• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NOVEL DESIGN OF COMPOSITE WATER TURBINE USING CFD*

    2012-05-11 06:54:38WANGJifengPIECHNAJanuszLLERNorbert

    WANG Ji-feng, PIECHNA Janusz, MüLLER Norbert

    Turbomachinery Laboratory, Department of Mechanical Engineering, Michigan State University, East Lansing, USA, E-mail: jwang94@illinois.edu

    A NOVEL DESIGN OF COMPOSITE WATER TURBINE USING CFD*

    WANG Ji-feng, PIECHNA Janusz, MüLLER Norbert

    Turbomachinery Laboratory, Department of Mechanical Engineering, Michigan State University, East Lansing, USA, E-mail: jwang94@illinois.edu

    (Received May 22, 2011, Revised September 15, 2011)

    This paper presents computational investigation of a novel design of composite material axial water turbine using Computational Fluid Dynamics (CFD). Based on three-dimensional numerical flow analysis, the flow characteristics through the water turbine with nozzle, wheel and diffuser are predicted. The extract power and torque of a composite water turbine at different rotating speeds were calculated and analyzed for a specific flow speed. The simulation results show that using nozzle and diffuser can increase the pressure drop across the turbine and extract more power from available water energy. These results provide a fundamental understanding of the composite water turbine, and this design and analysis method is used in the design process.

    water turbine, composite material, Computational Fluid Dynamics (CFD), extracted power

    Introduction

    Hydropower, the energy from moving water, is one of the oldest renewable energy sources and the total global electric power capacity of hydropower, including large hydropower, small hydropower, and ocean power, was approximately 820 GW in 2005, which accounted for almost 20% of the renewable energies[1]. In 2003, the world- first commercial-scale marine current turbine with a 300 kW rated power was successfully installed by Marine Current Turbines (MCT) Ltd and IT-Power[2]. Myers and Bahaj[3]tested a 0.4 m diamater horizontal axis marine current turbine in a circulating water channel and measured the power output over a range of flow speeds, and the results were comparable to previous studies. Canadian National Research Council Hydraulics, Energy, Mines and Resources designed and tested a straight bladed darrieus rotor set with an installed capacity of 5 kW[4]. However, sub-marine structures have to withstand the notoriously aggressive marine environment with its corrosive salt water, fouling growth and abrasive suspended particles. Traditionally, steel has been used to produce marine rotors with the stiffness required to combat yielding, however, it is very expensive to achieve the necessary compound-curved profile in steel. In addition, steel is heavy, prone to fatigue and susceptible to corrosion induced by salt water. These disadvantages prompted a decision to adopt composites instead[5]. Advanced composite materials are broadly used in water turbine application because of their high strength to weight ratios and high corrosion resistance, which are expected to be the key to the success for these devices to operate in the harsh marine environment. A novel manufacturing approach similar to filament winding is able to produce the automated composite wheels in different possible patterns in Turbomachinery Lab at Michigan State University (MSU) (Fig.1)[6].

    Fig.1 Different patterns of wound wheels

    The advantage of using filament winding method to manufacture high performance and light-weight composite wheels is that the production can be rapid, inexpensive and utilize commercially available winding machines[7]. Another important advantage of using this novel pattern of wheel is that by using integrated magnetic rotor it will achieve a minimal impact on underwater life forms. Most marine creatures will be able to pass through the center of the wheel avoiding the blades. To extract more water power, we designed a ducted turbine and performed the simulation. There are some major advantages by using diffuser-augmented marine current turbines[8]: (1) A diffuser placed behind the wheel can reduce the downstream pressure and draw in more flow for a given sized turbine. (2) A large inflow area containing a large amount of energy is concentrated into a smaller area so that a smaller turbine can be used for a given power output. (3) The duct eliminates tip losses on axial flow turbine blades and improves its efficiency.

