under magnetic stirring.At given time intervals,4 mL of suspension was sampled and centrifuged to remove the photocatalyst particles.Then,the catalyst-free dye solution was analyzed by a UV-2550 spectrometer to record intensity of the maximum band at 460 nm in the UV-Vis absorption spectra.

    2 Results and discussion

    2.1 Characterization analysis

    2.1.1 XRD analysis

    XRD patterns of BaTiO3powders with various Mg doping synthesized by hydrothermal method are shown in Fig.1.It is indicated that the phase composition of all the powders with various Mg doping consists of a single phase with a tetragonal BaTiO3,consistent with the literature[30-31].No peaks of impurities are detected from the patterns.The strong and sharp peaks indicate high crystallinities of BMT samples.

    2.1.2 Microstructures analysis

    The influence of OH-concentration on the morphology ofBa0.96Mg0.4TiO3(BMT)crystals was present using NaOH with concentration in the range of 3 to 8 mol·L-1.Fig.2(a)~2(c)show FESEM images of the samples prepared at various OH-concentration.It can be seen that BMT products prepared at OH-concentration of 3 mol·L-1are composed of nano-sized particles with average size of 50 nm,and each particle is nearly spherical in shape (as shown in Fig.2(a)).Fig.2 (b)shows BMT sample obtained at OH-concentration of 5 mol·L-1.It also can be observed that there are BMT nanorods with width of 50~100 nm and lengths up to several micrometres.In addition to nanorods,nano-sized particles are also observed in the sample prepared at OH-concentration of 5 mol·L-1.However,when the OH-concentration is further increased to 8 mol·L-1,a large number of BMT nanorods are formed, accompanied by thedisappearance of the spherical particles(as illustrated in
    Fig.2 (c)).These resultsindicate thatOH-concentration plays an important role in determining final morphologies of BMT.Namely,morphology of the BMT powders can be controlled through varying the concentration of OH-.The relationship between the OH-concentration and morphology of BMT crystals will be discussed later.

    Further structure details of BMT nanorods were studied by TEM,as shown in Fig.3.It can be observed thateach nanorod iswith an average diameter of 50 nm and a side length over 1 μm through their axialdirection.In particular,no branching is observed for each nanorod,which implies that the nanorods are grown from a spontaneous nucleation and with high crystal perfection.

    In orderto investigate the detailed crystal structure of as-prepared samples,high-resolution transmission electron microscope(HRTEM)images for BMT nanorods were measured and shown in Fig.4.It reveals the fringes with an interval of 0.28 nm,which is in good agreement with the (101)lattice planes of the perovskite BaTiO3[32].This result might indicate that the low concentration doping of Mg2+ions does not induce the formation of separate purity phases(magnesium metal).

    The SEM-EDX analysis reveals that Ba0.96Mg0.40TiO3(BMT)has a homogenous atomic distribution with no other impure elements,as shown in Fig.5.An average atomic ratio of Ba∶Mg∶Ti(0.96∶0.40∶1.00) for Ba0.96Mg0.40TiO3is obtained from measurements at different points.Based on the above results,we can conclude that the resulting materials are of high purity under our preparation conditions.

    Fig.6 schematically outlines the possible mechanism involved in the hydrothermal synthesis.Although the crystal growth habit is mainly determined bytheintrinsicstructure,itisalso affected by the external conditions such as pH valueof the solution,saturation,temperature,etc.OH-concentration in the precursorsolution is very important for the microstructure. On the basis of previous report about Na0.5Bi0.5TiO3(NBT)nanostructure and NBT nanoparticles and nanowires[33],at lower concentrations of OH-and for a shorter reaction time,only nanoparticles are obtained.,Primary nanoparticles grow and aggregate with the increase of OH-concentration,when the product is picked up freshly,the formation of nanowires begins.When the OH-concentration is further increased,nanowires are obtained accompanied by the disappearance of the spherical particles. Our experimental results are in accordance with the above mechanism.Thus,OH-concentration (i.e.pH value)plays an important role in the hydrothermal process.

    In this work,the condition ofthe alkaline medium as a factor is considered to play a key part in the formation of BMT nanorods.At a lower OH-concentration (OH-concentration:3 mol·L-1),BMT nuclei produced in solution can aggregate to form small particles.These particles may serve as crystal seedstogrow thenanorodsstructure.With the alkaline increase (OH-concentration:8 mol·L-1),a large amount of BMT nuclei produced in the solution leads to formation of the very high supersaturation solution,which favors the formation of rod structure.When OH-concentration is relatively low (OH-concentration:5 mol·L-1),nanorods as well as spherical nanoparticals are obtained because of lower driving force,which come from the lower chemical potential. Hence, the special growth behavior formation of BMT nanorods in the present route is attributed to the highly alkaline medium[34].

