• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NOVEL DESIGN OF COMPOSITE WATER TURBINE USING CFD*

    2012-05-11 06:54:38WANGJifengPIECHNAJanuszLLERNorbert

    WANG Ji-feng, PIECHNA Janusz, MüLLER Norbert

    Turbomachinery Laboratory, Department of Mechanical Engineering, Michigan State University, East Lansing, USA, E-mail: jwang94@illinois.edu

    A NOVEL DESIGN OF COMPOSITE WATER TURBINE USING CFD*

    WANG Ji-feng, PIECHNA Janusz, MüLLER Norbert

    Turbomachinery Laboratory, Department of Mechanical Engineering, Michigan State University, East Lansing, USA, E-mail: jwang94@illinois.edu

    (Received May 22, 2011, Revised September 15, 2011)

    This paper presents computational investigation of a novel design of composite material axial water turbine using Computational Fluid Dynamics (CFD). Based on three-dimensional numerical flow analysis, the flow characteristics through the water turbine with nozzle, wheel and diffuser are predicted. The extract power and torque of a composite water turbine at different rotating speeds were calculated and analyzed for a specific flow speed. The simulation results show that using nozzle and diffuser can increase the pressure drop across the turbine and extract more power from available water energy. These results provide a fundamental understanding of the composite water turbine, and this design and analysis method is used in the design process.

    water turbine, composite material, Computational Fluid Dynamics (CFD), extracted power

    Introduction

    Hydropower, the energy from moving water, is one of the oldest renewable energy sources and the total global electric power capacity of hydropower, including large hydropower, small hydropower, and ocean power, was approximately 820 GW in 2005, which accounted for almost 20% of the renewable energies[1]. In 2003, the world- first commercial-scale marine current turbine with a 300 kW rated power was successfully installed by Marine Current Turbines (MCT) Ltd and IT-Power[2]. Myers and Bahaj[3]tested a 0.4 m diamater horizontal axis marine current turbine in a circulating water channel and measured the power output over a range of flow speeds, and the results were comparable to previous studies. Canadian National Research Council Hydraulics, Energy, Mines and Resources designed and tested a straight bladed darrieus rotor set with an installed capacity of 5 kW[4]. However, sub-marine structures have to withstand the notoriously aggressive marine environment with its corrosive salt water, fouling growth and abrasive suspended particles. Traditionally, steel has been used to produce marine rotors with the stiffness required to combat yielding, however, it is very expensive to achieve the necessary compound-curved profile in steel. In addition, steel is heavy, prone to fatigue and susceptible to corrosion induced by salt water. These disadvantages prompted a decision to adopt composites instead[5]. Advanced composite materials are broadly used in water turbine application because of their high strength to weight ratios and high corrosion resistance, which are expected to be the key to the success for these devices to operate in the harsh marine environment. A novel manufacturing approach similar to filament winding is able to produce the automated composite wheels in different possible patterns in Turbomachinery Lab at Michigan State University (MSU) (Fig.1)[6].

    Fig.1 Different patterns of wound wheels

    The advantage of using filament winding method to manufacture high performance and light-weight composite wheels is that the production can be rapid, inexpensive and utilize commercially available winding machines[7]. Another important advantage of using this novel pattern of wheel is that by using integrated magnetic rotor it will achieve a minimal impact on underwater life forms. Most marine creatures will be able to pass through the center of the wheel avoiding the blades. To extract more water power, we designed a ducted turbine and performed the simulation. There are some major advantages by using diffuser-augmented marine current turbines[8]: (1) A diffuser placed behind the wheel can reduce the downstream pressure and draw in more flow for a given sized turbine. (2) A large inflow area containing a large amount of energy is concentrated into a smaller area so that a smaller turbine can be used for a given power output. (3) The duct eliminates tip losses on axial flow turbine blades and improves its efficiency.

    To understand the hydrodynamic performance of this totally untypical wheel as a water turbine, as well as the influence of the wheel’s rotating speed on the power output, numerical approach was performed using Computational Fluid Dynamics (CFD). The extracted power and torque were calculated at different rotating speeds in a specific flow speed. Static pressure distribution on computational domain and turbine was given to evaluate the turbine’s characteristics.

    Fig.2 A multiple axis winding machine and a schematic representation of fiber wetting and wounding

    1. Novel composite material water turbine

    1.1 Novel concept of the turbine

    The invention at MSU can be realized by a lowcost flexible and fully automatic manufacturing method using commercially available CNC machines shown in Fig.2 for filament winding of the turbo-compressor wheels.