    To understand the hydrodynamic performance of this totally untypical wheel as a water turbine, as well as the influence of the wheel’s rotating speed on the power output, numerical approach was performed using Computational Fluid Dynamics (CFD). The extracted power and torque were calculated at different rotating speeds in a specific flow speed. Static pressure distribution on computational domain and turbine was given to evaluate the turbine’s characteristics.

    Fig.2 A multiple axis winding machine and a schematic representation of fiber wetting and wounding

    1. Novel composite material water turbine

    1.1 Novel concept of the turbine

    The invention at MSU can be realized by a lowcost flexible and fully automatic manufacturing method using commercially available CNC machines shown in Fig.2 for filament winding of the turbo-compressor wheels.

    These machines can be used for rapid-prototyping and mass-production. They integrate conveniently into CAD/CAM systems. During or after the winding process, the support structure can either be removed or remain in the wheel as a structural element, especially if the support is of a magnetic material and used as an electromagnetic element of an integrated motor or bearing. In this and other ways, motor and bearing elements can be integrated during the winding -all in one production step. Depending on the size and sophistication, one wheel may cost even less than ten dollars.

    Fig.3 Free-stream flow direction

    1.2 Working condition of the turbine

    In this work the turbine was simulated in a free stream velocity with 5 m/s which was chosen according to the near future test condition. The turbine will be tested by mounting it in a moving carriage and driving it at a steady speed, in still water. This is equivalent to mounting the turbine under a fixed pontoon in moving water. The rotating speed of the turbine can be changed corresponding to the different extracted torques and powers, and the optimal rotating speed will be chosen based on the maximum power generation. The free-stream flow direction is from nozzle to diffuser as shown in Fig.3.

    Table 1 Main parameters of the modeled turbine

    1.3 Turbine design

    The turbine wheel parameters were constrained by the dimensions of the water tow tank where the testing will be preformed in the near future. The parameters of modeled turbine in this study are shown in Table 1.

    Fig.4 Composite material wheel

    1.3.1 Influence of the blade number

    During the performance analysis of a water turbine, blade number is one of important design parameters. If the blade number is too great, the crowding out effect phenomenon at the turbine is serious and the increase of interface between free stream and blade will cause the increment of hydraulic loss, while if the blade number is too small, the diffuser loss will increase with the growth of diffuse extent of flow passage[9]. Of the many different patterns shown in Fig.1 designed by Eyler[10], one pattern with the greatest potential of structure stability and fluid dynamic performance has been selected for the marine current turbine shown in Fig.4[11]. To achieve a minimal impact on underwater life forms, without using an external shaft, this wheel can be actuated from a magnetic force between poles in the outer shroud and coil poles on a stationary device surrounding the wheel and housing[7]. The selected wheel pattern with 8 blades shown in Fig.4 gives most uniform distribution of free space for marine creatures to go through its central area. In our design process, we want to take into account not only the power generation, but also the environmental influence and the totally untypical wheel pattern with 8 blades gives us the most promising solution.

    1.3.2 Influence of the blade angles

    The analysis of influence of blade angles on extracted power has been made in a wide range of angles (from 25oto 60oas shown in Fig.5) to find the relation between the power generation and blade angles. Taking into account of safety factors, we have limited the wheel’s tip speed to 5 m/s. Because of this, we have chosen the rotating speed 20 RPM as the closest speed to this limit. Since we want to connect the water turbine generator to electric net which requires a constant rotational speed of turbine wheel, we concentrated our investigation on the water stream velocity as 5 m/s, which is achieved on the testing frame in the near future water tow tank, and rotational speed of turbine wheel as 20 RPM (electric output frequency is 60 Hz which is achieved by the gear between the generator and turbine wheel).

    Fig.5 Normalized extracted power variation with rotating speed for different blade angles

    Fig.6 Modeling of wound turbine wheel

    2. Numerical simulation of the turbine flow

    2.1 Geometry modeling and grid preprocessing

    In this study, the preprocess including model and non-structure mesh generation was completed in NX and GAMBIT. The modeling of a wound turbine wheel is shown in Fig.6.