    2.1.3 Laser Raman spectrum

    Laser Raman spectrum of BMT sample is shown in Fig.7.Our Raman data on the BMT powder is in agreement with the published results[35].The peak at 716 cm-1is attributed to the symmetric Ti-O stretching vibration,while at 517 cm-1to the asymmetric one;the 306 and 247 cm-1modes are ascribed to the O-Ti-O bendingvibration.TheRaman modesofthe corresponding lower wavenumbers,such as the modes at 185 cm-1,originate mainly from the vibrations between Ba and O atoms.

    2.1.4 UV-Vis diffuse reflectance spectra

    The UV-Vis DRS of the prepared BMT samples are shown in Fig.8.As a comparison,the spectra of N-TiO2and BTO were also measured.The absorption onset wavelength λgof BMT is around 475 nm,which is shifted 20 and 75 nm to visible region compared to BTO and N-TiO2.The band gap energy Egof BMT is calculated to be about 2.61 eV,based on the formula:Eg(eV)=1 239.8/λg(nm)[36],indicating that BMT photocatalysts have a suitable band gap for photocatalytic decomposition of organic contaminants under visible light irradiation.The DRS of BMT photocatalysts have steep shape which indicates that the absorption relevant to the band gap is due to the intrinsic transition of the nanomaterials[37].Furthermore,the absorption edge of BMT0.40 shift red comparedwiththatofBMT0.30,BMT0.20,and BMT0.10,indicating that metal elements doping is one of the typical approaches to extend the spectral response of semiconductor photocatalysts.Thus,the performance of BMT0.40 is better.

    2.1.5 Photoluminescence spectrum

    Fig.9 shows photoluminescence(PL)spectrum of BMT nanorods.It can be seen that BMT has obviously luminous phenomena in the range of 350 to 700 nm under UV irradiation of about 325 nm.The asprepared BMT sample shows the presence of two broad PL bands.The first band is at 437 nm(blue emission),while the second is in the range from 500 to 530 nm(green emissions).It has been reported that there are a large number of surface oxygen vacancy in ZnO nanorods due to their large specific surface area[38].It can be deduced that there also exited surface oxygen vacancy in BMT nanorods and the two emission bands might arise respectively from the excitonic emission and surface-defect[38].

    2.2 Photocatalytic activities of BMT samples

    2.2.1 Degradation of MO using BMTphotocatalysts

    Photodegradation experiments of MO were carried out under visible light irradiation at wavelength about420 nm in orderto testthe photocatalytic performance of BMT photocatalysts.For comparison,the photodegradation of MO by N-doped TiO2,BTO and that without any catalyst were also carried out.Temporal course of the photodegradation of MO in different catalyst aqueous dispersions is shown in Fig.10(a)while the corresponding UV-Vis spectral changes of these solutions are displayed in the inset.The results show that MO solution is stable under visible light irradiation in the absence of any catalyst.It also can be observed that N-TiO2exhibits inefficient photocatalytic degradation with MO decomposition rate of40.0% within 360 min irradiation.In contrast,BMT samples reveal highphotocatalytic activitieswith theMO degradation efficiencies of81.0,84.0,90.0,and 93.0%,respectively,as the doping amount of Mg2+increased.Obviously, BMT0.40 exhibits the highest photocatalytic degradation efficiency among those samples.As shown in Fig.10(a),the photodegradation of MO by BMT0.40 is much higher than that of BTO.Temporal course of the photodegradation of MO by BMT samples prepared at different OH-concentrations is shown in Fig.10(b).It can be seen that BMT nanorods prepared at OH-concentration of 8 mol·L-1show relatively higher photocatalytic degradation efficiency.This result shows that the performance of BMT nanorods without any mixed phase is better.

    2.2.2 Stability of BMT as the photocatalyst

    Fig.11 indicates the XRD patterns of the BMT sample before and after 360 min visible light irradiation.Both the position and the intensity of the peaks in the XRD pattern are almost the same as those of BMT before irradiation.As shown in this result,BMT photocatalystis considered to be relatively stable to visible light irradiation under the present experimental conditions.This result indicates a possibility for application of BMT photocatalyst in the waste water treatment.

    The stability tests were also investigated by carrying out recycling reactions four times for the photodegradation of MO over BMT photocatalyst under visible light irradiation,and the results are shown in Fig.12.No significant decrease in catalytic activity is observed in the recycling reactions.Combined with the XRD patterns,all evidences demonstrate that BMT photocatalyst has good stability.

    2.3 Photocatalytic activity mechanism discussion

    In a typical photodegradation of organic pollutants process, when the semiconductor is irradiated by light,the photoexcited electrons can be transferred to the conduction band (CB)from the valence band (VB)and whilst the holes form in the VB.Then the photoexcited holes in the VB can form·OH (hydroxyl radical)that can oxidize the organic pollutants and the electrons in the CB participate in the reduction process.Some organic pollutants can be oxidized by TiO2photocatalyst[39]and the degradation products are usually CO2and H2O.Based on the above consideration,we presume that the CB of BMT is composed of Ti3d orbital and VB is formed by the hybridized Ba6s and O2p orbitals,and the degradation products are CO2and H2O.The possible photocatalytic mechanism of BMT is established,and a schematic diagram is shown in Fig.13.