    These machines can be used for rapid-prototyping and mass-production. They integrate conveniently into CAD/CAM systems. During or after the winding process, the support structure can either be removed or remain in the wheel as a structural element, especially if the support is of a magnetic material and used as an electromagnetic element of an integrated motor or bearing. In this and other ways, motor and bearing elements can be integrated during the winding -all in one production step. Depending on the size and sophistication, one wheel may cost even less than ten dollars.

    Fig.3 Free-stream flow direction

    1.2 Working condition of the turbine

    In this work the turbine was simulated in a free stream velocity with 5 m/s which was chosen according to the near future test condition. The turbine will be tested by mounting it in a moving carriage and driving it at a steady speed, in still water. This is equivalent to mounting the turbine under a fixed pontoon in moving water. The rotating speed of the turbine can be changed corresponding to the different extracted torques and powers, and the optimal rotating speed will be chosen based on the maximum power generation. The free-stream flow direction is from nozzle to diffuser as shown in Fig.3.

    Table 1 Main parameters of the modeled turbine

    1.3 Turbine design

    The turbine wheel parameters were constrained by the dimensions of the water tow tank where the testing will be preformed in the near future. The parameters of modeled turbine in this study are shown in Table 1.

    Fig.4 Composite material wheel

    1.3.1 Influence of the blade number

    During the performance analysis of a water turbine, blade number is one of important design parameters. If the blade number is too great, the crowding out effect phenomenon at the turbine is serious and the increase of interface between free stream and blade will cause the increment of hydraulic loss, while if the blade number is too small, the diffuser loss will increase with the growth of diffuse extent of flow passage[9]. Of the many different patterns shown in Fig.1 designed by Eyler[10], one pattern with the greatest potential of structure stability and fluid dynamic performance has been selected for the marine current turbine shown in Fig.4[11]. To achieve a minimal impact on underwater life forms, without using an external shaft, this wheel can be actuated from a magnetic force between poles in the outer shroud and coil poles on a stationary device surrounding the wheel and housing[7]. The selected wheel pattern with 8 blades shown in Fig.4 gives most uniform distribution of free space for marine creatures to go through its central area. In our design process, we want to take into account not only the power generation, but also the environmental influence and the totally untypical wheel pattern with 8 blades gives us the most promising solution.

    1.3.2 Influence of the blade angles

    The analysis of influence of blade angles on extracted power has been made in a wide range of angles (from 25oto 60oas shown in Fig.5) to find the relation between the power generation and blade angles. Taking into account of safety factors, we have limited the wheel’s tip speed to 5 m/s. Because of this, we have chosen the rotating speed 20 RPM as the closest speed to this limit. Since we want to connect the water turbine generator to electric net which requires a constant rotational speed of turbine wheel, we concentrated our investigation on the water stream velocity as 5 m/s, which is achieved on the testing frame in the near future water tow tank, and rotational speed of turbine wheel as 20 RPM (electric output frequency is 60 Hz which is achieved by the gear between the generator and turbine wheel).

    Fig.5 Normalized extracted power variation with rotating speed for different blade angles

    Fig.6 Modeling of wound turbine wheel

    2. Numerical simulation of the turbine flow

    2.1 Geometry modeling and grid preprocessing

    In this study, the preprocess including model and non-structure mesh generation was completed in NX and GAMBIT. The modeling of a wound turbine wheel is shown in Fig.6.

    In order to accurately simulate the flow in a turbine passage, further mesh refinement of the turbine is required. The meshing sizes in the turbine are strictly controlled and particular refinements have been made. In all CFD simulations, a mesh dependence test is important in order to check the convergence of the computationl results with respect to spatial resolution[12]. The mesh dependence test is performed by refining the mesh to its final configuration shown in Fig.7 that has been selected for the analysis.

    2.2 Governing equations

    CFD is fundamentally based on the governing equations of fluid dynamics. They represent mathematical statements of the conservation laws of physics,where the following physical laws are adopted:

    (1) Mass is conserved for the incompressible fluid at steady state as

    (2) For the fluid analysis of the entire turbine at steady state, the Navier-Stokers equations are used in the following form

    Fig.7 Meshing of computational domain

    2.3 Boundary conditions and solving procedures

    Since the working fluid is ocean water, the CFD simulations were calculated based on assumptions as follows: (1) incompressible flow, (2) steady state flow, (3) smooth walls with no-slip boundary condition. Boundary conditions were set as follows: velocity at inlet and pressure at outlet, interfaces between nozzle, wheel and diffuser, and symmetry boundary conditions for the side walls[13]. In Fluent, no defining surfaces are considered walls. Since the Navier-Stokes equations are solved inside the domain, no-slip boundary condition is applied to all walls in the domain[14]. Therefore, at all surfaces the flow velocities in three directions u = v = w = 0 .