    In order to accurately simulate the flow in a turbine passage, further mesh refinement of the turbine is required. The meshing sizes in the turbine are strictly controlled and particular refinements have been made. In all CFD simulations, a mesh dependence test is important in order to check the convergence of the computationl results with respect to spatial resolution[12]. The mesh dependence test is performed by refining the mesh to its final configuration shown in Fig.7 that has been selected for the analysis.

    2.2 Governing equations

    CFD is fundamentally based on the governing equations of fluid dynamics. They represent mathematical statements of the conservation laws of physics,where the following physical laws are adopted:

    (1) Mass is conserved for the incompressible fluid at steady state as

    (2) For the fluid analysis of the entire turbine at steady state, the Navier-Stokers equations are used in the following form

    Fig.7 Meshing of computational domain

    2.3 Boundary conditions and solving procedures

    Since the working fluid is ocean water, the CFD simulations were calculated based on assumptions as follows: (1) incompressible flow, (2) steady state flow, (3) smooth walls with no-slip boundary condition. Boundary conditions were set as follows: velocity at inlet and pressure at outlet, interfaces between nozzle, wheel and diffuser, and symmetry boundary conditions for the side walls[13]. In Fluent, no defining surfaces are considered walls. Since the Navier-Stokes equations are solved inside the domain, no-slip boundary condition is applied to all walls in the domain[14]. Therefore, at all surfaces the flow velocities in three directions u = v = w = 0 .

    Modeling the wheel rotation is complex as the relative motion between the rotating wheel and the stationary fluid zone causes a cyclic variation of the solution domain. Sliding Mesh (SM) is one of commonly used modeling methods. By using the SM model, the wheel region can slide relative to the other regions in discrete time steps and using implicit/explicit interpolation of data at successive time-steps[15,16]. In this paper, the SM model was used to obtain more accurate results of the actual phenomena of the wheel rotation.

    Reliable results can be given only by a well converged, posed and grid independent simulation. Convergence is determined by the order of magnitude of the residues. It should be noted that convergence criteria must assure that the results do not change as the iterations proceed. In this study, the mass flow rate and momentum change for the convergence tolerance 10–4were monitored, and when they stay at a certain number and do not change as the iterations continue, it can be stated that the solution has converged.

    Fig.8 Static pressure distribution on turbine

    Fig.9 Static pressure distribution in the computational domain

    3. Results and discussion

    3.1 Static pressure and velocity distribution

    To extract energy from the water, a thrust force T directed upstream must be generated. On this axial marine current turbine, the thrust is obtained by rotating blades, which create a pressure drop across the turbine. The ideal extracted power, which is not what would actually be recovered at the shaft, is the product of the water flow through the turbine and the pressure drop across the turbine[12]. Figure 8 shows the static pressure distribution on the turbine, in which it is seen that the pressure is higher on the turbine front.

    Figure 9 shows the static pressure distribution on the whole computational domain, in which it is observed that the pressure drop is increased due to the nozzle and diffuser.

    Fig.10 Velocity contours in the computational domain

    Fig.11 Velocity vectors in the computational domain (upper) and on turbine (bottom)

    Figure 10 shows the velocity contour in the computational domain, in which it is seen that the water velocity is increased just before entering into the turbine due to the nozzle’s effect. Figure 11 shows the velocity vectors in the computational domain and turbine.

    Fig.12 Variation of extracted torque with rotating speed of turbine at inlet flow speed of 5 m/s

    3.2 Influence of the rotating speed

    Figure 12 shows the extracted torque variation in a free stream of water with various hydrodynamic flow conditions. The maximum extracted torque is 190 kNm. For a specific water flow speed, different rotating speeds of the turbine are simulated. From this figure, it can be observed that the torque decreases with rotating speed in a quasi-linear fashion for a specific water flow speed. Torque also decreases with flow speed for a specific rotating speed.