    Thus, the photocatalytic activity of the semiconductor is very closely related to its corresponding band structure.The band gap of oxides is generally defined by the O2p level and metal d level[20].The higher photocatalytic activity of BMT over TiO2is attributed to the suitable band gap (2.61 eV)and stable e-h pair formation in the VB formed by the hybrid orbitals of Ba6s and O2p and the CB of Ti3d[18,20].

    3 Conclusions

    Magnesium doped barium titanate(BMT)nanostructures were synthesized by a facile hydrothermal process withoutthe use ofany surfactants or templates.The optical band gap of BMT is estimated tobeabout2.61 eV,which provesthatBMT photocatalysts can respond to the visible light.Besides,based on the structural analysis of samples obtained at different conditions,we also proposed a possible mechanism to account for the formation of these distinctive morphologies.Most importantly,BMT photocatalysts with good stability exhibithigher photocatalytic performance in the degradation of methyl orange under visible light irradiation than that of N-TiO2.

    [1]Ghorai T K,Biswas S K,Pramanik P.Appl.Surf.Sci.,2008,254:7498-7504

    [2]SONG Xu-Chun(宋旭春),ZHENG Yi-Fan(鄭遺凡),CAO Guang-Sheng(曹廣勝),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2005,21(12):1897-1900

    [3]YANG Ya-Hui(楊亞輝),CHEN Qi-Yuan(陳啟元),YIN Zhou-Lan(尹周瀾),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(5):771-777

    [4]YAN Ya(嚴(yán)亞),Lü Ying(呂瑛),XIA Yi(夏怡),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(10):1999-2004

    [5]YU Chang-Lin(余長(zhǎng)林),ZHOU Wan-Qin(周晚琴),YU Jimmy C.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(10):2033-2038

    [6]LI Yue-Jun(李躍軍),CAO Tie-Ping(曹鐵平),WANG Chang-Hua(王長(zhǎng)華),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(10):1975-1980

    [7]Wang H Q,Wu Z B,Liu Y,et al.Chemosphere,2008,74:773-778

    [8]Lu S Y,Wu D,Wang Q L,et al.Chemosphere,2011,82:1215-1224

    [9]Kang S Z,Yang Y K,Bu W B,et al.J.Solid State Chem.,2009,182:2972-2976

    [10]Castro A L,Nunes M R,Carvalho M D,et al.J.Solid State Chem.,2009,182:1838-1845

    [11]Zhang J W,Jin Z S,Feng C X,et al.J.Solid State Chem.,2011,184:3066-3073

    [12]Tian L H,Ye L Q,Deng K J,et al.J.Solid State Chem.,2011,184:1465-1471

    [13]Yu J G,Xiong J F,Cheng B,et al.J.Solid State Chem.,2005,178:1968-1972

    [14]Xu J J,Chen M D,Fu D G.Appl.Surf.Sci.,2011,257:7381-7386

    [15]Su S,Zuo R Z,Lü D Y,et al.Powder Technol.,2012,217:11-15

    [16]Xiao C J,Jin C Q,Wang X H.J.Mater.Process.Technol.,2009,209:2033-2037

    [17]Yao W F,Xu X H,Wang H.Appl.Catal.B:Environ.,2004,52:109-116

    [18]Wang Z Z,Qi Y J,Qi H Y,et al.J.Mater.Sci.:Mater.Electron.,2010,21:523-528

    [19]LI Yue-Jun(李躍軍),CAO Tie-Ping(曹鐵平),WANG Chang-Hua(王長(zhǎng)華),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(10):1975-1980

    [20]Hou J G,Jiao S Q,Zhu H M,et al.J.Solid State Chem.,2011,184:154-158

    [21]Zhou T F,Hu J C.Environ.Sci.Technol.,2010,44:8698-8703

    [22]Cheng H F,Huang B B,Dai Y,et al.J.Solid State Chem.,2009,182:2274-2278

    [23]Xu J J,Chen M D,Fu D G.Appl.Surf.Sci.,2011,257:7381-7386

    [24]Xu J,Wang W Z,Shang M,et al.J.Hazard.Mater.,2011,196:426-430

    [25]Hou J G,Wang Z,Jiao S Q,et al.J.Hazard.Mater.,2011,192:1772-1779

    [26]Hou J G,Cao R,Jiao S Q,et al.Appl.Catal.B:Environ.,2011,104:399-406

    [27]Yu H G,Yu J G,Cheng B.Chemosphere,2007,66:2050-2057

    [28]Wang Z Z,Qi Y J,Qi H Y,et al.J Mater Sci:Mater Electron,2010,21:523-528

    [29]Hou Y D,Wang X C,Wu L,et al.Chemosphere,2008,72:414-421

    [30]Xu Q,Chen S T,Chen W,et al.J.Mater.Sci.,2006,41:6146-6149

    [31]Chen W,Yao X,Wei X Y.J.Mater.Sci.,2008,43:1144-1150

    [32]Hennings D F K,Metzmacher C,Schreinemacher B S.J.Am.Ceram.Soc.,2001,84(1):179-182