    Modeling the wheel rotation is complex as the relative motion between the rotating wheel and the stationary fluid zone causes a cyclic variation of the solution domain. Sliding Mesh (SM) is one of commonly used modeling methods. By using the SM model, the wheel region can slide relative to the other regions in discrete time steps and using implicit/explicit interpolation of data at successive time-steps[15,16]. In this paper, the SM model was used to obtain more accurate results of the actual phenomena of the wheel rotation.

    Reliable results can be given only by a well converged, posed and grid independent simulation. Convergence is determined by the order of magnitude of the residues. It should be noted that convergence criteria must assure that the results do not change as the iterations proceed. In this study, the mass flow rate and momentum change for the convergence tolerance 10–4were monitored, and when they stay at a certain number and do not change as the iterations continue, it can be stated that the solution has converged.

    Fig.8 Static pressure distribution on turbine

    Fig.9 Static pressure distribution in the computational domain

    3. Results and discussion

    3.1 Static pressure and velocity distribution

    To extract energy from the water, a thrust force T directed upstream must be generated. On this axial marine current turbine, the thrust is obtained by rotating blades, which create a pressure drop across the turbine. The ideal extracted power, which is not what would actually be recovered at the shaft, is the product of the water flow through the turbine and the pressure drop across the turbine[12]. Figure 8 shows the static pressure distribution on the turbine, in which it is seen that the pressure is higher on the turbine front.

    Figure 9 shows the static pressure distribution on the whole computational domain, in which it is observed that the pressure drop is increased due to the nozzle and diffuser.

    Fig.10 Velocity contours in the computational domain

    Fig.11 Velocity vectors in the computational domain (upper) and on turbine (bottom)

    Figure 10 shows the velocity contour in the computational domain, in which it is seen that the water velocity is increased just before entering into the turbine due to the nozzle’s effect. Figure 11 shows the velocity vectors in the computational domain and turbine.

    Fig.12 Variation of extracted torque with rotating speed of turbine at inlet flow speed of 5 m/s

    3.2 Influence of the rotating speed

    Figure 12 shows the extracted torque variation in a free stream of water with various hydrodynamic flow conditions. The maximum extracted torque is 190 kNm. For a specific water flow speed, different rotating speeds of the turbine are simulated. From this figure, it can be observed that the torque decreases with rotating speed in a quasi-linear fashion for a specific water flow speed. Torque also decreases with flow speed for a specific rotating speed.

    Fig.13 Extracted power variation with rotating speed of turbine at inlet flow speed of 5 m/s

    Figure 13 shows the variation of extracted power in a free stream of water with various hydrodynamic flow conditions. The maximum extracted power is 220 kW. This figure indicates that for a specific water flow speed, the extracted power increases with rotating speed until obtaining a maximum power, at which further increases in rotating speed serve to reduce the amount of power extraction. To extract the possible maximum power, the water turbine should be working at a suitable rotating speed. For a specific rotating condition, the power is dependent on the water flowspeed, e.g., it increases with the water flow speed.

    4. Conclusion

    A novel manufacturing approach similar to filament winding has been developed and is able to produce the composite material water turbine, which have significant advantages over traditional designs. In order to use this totally untypical wheel to succeed in extracting ocean current energy, a CFD simulation using Fluent has been performed. The simulation results show that using nozzle and diffuser can increase the pressure drop and extract more power from available water energy. The torque decreases with rotating speed in a quasi-linear fashion for a specific water flow speed, the extracted power increases with rotating speed until obtaining a maximum power, so the water turbine should be working at a suitable rotating speed for the maximum power output. These results provide a fundamental understanding of the composite water turbine, and this design and analysis method is used to determine the turbine’s performance. The future work is testing the turbine by mounting it in a moving carriage and driving it at a steady speed in still water to simulate the free stream and validate the numerical results.

    [1] YUN S., SEUNG H. and KIM J. Optimization of cycloidal water turbine and the performance improvement by individual blade control[J]. Applied Energy, 2009, 86(9): 1532-1540.

    [2] PONTA F., JACOVKIS P. Marine-current power generation by diffuser-augmented floating hydro-turbines[J]. Renewable Energy, 2008, 33(4): 665-673.