    Fig.13 Extracted power variation with rotating speed of turbine at inlet flow speed of 5 m/s

    Figure 13 shows the variation of extracted power in a free stream of water with various hydrodynamic flow conditions. The maximum extracted power is 220 kW. This figure indicates that for a specific water flow speed, the extracted power increases with rotating speed until obtaining a maximum power, at which further increases in rotating speed serve to reduce the amount of power extraction. To extract the possible maximum power, the water turbine should be working at a suitable rotating speed. For a specific rotating condition, the power is dependent on the water flowspeed, e.g., it increases with the water flow speed.

    4. Conclusion

    A novel manufacturing approach similar to filament winding has been developed and is able to produce the composite material water turbine, which have significant advantages over traditional designs. In order to use this totally untypical wheel to succeed in extracting ocean current energy, a CFD simulation using Fluent has been performed. The simulation results show that using nozzle and diffuser can increase the pressure drop and extract more power from available water energy. The torque decreases with rotating speed in a quasi-linear fashion for a specific water flow speed, the extracted power increases with rotating speed until obtaining a maximum power, so the water turbine should be working at a suitable rotating speed for the maximum power output. These results provide a fundamental understanding of the composite water turbine, and this design and analysis method is used to determine the turbine’s performance. The future work is testing the turbine by mounting it in a moving carriage and driving it at a steady speed in still water to simulate the free stream and validate the numerical results.

    [1] YUN S., SEUNG H. and KIM J. Optimization of cycloidal water turbine and the performance improvement by individual blade control[J]. Applied Energy, 2009, 86(9): 1532-1540.

    [2] PONTA F., JACOVKIS P. Marine-current power generation by diffuser-augmented floating hydro-turbines[J]. Renewable Energy, 2008, 33(4): 665-673.

    [3] MYERS L., BAHAJ A. Power output performance characteristics of a horizontal axis marine current turbine[J]. Renewable Energy, 2006, 31(2): 197-208.

    [4] PONTA F., DUTT G. An improved vertical-axis water current turbine incorporating a channeling device[J]. Renewable Energy, 2000, 20(2): 223-241.

    [5] MARSH G. Tidal turbine harnesses the power of the sea[J]. Renewable Energy, 2004, 48(5): 44-47.

    [6] WANG J., LI Q. B. and MüLLER N. Mechanical and optimization analyses for novel wound composite axial impeller[C]. Proc. ASME 2009 International Mechanical Engineering Congress and Exposition. Lake Buena Vista, Florida, USA, 2009, IMECE 2009-12938.

    [7] WANG J., MüLLER N. Numerical investigation on composite material marine current turbine using CFD[J]. Central European Journal of Engineering, 2011, 1(4): 334-340.

    [8] KIRKE B., LAZAUSKAS L. Variable pitch darrieus water turbines[J]. Journal of Fluid Science and Technology, 2008, 3(3): 430-438.

    [9] LIU Houlin, WANG Yong and YUAN Shouqi et al. Effects of blade number on characteristics of centrifugal pumps[J]. Chinese Journal of Mechanical Engineering, 2010, 23(6): 742-747(in Chinese).

    [10] EYLER A., MüLLER N. Simulation and production of wound impellers[C]. Proc. ASME 2008 International Mechanical Engineering Congress and Exposition. Boston, USA, 2008, IMECE 2008-51310.

    [11] WANG J., VAGANI M. and MüLLER N. Design of composite water turbine in free stream using CFD[C]. Proc. ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, Canada, 2010, IMECE 2010-39763.

    [12] SAEED R., GALYBIN A. and POPOV V. Modelling of flow-induced stresses in a Francis turbine runner[J]. Advances in Engineering Softwares, 2010, 41(12): 1245-1255.