    [33]Jiang X P,Lin M,Tu N,et al.J.Alloy.Compd.,2011,509:9346-9350

    [34]Yang J H,Zheng J H,Zhai H J,et al.J.Alloy.Compd.,2009,481:628-631

    [35]Zhang M S,Yu J,Chen W C,et al.Prog.Cryst.Growth Charact.Mater.,2000,33-42

    [36]Liu Z,Xu X X,Fang J Z,et al.Appl.Surf.Sci.,2012,258:3771-3778

    [37]Zhu X Q,Zhang J L,Chen F.Chemosphere,2010,78:1350-1355

    [38]LI Li(李麗),YANG He-Qing(楊合情),MA Jun-Hu(馬軍虎),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2012,28(1):25-29

    [39]LI Ai-Chang(李愛昌),LI Gui-Hua(李桂花),ZHENG Yan(鄭琰),et al.Acta Phys.-Chim.Sin.(Wuli Huaxue Xuebao),2012,28(2):457-464

    Hydrothermal Synthesis and Photocatalytic Properties of Nanostructures Magnesium Doped BaTiO3

    LIN Xue1,2GUAN Qing-Feng*,1LI Hai-Bo3BA Chun-Hua2WANG Dan-Dan2MENG Fan-Jun2
    (1School of Materials Science and Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China)
    (2College of Chemistry,Key Laboratory of Preparation and Application Environmentally Friendly Materials of the Ministry of Education,Jilin Normal University,Siping,Jilin 136000,China)
    (3College of Physics,Jilin Normal University,Siping,Jilin 136000,China)

    Magnesium doped barium titanate photocatalysts(Ba(1-x)MgxTiO3(x=0,0.10,0.20,0.30,0.40),BMT)were synthesized by a facile hydrothermal process without the use of any surfactants or templates and characterized by X-ray diffraction (XRD),field emission scanning electron microscope (FESEM),transmission electron microscope(TEM),and UV-Vis diffuse reflectance spectroscopy(DRS).FESEM results show that different morphologies could be fabricated by simply manipulating the concentrations of hydroxide ions.In this case,hydroxide ions seem to play a key role in controlling the formation of seeds and growth rates of BMT particles.On the basis of structural analysis of samples obtained at different conditions,a possible mechanism for the formation of these distinctive morphologies is proposed.UV-Vis DRS results demonstrate that the band gap of BMT sample is about 2.61 eV.The as-prepared BMT photocatalysts exhibite higher photocatalytic activities for the degradation of methyl orange(MO)under visible light irradiation than that of N-TiO2obtained by the traditional method.Furthermore,BMT nanorods prepared at OH-concentration of 8 mol·L-1show the highest photocatalytic activity.A 93.0%degradation of MO solution(0.01 mmol·L-1)is obtained over this catalyst after visible light irradiation for 360 min.In addition,there is no significant decrease in the photocatalytic activity after 4 recycles,indicating that BMT is a stable photocatalyst for degradation of MO under visible light irradiation.

    barium titanate;Mg-doping;hydrothermal method;photocatalytic degradation;visible light irradiation

    O643

    A

    1001-4861(2012)10-2248-09

    2012-01-20。收修改稿日期:2012-04-24。

    吉林省科技創(chuàng)新課題(No.20090144)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:guanqf@ujs.edu.cn