    [3] MYERS L., BAHAJ A. Power output performance characteristics of a horizontal axis marine current turbine[J]. Renewable Energy, 2006, 31(2): 197-208.

    [4] PONTA F., DUTT G. An improved vertical-axis water current turbine incorporating a channeling device[J]. Renewable Energy, 2000, 20(2): 223-241.

    [5] MARSH G. Tidal turbine harnesses the power of the sea[J]. Renewable Energy, 2004, 48(5): 44-47.

    [6] WANG J., LI Q. B. and MüLLER N. Mechanical and optimization analyses for novel wound composite axial impeller[C]. Proc. ASME 2009 International Mechanical Engineering Congress and Exposition. Lake Buena Vista, Florida, USA, 2009, IMECE 2009-12938.

    [7] WANG J., MüLLER N. Numerical investigation on composite material marine current turbine using CFD[J]. Central European Journal of Engineering, 2011, 1(4): 334-340.

    [8] KIRKE B., LAZAUSKAS L. Variable pitch darrieus water turbines[J]. Journal of Fluid Science and Technology, 2008, 3(3): 430-438.

    [9] LIU Houlin, WANG Yong and YUAN Shouqi et al. Effects of blade number on characteristics of centrifugal pumps[J]. Chinese Journal of Mechanical Engineering, 2010, 23(6): 742-747(in Chinese).

    [10] EYLER A., MüLLER N. Simulation and production of wound impellers[C]. Proc. ASME 2008 International Mechanical Engineering Congress and Exposition. Boston, USA, 2008, IMECE 2008-51310.

    [11] WANG J., VAGANI M. and MüLLER N. Design of composite water turbine in free stream using CFD[C]. Proc. ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, Canada, 2010, IMECE 2010-39763.

    [12] SAEED R., GALYBIN A. and POPOV V. Modelling of flow-induced stresses in a Francis turbine runner[J]. Advances in Engineering Softwares, 2010, 41(12): 1245-1255.

    [13] HONG Fang-wen, Dong Shi-tang. Numerical analysis for circulation distribution of propeller blade[J]. Journal of Hydrodynamics, 2010, 22(4): 488-493.

    [14] HONG Fang-wen, Dong Shi-tang. Numerical simulation of the structure of propeller’stip vortex and wake[J]. Journal of Hydrodynamics, 2010, 22 (5 Suppl.): 457-461.

    [15] DEGLON D., MEYER C. CFD modeling of stirred tanks: Numerial considerations[J]. Minerals Engineering, 2006, 19(10): 1059-1068.

    [16] ZHANG De-sheng, SHI Wei-dong and CHEN Bin et al. Unsteady flow analysis and experimental investigation of axial-flow pump[J]. Journal of Hydrodynamics, 2010, 22(1): 35-43.