    [13] HONG Fang-wen, Dong Shi-tang. Numerical analysis for circulation distribution of propeller blade[J]. Journal of Hydrodynamics, 2010, 22(4): 488-493.

    [14] HONG Fang-wen, Dong Shi-tang. Numerical simulation of the structure of propeller’stip vortex and wake[J]. Journal of Hydrodynamics, 2010, 22 (5 Suppl.): 457-461.

    [15] DEGLON D., MEYER C. CFD modeling of stirred tanks: Numerial considerations[J]. Minerals Engineering, 2006, 19(10): 1059-1068.

    [16] ZHANG De-sheng, SHI Wei-dong and CHEN Bin et al. Unsteady flow analysis and experimental investigation of axial-flow pump[J]. Journal of Hydrodynamics, 2010, 22(1): 35-43.

    10.1016/S1001-6058(11)60213-8

    * Biography: WANG Ji-feng (1979-), Male, Ph. D. Candidate

    MüLLER Norbert,

    E-mail: Mueller@egr.msu.edu

    2012,24(1):11-16

    日本黄色日本黄色录像| 国产精品美女特级片免费视频播放器 | 国产国语露脸激情在线看| svipshipincom国产片| 99精品在免费线老司机午夜| 蜜桃国产av成人99| 午夜福利,免费看| 久久天躁狠狠躁夜夜2o2o| 亚洲成国产人片在线观看| 国产精品电影一区二区三区 | kizo精华| 18在线观看网站| 久久久国产一区二区| 亚洲专区字幕在线| 日韩视频在线欧美| 啪啪无遮挡十八禁网站| 国产片内射在线| 亚洲午夜精品一区,二区,三区| 日韩欧美国产一区二区入口| 天天添夜夜摸| 热99re8久久精品国产| 制服人妻中文乱码| 在线观看www视频免费| 少妇被粗大的猛进出69影院| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 搡老熟女国产l中国老女人| 中文字幕制服av| 中文字幕人妻丝袜一区二区| 国产精品美女特级片免费视频播放器 | 天天影视国产精品| 亚洲精品中文字幕一二三四区 | 考比视频在线观看| 18在线观看网站| 黄色丝袜av网址大全| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| 亚洲精品美女久久久久99蜜臀| 美女午夜性视频免费| 久久久久久久久免费视频了| 欧美大码av| 国产精品一区二区在线不卡| 亚洲国产中文字幕在线视频| 精品熟女少妇八av免费久了| 夜夜夜夜夜久久久久| 国产成人欧美在线观看 | 日韩大片免费观看网站| av网站在线播放免费| 国产片内射在线| 精品国内亚洲2022精品成人 | 精品国产乱码久久久久久小说| 国产真人三级小视频在线观看| 国产高清激情床上av| 99国产精品免费福利视频| 国产免费现黄频在线看| 亚洲av电影在线进入| 精品久久久久久久毛片微露脸| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 丰满少妇做爰视频| 国产精品1区2区在线观看. | 亚洲精品久久午夜乱码| 国产在视频线精品| 又紧又爽又黄一区二区| 欧美日韩黄片免| 国产男靠女视频免费网站| 一区二区日韩欧美中文字幕| 国产不卡一卡二| 日日爽夜夜爽网站| 亚洲av片天天在线观看| 无限看片的www在线观看| 精品福利观看| 亚洲精品国产区一区二| 亚洲精品在线观看二区| 久久亚洲精品不卡| 