    猜你喜歡
    鈦酸鋇納米粉體四平
    “搖擺不定”等十三則
    雜文月刊(2022年1期)2022-02-05 00:21:55
    鋯鈦酸鋇陶瓷的Fe摻雜改性與電學(xué)性能研究*
    濕化學(xué)法合成Ba(Mg(1-x)/3ZrxTa2(1-x)/3)O3納米粉體及半透明陶瓷的制備
    三維結(jié)構(gòu)鈦酸鋇陶瓷-樹脂材料制備與介電性能研究
    陶瓷可飽和吸收體用Co:MgAl2O4納米粉體的制備
    納米粉體改性瀝青的流變性能分析
    石油瀝青(2018年4期)2018-08-31 02:29:40
    Y2O3:Er3+和Y2O3:Er3+,Yb3+納米粉體的制備及上轉(zhuǎn)換發(fā)光性能的研究
    鈦酸鋇摻雜鑭陶瓷的電學(xué)性質(zhì)研究
    鈦酸鋇摻雜鑭電子陶瓷制備的研究
    天津化工(2010年3期)2010-09-18 02:55:56
    對(duì)四平保衛(wèi)戰(zhàn)的沉思
    軍事歷史(1996年3期)1996-08-16 03:05:12
    欧美日韩综合久久久久久| 欧美日本中文国产一区发布| 综合色丁香网| 欧美最新免费一区二区三区| 七月丁香在线播放| 麻豆成人av视频| 成年人午夜在线观看视频| 欧美日韩视频精品一区| 日本欧美视频一区| 大片免费播放器 马上看| 久久狼人影院| 嫩草影院入口| 亚洲精品视频女| 久久这里有精品视频免费| 成人18禁高潮啪啪吃奶动态图 | 亚洲自偷自拍三级| 久久国产精品男人的天堂亚洲 | av天堂久久9| 肉色欧美久久久久久久蜜桃| 久久精品国产a三级三级三级| 国产精品一区二区在线不卡| 中文天堂在线官网| 精品亚洲成国产av| 嫩草影院新地址| 69精品国产乱码久久久| 丝袜喷水一区| 久久 成人 亚洲| 欧美bdsm另类| 看十八女毛片水多多多| 特大巨黑吊av在线直播| 国产国拍精品亚洲av在线观看| av.在线天堂| 国产午夜精品一二区理论片| 久久久久网色| 亚洲精品色激情综合| 九九在线视频观看精品| 自线自在国产av| videossex国产| 日本猛色少妇xxxxx猛交久久| 日韩不卡一区二区三区视频在线| 男的添女的下面高潮视频| 亚洲精品中文字幕在线视频 | 久久久亚洲精品成人影院| 亚洲美女搞黄在线观看| 亚洲欧美日韩卡通动漫| 欧美日韩精品成人综合77777| 大香蕉久久网| 国产精品蜜桃在线观看| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 丝袜脚勾引网站| 人人妻人人澡人人看| 久久久国产精品麻豆| 国产爽快片一区二区三区| 国产精品久久久久久精品电影小说| 亚洲国产欧美在线一区| 22中文网久久字幕| 91精品一卡2卡3卡4卡| 最近手机中文字幕大全| 亚洲欧洲国产日韩| 国产欧美亚洲国产| 欧美丝袜亚洲另类| 日韩制服骚丝袜av| 看免费成人av毛片| 精品亚洲乱码少妇综合久久| 伦精品一区二区三区| av在线观看视频网站免费| 少妇的逼水好多| 成人二区视频| 一本大道久久a久久精品| 久久久国产一区二区| 久热久热在线精品观看| 最近最新中文字幕免费大全7| 我的老师免费观看完整版| 伦精品一区二区三区| 国产乱人偷精品视频| 久久 成人 亚洲| 久久久午夜欧美精品| av.在线天堂| www.av在线官网国产| 婷婷色av中文字幕| 妹子高潮喷水视频| 在线看a的网站| 久久精品夜色国产| 亚洲精品国产色婷婷电影| 中文欧美无线码| 中文资源天堂在线| 免费在线观看成人毛片| 9色porny在线观看| 国产真实伦视频高清在线观看| 伦精品一区二区三区| 高清在线视频一区二区三区| 六月丁香七月| 性色avwww在线观看| 99久久综合免费| 亚洲欧洲精品一区二区精品久久久 | 狂野欧美激情性bbbbbb| 午夜91福利影院| 人人澡人人妻人| 一边亲一边摸免费视频| 草草在线视频免费看| a级毛片在线看网站| 久久国产精品大桥未久av | 18禁在线无遮挡免费观看视频| 一级毛片 在线播放| 秋霞伦理黄片| 免费黄网站久久成人精品| 大香蕉97超碰在线| 中文精品一卡2卡3卡4更新| av网站免费在线观看视频| 欧美区成人在线视频| av视频免费观看在线观看| 一本一本综合久久| 久久久久人妻精品一区果冻| 国产黄色免费在线视频| 中文字幕人妻丝袜制服| 成人午夜精彩视频在线观看| 亚洲精品国产av蜜桃| 欧美日韩av久久| 精品少妇久久久久久888优播| 精品国产乱码久久久久久小说| 精品国产一区二区三区久久久樱花| 99久国产av精品国产电影| 日韩av免费高清视频| 夜夜看夜夜爽夜夜摸| 久久精品国产a三级三级三级| 啦啦啦在线观看免费高清www| 一区在线观看完整版| 人妻夜夜爽99麻豆av| 各种免费的搞黄视频| 99久国产av精品国产电影| 