    10.1016/S1001-6058(11)60213-8

    * Biography: WANG Ji-feng (1979-), Male, Ph. D. Candidate

    MüLLER Norbert,

    E-mail: Mueller@egr.msu.edu

    2012,24(1):11-16

    久99久视频精品免费| 最近在线观看免费完整版| or卡值多少钱| 国产精品精品国产色婷婷| 国产亚洲欧美在线一区二区| 亚洲av免费在线观看| 99久久精品热视频| 午夜a级毛片| 久久精品夜夜夜夜夜久久蜜豆| 少妇丰满av| 国产不卡一卡二| 欧美在线黄色| 久久精品国产自在天天线| 久久精品国产亚洲av香蕉五月| 日韩 欧美 亚洲 中文字幕| 国产真实伦视频高清在线观看 | 欧美激情在线99| 18禁美女被吸乳视频| 国产一区二区三区在线臀色熟女| 亚洲内射少妇av| 五月玫瑰六月丁香| 美女黄网站色视频| 亚洲激情在线av| 中文字幕人妻丝袜一区二区| 搡女人真爽免费视频火全软件 | 婷婷亚洲欧美| 在线播放无遮挡| 欧美高清成人免费视频www| 免费av观看视频| 国产亚洲精品av在线| 国内久久婷婷六月综合欲色啪| 老司机午夜福利在线观看视频| 97超级碰碰碰精品色视频在线观看| 一本一本综合久久| 国产亚洲av嫩草精品影院| 久久午夜亚洲精品久久| 日韩高清综合在线| 嫩草影院入口| 国产精品久久视频播放| 99riav亚洲国产免费| 男插女下体视频免费在线播放| 亚洲五月天丁香| 久久亚洲真实| 日日干狠狠操夜夜爽| 九九热线精品视视频播放| 有码 亚洲区| 亚洲av日韩精品久久久久久密| 丰满人妻一区二区三区视频av | 舔av片在线| 国产精品精品国产色婷婷| 俄罗斯特黄特色一大片| 国产黄色小视频在线观看| 最近视频中文字幕2019在线8| 日本免费a在线| 国产高清有码在线观看视频| 69人妻影院| 免费搜索国产男女视频| 欧美xxxx黑人xx丫x性爽| 亚洲精品影视一区二区三区av| 18禁裸乳无遮挡免费网站照片| 午夜福利视频1000在线观看| 免费观看的影片在线观看| 毛片女人毛片| 精品熟女少妇八av免费久了| 成年免费大片在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲在线自拍视频| 免费人成在线观看视频色| 日日夜夜操网爽| a级一级毛片免费在线观看| 真人做人爱边吃奶动态| 免费av观看视频| 欧美激情久久久久久爽电影| 欧美日韩瑟瑟在线播放| 国产精品久久久久久久电影 | 母亲3免费完整高清在线观看| 欧美成人性av电影在线观看| 久久亚洲真实| 1024手机看黄色片| 日韩有码中文字幕| 99久久精品国产亚洲精品| 蜜桃亚洲精品一区二区三区| 亚洲av不卡在线观看| 午夜福利成人在线免费观看| 最近最新中文字幕大全电影3| 脱女人内裤的视频| 亚洲午夜理论影院| 成人高潮视频无遮挡免费网站| 少妇熟女aⅴ在线视频| 变态另类成人亚洲欧美熟女| 国产一区二区三区视频了| 两个人的视频大全免费| av天堂在线播放| 村上凉子中文字幕在线| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费观看网址| 久久精品影院6| 久久久国产精品麻豆| 亚洲av第一区精品v没综合| 午夜老司机福利剧场| 男人和女人高潮做爰伦理| 99在线视频只有这里精品首页| 欧美日韩福利视频一区二区| 亚洲欧美激情综合另类| 成人鲁丝片一二三区免费| 国产又黄又爽又无遮挡在线| 怎么达到女性高潮| 在线国产一区二区在线| 少妇熟女aⅴ在线视频| 黄色日韩在线| 国产精品久久久久久久电影 | 黄片大片在线免费观看| 午夜福利视频1000在线观看| 国产真实乱freesex| 亚洲人与动物交配视频| 国产成人欧美在线观看| 亚洲国产中文字幕在线视频| 精品一区二区三区av网在线观看| 午夜日韩欧美国产| 成年版毛片免费区| 国产一级毛片七仙女欲春2| 久久久久亚洲av毛片大全| 久久人人精品亚洲av| 丁香欧美五月| 18禁国产床啪视频网站| 亚洲18禁久久av| 国产精品自产拍在线观看55亚洲| 两个人视频免费观看高清| 亚洲成av人片免费观看| 免费在线观看成人毛片| 女人被狂操c到高潮| 在线播放国产精品三级| 成人18禁在线播放| 亚洲天堂国产精品一区在线| 一区二区三区国产精品乱码| 网址你懂的国产日韩在线| 日本免费一区二区三区高清不卡| 97人妻精品一区二区三区麻豆| 午夜免费观看网址| 久久精品影院6| 欧美激情在线99| 免费观看的影片在线观看| 夜夜夜夜夜久久久久| 欧美中文综合在线视频| av专区在线播放| 成人国产综合亚洲| 日韩欧美国产一区二区入口| 搡女人真爽免费视频火全软件 | 亚洲av成人不卡在线观看播放网| 日韩人妻高清精品专区| 每晚都被弄得嗷嗷叫到高潮| av天堂中文字幕网| 婷婷精品国产亚洲av| 国产精品国产高清国产av| 在线观看av片永久免费下载| av国产免费在线观看| 国产国拍精品亚洲av在线观看 | 亚洲一区高清亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 色综合婷婷激情| 中文亚洲av片在线观看爽| 色在线成人网| 男女床上黄色一级片免费看| 天美传媒精品一区二区| 高清毛片免费观看视频网站| 桃色一区二区三区在线观看| www.