嫩草影院新地址| 久久久久久伊人网av| 只有这里有精品99| 少妇高潮的动态图| 亚洲av成人精品一区久久| 久久久久精品性色| 久久精品久久精品一区二区三区| 精品一区二区免费观看| 男女啪啪激烈高潮av片| 国产成人freesex在线| 51国产日韩欧美| 热re99久久国产66热| 欧美国产精品一级二级三级 | 欧美激情极品国产一区二区三区 | 街头女战士在线观看网站| 国产探花极品一区二区| 老熟女久久久| 极品教师在线视频| 婷婷色综合www| 十分钟在线观看高清视频www | 久久鲁丝午夜福利片| 高清毛片免费看| 欧美xxxx性猛交bbbb| videossex国产| 9色porny在线观看| 九色成人免费人妻av| 久久热精品热| av天堂中文字幕网| 80岁老熟妇乱子伦牲交| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 国产av精品麻豆| 国产又色又爽无遮挡免| 中文在线观看免费www的网站| 日韩免费高清中文字幕av| 精品少妇久久久久久888优播| 有码 亚洲区| 亚州av有码| 亚洲av成人精品一二三区| 久久久久久久久久久久大奶| 五月开心婷婷网| a级一级毛片免费在线观看| 亚洲国产精品国产精品| 丝袜脚勾引网站| 在线观看美女被高潮喷水网站| 欧美精品国产亚洲| 欧美丝袜亚洲另类| 精品卡一卡二卡四卡免费| 少妇猛男粗大的猛烈进出视频| 亚洲欧美日韩另类电影网站| 韩国高清视频一区二区三区| 国产精品国产三级国产专区5o| 欧美日韩亚洲高清精品| 日韩一区二区视频免费看| av在线老鸭窝| 午夜视频国产福利| 18+在线观看网站| 国产伦在线观看视频一区| 日日摸夜夜添夜夜添av毛片| 精品人妻熟女毛片av久久网站| 内射极品少妇av片p| 国产精品一区二区三区四区免费观看| 波野结衣二区三区在线| 精品国产一区二区三区久久久樱花| 国产成人精品久久久久久| 久久99一区二区三区| 永久免费av网站大全| 国产真实伦视频高清在线观看| 久久精品国产自在天天线| 亚洲国产av新网站| 啦啦啦在线观看免费高清www| 免费不卡的大黄色大毛片视频在线观看| 国产精品一区二区在线不卡| 丰满乱子伦码专区| 校园人妻丝袜中文字幕| 日本爱情动作片www.在线观看| 高清不卡的av网站| 99热这里只有是精品在线观看| 亚洲,欧美,日韩| 少妇高潮的动态图| av.在线天堂| freevideosex欧美| 美女主播在线视频| 日韩伦理黄色片| 亚州av有码| 搡老乐熟女国产| 偷拍熟女少妇极品色| 黄色毛片三级朝国网站 | 91成人精品电影| tube8黄色片| 日韩在线高清观看一区二区三区| 免费看光身美女| 亚洲国产日韩一区二区| 免费av不卡在线播放| 99视频精品全部免费 在线| 久久热精品热| 欧美日韩精品成人综合77777| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲欧美精品永久| 9色porny在线观看| 精品国产国语对白av| 老司机亚洲免费影院| 久久久久久人妻| 久久久国产欧美日韩av| 国产又色又爽无遮挡免| 女性生殖器流出的白浆| 永久免费av网站大全| 26uuu在线亚洲综合色| 在线观看国产h片| 日本午夜av视频| 五月玫瑰六月丁香| 久久综合国产亚洲精品| 美女内射精品一级片tv| 一级av片app| 国产日韩欧美亚洲二区| 一级毛片aaaaaa免费看小| 久久精品国产亚洲av涩爱| 日本免费在线观看一区| 久久99精品国语久久久| 国产国拍精品亚洲av在线观看| 青青草视频在线视频观看| av国产久精品久网站免费入址| 51国产日韩欧美| av线在线观看网站| 久久毛片免费看一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲欧美一区二区三区黑人 | av福利片在线| 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频| 熟女人妻精品中文字幕| 久久久久久人妻| 日韩在线高清观看一区二区三区| 精品国产一区二区三区久久久樱花| 欧美日韩视频精品一区| 各种免费的搞黄视频| 黄色怎么调成土黄色| 夜夜骑夜夜射夜夜干| 国产日韩欧美视频二区| 中文在线观看免费www的网站| 国产精品.久久久| 欧美精品人与动牲交sv欧美| 91aial.com中文字幕在线观看| 久久久久精品久久久久真实原创| 亚洲欧洲日产国产| 国产免费视频播放在线视频| 国产淫片久久久久久久久| 欧美xxxx性猛交bbbb| 精品亚洲成a人片在线观看| tube8黄色片| 在线精品无人区一区二区三| av.在线天堂| 美女主播在线视频| av一本久久久久| av国产久精品久网站免费入址| 老女人水多毛片| 看十八女毛片水多多多| 国产成人精品久久久久久| 久久精品久久久久久噜噜老黄| 日韩中文字幕视频在线看片| 国产av国产精品国产| 水蜜桃什么品种好| 自线自在国产av| 亚洲欧美日韩东京热| 99视频精品全部免费 在线| 欧美亚洲 丝袜 人妻 在线| 国产精品免费大片| 午夜福利影视在线免费观看| 狠狠精品人妻久久久久久综合| 麻豆成人av视频| 亚洲精品aⅴ在线观看| 九九久久精品国产亚洲av麻豆| 国产男人的电影天堂91| 黄色毛片三级朝国网站 | 成人亚洲欧美一区二区av| 深夜a级毛片| 九色成人免费人妻av| 好男人视频免费观看在线| 欧美xxxx性猛交bbbb| 成年女人在线观看亚洲视频| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲5aaaaa淫片| 国产成人免费观看mmmm| 91精品国产国语对白视频| 中文字幕制服av| 亚洲无线观看免费| 高清午夜精品一区二区三区| 亚洲真实伦在线观看| 五月玫瑰六月丁香| 男男h啪啪无遮挡| 韩国高清视频一区二区三区| 国产一区有黄有色的免费视频| 久久亚洲国产成人精品v| 久久人妻熟女aⅴ| 亚洲欧洲国产日韩| 高清不卡的av网站| 最近2019中文字幕mv第一页| 男人添女人高潮全过程视频| 国产成人精品无人区| 国产精品人妻久久久影院| 亚洲综合精品二区| 大又大粗又爽又黄少妇毛片口| 在线天堂最新版资源| 久久精品久久久久久噜噜老黄| 美女xxoo啪啪120秒动态图| 精品人妻熟女av久视频| 丁香六月天网| 成人亚洲精品一区在线观看| 亚洲欧美精品专区久久| 成人影院久久| 青春草国产在线视频| 蜜桃在线观看..| 亚洲国产精品一区二区三区在线| 日韩大片免费观看网站| 精品久久久精品久久久| 国产乱人偷精品视频| 久久鲁丝午夜福利片| 69精品国产乱码久久久| 欧美日韩视频高清一区二区三区二| 我要看黄色一级片免费的| 亚洲不卡免费看| 看免费成人av毛片| av免费观看日本| 国产av国产精品国产| 少妇人妻久久综合中文| 国产亚洲欧美精品永久| 春色校园在线视频观看| 亚洲国产精品国产精品| h日本视频在线播放| av免费观看日本| 日本爱情动作片www.在线观看| 国产视频内射| 国产在线男女| 亚洲av中文av极速乱| 午夜激情久久久久久久| 男人爽女人下面视频在线观看| 男女无遮挡免费网站观看| 人妻夜夜爽99麻豆av| 日本猛色少妇xxxxx猛交久久| 日本欧美国产在线视频| 中文字幕久久专区| 欧美精品一区二区大全| 大片电影免费在线观看免费| 日韩免费高清中文字幕av| av线在线观看网站| 熟女电影av网| 各种免费的搞黄视频| 大香蕉97超碰在线| 欧美变态另类bdsm刘玥| 日本vs欧美在线观看视频 | 国产在线视频一区二区| 日本午夜av视频| 国产免费视频播放在线视频| 久久精品国产鲁丝片午夜精品| 色94色欧美一区二区| 亚洲国产av新网站| 免费观看的影片在线观看| videos熟女内射| 亚洲欧美一区二区三区黑人 | 日韩av免费高清视频| 国产片特级美女逼逼视频| 99久久精品一区二区三区| 久久免费观看电影| 亚洲av电影在线观看一区二区三区| 国产乱来视频区| 女人久久www免费人成看片| 精品国产一区二区久久| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃 | 久久 成人 亚洲| 国产欧美日韩一区二区三区在线 | 成人午夜精彩视频在线观看| 国内少妇人妻偷人精品xxx网站| 色吧在线观看| 免费在线观看成人毛片| 伦精品一区二区三区| 看非洲黑人一级黄片| 久久国产亚洲av麻豆专区| 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 色吧在线观看| 欧美xxxx性猛交bbbb| 久久精品国产亚洲av涩爱| 欧美精品国产亚洲| 乱系列少妇在线播放| 国产探花极品一区二区| 亚洲伊人久久精品综合| 一本一本综合久久| 久久亚洲国产成人精品v| 26uuu在线亚洲综合色| 久久午夜福利片| 80岁老熟妇乱子伦牲交| 亚洲美女黄色视频免费看| 精品卡一卡二卡四卡免费| 欧美97在线视频| 久久国产乱子免费精品| av卡一久久| 丝袜喷水一区| 最新的欧美精品一区二区| 又粗又硬又长又爽又黄的视频| 国产老妇伦熟女老妇高清| 在线播放无遮挡| 国产一区二区在线观看av| 在线 av 中文字幕| 内射极品少妇av片p| 18禁裸乳无遮挡动漫免费视频| 国产亚洲一区二区精品| 欧美激情极品国产一区二区三区 | 久久久国产欧美日韩av| 国内少妇人妻偷人精品xxx网站| 亚洲色图综合在线观看| 国产亚洲av片在线观看秒播厂| 边亲边吃奶的免费视频| 9色porny在线观看| 国产日韩欧美亚洲二区| 亚洲精品自拍成人| 日本av手机在线免费观看| 新久久久久国产一级毛片| 亚洲精品,欧美精品| 精品久久久精品久久久| 