熟女人妻精品国产| 亚洲无线观看免费| 国产爱豆传媒在线观看| avwww免费| 久久久国产精品麻豆| 亚洲五月天丁香| www国产在线视频色| 9191精品国产免费久久| 人妻夜夜爽99麻豆av| 国产精品一及| 亚洲av一区综合| 国产美女午夜福利| svipshipincom国产片| 9191精品国产免费久久| 动漫黄色视频在线观看| av欧美777| 久久久精品欧美日韩精品| 最后的刺客免费高清国语| 亚洲一区高清亚洲精品| 成人欧美大片| 激情在线观看视频在线高清| 欧美+亚洲+日韩+国产| 免费高清视频大片| 色播亚洲综合网| 99热6这里只有精品| 国产精品一区二区免费欧美| 内射极品少妇av片p| 两个人的视频大全免费| 99久久精品热视频| 久久久久久久精品吃奶| 欧美日韩一级在线毛片| 熟女少妇亚洲综合色aaa.| 亚洲成av人片在线播放无| 熟女电影av网| 日韩 欧美 亚洲 中文字幕| 免费观看人在逋| tocl精华| 99久久综合精品五月天人人| 高潮久久久久久久久久久不卡| 一本综合久久免费| 国内精品美女久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲熟妇熟女久久| 久久6这里有精品| 日韩有码中文字幕| 久久国产精品人妻蜜桃| 老司机深夜福利视频在线观看| 人妻夜夜爽99麻豆av| 国产主播在线观看一区二区| 舔av片在线| 1024手机看黄色片| 级片在线观看| 国产精品亚洲美女久久久| 久久香蕉精品热| 午夜福利18| 99精品欧美一区二区三区四区| 午夜亚洲福利在线播放| 真人一进一出gif抽搐免费| 99热这里只有精品一区| 真人做人爱边吃奶动态| 成人国产综合亚洲| 国产三级中文精品| 黄片小视频在线播放| 啪啪无遮挡十八禁网站| 精品无人区乱码1区二区| 在线播放国产精品三级| 国产成+人综合+亚洲专区| 欧美区成人在线视频| 亚洲精品在线观看二区| 色综合亚洲欧美另类图片| 国产黄色小视频在线观看| 精品熟女少妇八av免费久了| av黄色大香蕉| 成人高潮视频无遮挡免费网站| 精品人妻1区二区| АⅤ资源中文在线天堂| 久久6这里有精品| 国产69精品久久久久777片| 99热这里只有是精品50| 18禁裸乳无遮挡免费网站照片| 成人性生交大片免费视频hd| 最新美女视频免费是黄的| 亚洲色图av天堂| 欧美在线黄色| 免费大片18禁| 黄色片一级片一级黄色片| 怎么达到女性高潮| 国产精品久久久久久久电影 | 麻豆成人午夜福利视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丁香欧美五月| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区亚洲精品在线观看| 亚洲午夜理论影院| 国产精品国产高清国产av| 每晚都被弄得嗷嗷叫到高潮| 国产一级毛片七仙女欲春2| 激情在线观看视频在线高清| 日韩中文字幕欧美一区二区| 欧美黑人欧美精品刺激| 亚洲五月天丁香| 精品日产1卡2卡| 小蜜桃在线观看免费完整版高清| 亚洲中文字幕一区二区三区有码在线看| 色综合亚洲欧美另类图片| 欧美成人性av电影在线观看| 成人鲁丝片一二三区免费| 久久久久免费精品人妻一区二区| 男人舔奶头视频| 久久久久久国产a免费观看| 亚洲最大成人手机在线| 黄色丝袜av网址大全| 亚洲专区国产一区二区| 国产精品香港三级国产av潘金莲| 51午夜福利影视在线观看| 最新在线观看一区二区三区| 欧美日本视频| 国产精品综合久久久久久久免费| 久久久久久久久大av| 欧美成人a在线观看| 色av中文字幕| 成年版毛片免费区| 五月伊人婷婷丁香| 天天添夜夜摸| 色视频www国产| 亚洲成av人片在线播放无| 国产精品久久久久久亚洲av鲁大| 国产黄a三级三级三级人| 成人av在线播放网站| 免费一级毛片在线播放高清视频| av在线蜜桃| 亚洲内射少妇av| 99精品久久久久人妻精品| 99热精品在线国产| 国产一级毛片七仙女欲春2| 亚洲,欧美精品.| 免费搜索国产男女视频| 亚洲国产中文字幕在线视频| av福利片在线观看| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 老司机午夜十八禁免费视频| 精品久久久久久久人妻蜜臀av| 久久久久亚洲av毛片大全| 乱人视频在线观看| 别揉我奶头~嗯~啊~动态视频| 天天躁日日操中文字幕| 久久精品91无色码中文字幕| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| www.色视频.com| 免费观看的影片在线观看| 黑人欧美特级aaaaaa片| 欧美三级亚洲精品| 19禁男女啪啪无遮挡网站| 少妇人妻精品综合一区二区 | 国产一区二区在线观看日韩 | 亚洲人与动物交配视频| 天堂网av新在线| 国产成+人综合+亚洲专区| 女人高潮潮喷娇喘18禁视频| 国产精品精品国产色婷婷| 亚洲国产色片| 国产av麻豆久久久久久久| 国产爱豆传媒在线观看| 亚洲熟妇熟女久久| 一级作爱视频免费观看| 美女被艹到高潮喷水动态| 中文亚洲av片在线观看爽| 宅男免费午夜| 国产精华一区二区三区| 真实男女啪啪啪动态图| 久久香蕉精品热| 国产欧美日韩精品亚洲av| 99在线视频只有这里精品首页| 丁香六月欧美| 欧美一区二区精品小视频在线| 九九热线精品视视频播放| 97超级碰碰碰精品色视频在线观看| 一个人看视频在线观看www免费 | 亚洲五月天丁香| 国产精品永久免费网站| 在线观看66精品国产| 97超视频在线观看视频| 男插女下体视频免费在线播放| 尤物成人国产欧美一区二区三区| 国产老妇女一区| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 免费观看精品视频网站| 国产午夜福利久久久久久| 国产成人福利小说| 一级黄片播放器| 熟妇人妻久久中文字幕3abv| 搡老岳熟女国产| 国产高清有码在线观看视频| 99久久成人亚洲精品观看| 亚洲精品一卡2卡三卡4卡5卡| 高清日韩中文字幕在线| 青草久久国产| 成人一区二区视频在线观看| av在线蜜桃| 国产一区二区在线av高清观看| 在线免费观看不下载黄p国产 | 国产欧美日韩精品亚洲av| 国产精品嫩草影院av在线观看 | 欧美三级亚洲精品| 男女做爰动态图高潮gif福利片| 国产精华一区二区三区| 国产欧美日韩精品一区二区| 日韩精品青青久久久久久| 国产精品爽爽va在线观看网站| aaaaa片日本免费| 婷婷亚洲欧美| АⅤ资源中文在线天堂| 亚洲第一欧美日韩一区二区三区| 黄色成人免费大全| 国产国拍精品亚洲av在线观看 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲欧美精品综合久久99| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 日本一二三区视频观看| av专区在线播放| 国产真实伦视频高清在线观看 | 欧美日韩精品网址| 日韩欧美三级三区| 午夜精品久久久久久毛片777| 欧美日本视频| www.色视频.com| 非洲黑人性xxxx精品又粗又长| 天天一区二区日本电影三级| 黄片小视频在线播放| 少妇人妻精品综合一区二区 | 悠悠久久av| 精品久久久久久久毛片微露脸| 久久久国产成人精品二区| 国产黄片美女视频| 天堂动漫精品| 亚洲一区高清亚洲精品| 又黄又爽又免费观看的视频| 黄色女人牲交| 国产精华一区二区三区| 韩国av一区二区三区四区| 18禁黄网站禁片免费观看直播| 亚洲五月天丁香| 成人欧美大片| 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 国产精品久久久久久久久免 | 男女那种视频在线观看| 亚洲乱码一区二区免费版| 欧美成人性av电影在线观看| 最新美女视频免费是黄的| 国产野战对白在线观看| 久久精品91无色码中文字幕| 在线国产一区二区在线| 久久这里只有精品中国| 国产精品嫩草影院av在线观看 | 最好的美女福利视频网| 久久香蕉国产精品| 欧美另类亚洲清纯唯美| 熟女电影av网| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 国产av在哪里看| 十八禁人妻一区二区| 国产探花在线观看一区二区| 亚洲精品在线观看二区| 在线观看午夜福利视频| 国产亚洲精品综合一区在线观看| 男女下面进入的视频免费午夜| 成人性生交大片免费视频hd| 日韩精品中文字幕看吧| 90打野战视频偷拍视频| 国产亚洲精品一区二区www| 亚洲精品在线美女| 极品教师在线免费播放| 日韩欧美国产在线观看| 亚洲精品亚洲一区二区| 亚洲欧美日韩卡通动漫| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 亚洲欧美一区二区三区黑人| 最新美女视频免费是黄的| 91字幕亚洲| 午夜老司机福利剧场| 波多野结衣巨乳人妻| 日韩欧美精品v在线| 国产精品 国内视频| 99热精品在线国产| 精华霜和精华液先用哪个| 99在线视频只有这里精品首页| www日本在线高清视频| 国产精品一及| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| 