精品一品国产午夜福利视频| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 成年人免费黄色播放视频 | 一区二区三区乱码不卡18| 乱码一卡2卡4卡精品| 男人舔奶头视频| 国产精品久久久久久av不卡| 在线观看免费视频网站a站| 五月伊人婷婷丁香| 亚洲精品日本国产第一区| 日韩,欧美,国产一区二区三区| a级毛色黄片| 精品亚洲成a人片在线观看| av在线观看视频网站免费| 午夜福利影视在线免费观看| 日韩成人伦理影院| 一本色道久久久久久精品综合| 国产精品人妻久久久久久| 如日韩欧美国产精品一区二区三区 | 欧美3d第一页| 国产免费福利视频在线观看| 久久97久久精品| av专区在线播放| 亚洲国产精品专区欧美| 在线观看www视频免费| 寂寞人妻少妇视频99o| 91精品国产国语对白视频| 亚洲人成网站在线观看播放| 久久久久久久久大av| 欧美成人精品欧美一级黄| 久久久久久久久久久久大奶| 好男人视频免费观看在线| 尾随美女入室| 黑人高潮一二区| 国模一区二区三区四区视频| 另类精品久久| 成人毛片a级毛片在线播放| 午夜福利影视在线免费观看| 久久精品国产亚洲av涩爱| 中文精品一卡2卡3卡4更新| 中文字幕制服av| 亚洲精品日韩在线中文字幕| 国产在视频线精品| 伦精品一区二区三区| 大片电影免费在线观看免费| 丝袜喷水一区| 欧美bdsm另类| 国产精品99久久99久久久不卡 | 日韩欧美精品免费久久| 亚洲,欧美,日韩| 国产男女内射视频| 十八禁高潮呻吟视频 | 亚洲欧美日韩另类电影网站| 插逼视频在线观看| 国产av国产精品国产| 成人午夜精彩视频在线观看| 极品人妻少妇av视频| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 欧美激情国产日韩精品一区| 久久久国产一区二区| av在线app专区| 少妇人妻 视频| 丰满饥渴人妻一区二区三| 国产免费一级a男人的天堂| 亚洲婷婷狠狠爱综合网| 尾随美女入室| 男女国产视频网站| 99热这里只有是精品50| 日韩伦理黄色片| 久热久热在线精品观看| 2022亚洲国产成人精品| 在线 av 中文字幕| 老司机影院毛片| 日韩成人av中文字幕在线观看| 免费看不卡的av| 男女边吃奶边做爰视频| 午夜影院在线不卡| 国产精品无大码| 韩国av在线不卡| 寂寞人妻少妇视频99o| 欧美 亚洲 国产 日韩一| 欧美+日韩+精品| 国产高清国产精品国产三级| 美女中出高潮动态图| 欧美日韩精品成人综合77777| 免费在线观看成人毛片| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区| 日本黄大片高清| 精品卡一卡二卡四卡免费| 成年人免费黄色播放视频 | 亚洲精品成人av观看孕妇| 精品人妻偷拍中文字幕| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 人人妻人人添人人爽欧美一区卜| 一级爰片在线观看| 自拍偷自拍亚洲精品老妇| 美女cb高潮喷水在线观看| 国产男女超爽视频在线观看| 高清不卡的av网站| 免费看光身美女| 国产男女内射视频| 亚洲av综合色区一区| 一级,二级,三级黄色视频| 亚洲综合精品二区| 久久久国产欧美日韩av| 精品久久久久久电影网| 自线自在国产av| 日韩精品有码人妻一区| 欧美日韩亚洲高清精品| 哪个播放器可以免费观看大片| a级毛色黄片| av播播在线观看一区| 韩国av在线不卡| 这个男人来自地球电影免费观看 | 亚洲精品久久久久久婷婷小说| 久久精品久久久久久久性| 成人国产麻豆网| 在线观看一区二区三区激情| 亚洲欧洲日产国产| 在线免费观看不下载黄p国产| 国产永久视频网站| 日本欧美国产在线视频| 亚洲欧美精品自产自拍| 亚洲欧美清纯卡通| 免费观看av网站的网址| 2021少妇久久久久久久久久久| 色网站视频免费| 一本大道久久a久久精品| 插逼视频在线观看| 久久国内精品自在自线图片| 肉色欧美久久久久久久蜜桃| 免费观看的影片在线观看| 制服丝袜香蕉在线| 亚洲国产色片| 国内少妇人妻偷人精品xxx网站| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 亚洲人与动物交配视频| 这个男人来自地球电影免费观看 | 欧美日韩在线观看h| 纯流量卡能插随身wifi吗| 又大又黄又爽视频免费| 黑人巨大精品欧美一区二区蜜桃 | 免费黄网站久久成人精品| 精品国产乱码久久久久久小说| 精品99又大又爽又粗少妇毛片| 精品国产乱码久久久久久小说| av线在线观看网站| 中国三级夫妇交换| 中文字幕久久专区| 黑人猛操日本美女一级片| 日韩在线高清观看一区二区三区| 亚洲情色 制服丝袜| 高清视频免费观看一区二区| 日日爽夜夜爽网站| 插逼视频在线观看| 亚洲精品日本国产第一区|