欧美性感艳星| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 1024手机看黄色片| 亚洲av二区三区四区| a级毛片a级免费在线| 成人亚洲精品av一区二区| 亚洲 国产 在线| 中国美女看黄片| 一个人看视频在线观看www免费 | 亚洲欧美精品综合久久99| 国产一区二区三区视频了| av中文乱码字幕在线| 午夜福利在线观看吧| 韩国av一区二区三区四区| 亚洲国产欧洲综合997久久,| 老司机午夜福利在线观看视频| 精品人妻偷拍中文字幕| 男插女下体视频免费在线播放| 国产伦一二天堂av在线观看| 亚洲精品美女久久久久99蜜臀| 欧美极品一区二区三区四区| 伊人久久大香线蕉亚洲五| 午夜免费激情av| 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 怎么达到女性高潮| 午夜a级毛片| 国产单亲对白刺激| 国产高清视频在线播放一区| 久久精品91无色码中文字幕| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 级片在线观看| 成人三级黄色视频| 一级作爱视频免费观看| 色哟哟哟哟哟哟| 一本久久中文字幕| 欧美不卡视频在线免费观看| 国产一区二区亚洲精品在线观看| 亚洲在线观看片| 国产精品一及| 日本在线视频免费播放| 亚洲成人中文字幕在线播放| 18禁黄网站禁片午夜丰满| 国产精品亚洲一级av第二区| 欧美激情在线99| 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 99热6这里只有精品| 日韩中文字幕欧美一区二区| 亚洲欧美日韩卡通动漫| 国产亚洲精品一区二区www| 成人特级av手机在线观看| 窝窝影院91人妻| 97超视频在线观看视频| 久久伊人香网站| 亚洲成人中文字幕在线播放| 精品无人区乱码1区二区| 国产精品久久久久久久电影 | 窝窝影院91人妻| 一进一出好大好爽视频| 特大巨黑吊av在线直播| 午夜福利在线在线| 欧美日韩一级在线毛片| 午夜福利在线观看免费完整高清在 | 88av欧美| 亚洲国产精品久久男人天堂| 国产三级在线视频| 最近在线观看免费完整版| 中文亚洲av片在线观看爽| 欧美成人a在线观看| 日韩国内少妇激情av| 淫秽高清视频在线观看| 国产精品野战在线观看| 国产黄a三级三级三级人| 最近最新中文字幕大全电影3| 婷婷六月久久综合丁香| 欧美3d第一页| 91字幕亚洲| 午夜免费激情av| 又黄又爽又免费观看的视频| 叶爱在线成人免费视频播放| 成人精品一区二区免费| 亚洲国产欧洲综合997久久,| 99热这里只有是精品50| 日韩欧美一区二区三区在线观看| 亚洲国产中文字幕在线视频| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 波多野结衣高清无吗| 日本撒尿小便嘘嘘汇集6| 亚洲精品亚洲一区二区| 亚洲国产色片| 国内精品美女久久久久久| 国产亚洲精品久久久com| 又黄又爽又免费观看的视频| 性色av乱码一区二区三区2| 久久精品国产亚洲av涩爱 | 亚洲成av人片在线播放无| 九色成人免费人妻av| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品电影| 日本三级黄在线观看| www日本黄色视频网| 91麻豆av在线| 无遮挡黄片免费观看| 99久久精品国产亚洲精品| 亚洲中文字幕日韩| 美女cb高潮喷水在线观看| 午夜两性在线视频| 中亚洲国语对白在线视频| 三级男女做爰猛烈吃奶摸视频| 久久6这里有精品| 网址你懂的国产日韩在线| 精品久久久久久久末码| 国产精品1区2区在线观看.| 国产精品精品国产色婷婷| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 国产亚洲欧美98| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 欧美又色又爽又黄视频| xxxwww97欧美| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 日本三级黄在线观看| 国产私拍福利视频在线观看| 亚洲av电影不卡..在线观看| 久久精品国产亚洲av香蕉五月| 亚洲精品乱码久久久v下载方式 | 国产成人欧美在线观看| 欧美bdsm另类| 亚洲avbb在线观看| 国产91精品成人一区二区三区| 国内精品久久久久精免费| 欧美一区二区国产精品久久精品| 91在线观看av| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 亚洲精品影视一区二区三区av| 熟女电影av网| 熟女人妻精品中文字幕| 久久人人精品亚洲av|