天堂动漫精品| 精品国产乱码久久久久久男人| 电影成人av| 亚洲天堂av无毛| 久久精品国产99精品国产亚洲性色 | videosex国产| 制服诱惑二区| 国产成人免费无遮挡视频| 狠狠精品人妻久久久久久综合| 成人免费观看视频高清| 可以免费在线观看a视频的电影网站| 欧美人与性动交α欧美软件| 久久中文看片网| 久久性视频一级片| 亚洲成人手机| 国产真人三级小视频在线观看| 欧美精品一区二区大全| 在线播放国产精品三级| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 正在播放国产对白刺激| 在线亚洲精品国产二区图片欧美| 狠狠婷婷综合久久久久久88av| 日韩中文字幕视频在线看片| 国产日韩欧美视频二区| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 午夜福利一区二区在线看| 欧美精品一区二区大全| e午夜精品久久久久久久| 亚洲精品中文字幕一二三四区 | 欧美日韩成人在线一区二区| 亚洲免费av在线视频| 最新美女视频免费是黄的| 欧美黄色淫秽网站| 一本—道久久a久久精品蜜桃钙片| 久久99热这里只频精品6学生| 美女国产高潮福利片在线看| 在线观看免费视频日本深夜| 亚洲国产成人一精品久久久| 美女午夜性视频免费| 美女高潮喷水抽搐中文字幕| 国产精品九九99| 黑丝袜美女国产一区| 51午夜福利影视在线观看| 亚洲av第一区精品v没综合| 十八禁人妻一区二区| 首页视频小说图片口味搜索| 高清在线国产一区| 欧美性长视频在线观看| 久久久久久久国产电影| a级片在线免费高清观看视频| 狠狠婷婷综合久久久久久88av| 国产av又大| 国产精品.久久久| 女人久久www免费人成看片| 精品福利永久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产单亲对白刺激| 50天的宝宝边吃奶边哭怎么回事| 香蕉久久夜色| 一级a爱视频在线免费观看| 黄色 视频免费看| 日韩欧美一区视频在线观看| 在线天堂中文资源库| 久久久国产精品麻豆| 一个人免费在线观看的高清视频| 国产一区二区三区在线臀色熟女 | 丰满迷人的少妇在线观看| 国产aⅴ精品一区二区三区波| 日本av手机在线免费观看| 丰满少妇做爰视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美精品综合一区二区三区| 亚洲精品在线美女| 亚洲精品久久成人aⅴ小说| 欧美激情高清一区二区三区| 国产极品粉嫩免费观看在线| svipshipincom国产片| av一本久久久久| 两个人看的免费小视频| 国产99久久九九免费精品| 黄色怎么调成土黄色| 91精品国产国语对白视频| 少妇猛男粗大的猛烈进出视频| 蜜桃在线观看..| 性色av乱码一区二区三区2| 男人和女人高潮做爰伦理| 成熟少妇高潮喷水视频| 久久精品国产综合久久久| 亚洲电影在线观看av| 亚洲国产精品sss在线观看| 亚洲av日韩精品久久久久久密| www.www免费av| 美女高潮的动态| 看片在线看免费视频| 激情在线观看视频在线高清| 国产免费男女视频| 91九色精品人成在线观看| 亚洲成av人片在线播放无| 日本熟妇午夜| 亚洲专区中文字幕在线| av欧美777| 国产成人精品无人区| 久久久国产成人免费| 特大巨黑吊av在线直播| 亚洲avbb在线观看| 亚洲成av人片在线播放无| 亚洲精品在线美女| 国产一区在线观看成人免费| 波多野结衣高清作品| 国产成人精品久久二区二区91| 两性夫妻黄色片| 熟女少妇亚洲综合色aaa.| svipshipincom国产片| 中文资源天堂在线| 999精品在线视频| 91av网一区二区| 麻豆国产97在线/欧美| 丝袜人妻中文字幕| av片东京热男人的天堂| 国产高清videossex| 99精品在免费线老司机午夜| 人人妻人人看人人澡| 日本黄色视频三级网站网址| 啦啦啦免费观看视频1| 久久久久久大精品| 十八禁人妻一区二区| 人妻久久中文字幕网| 亚洲av成人一区二区三| 国产一区二区三区视频了| 久久天堂一区二区三区四区| 国产成人精品久久二区二区91| 一进一出抽搐动态| 午夜激情欧美在线| 亚洲天堂国产精品一区在线| 亚洲午夜精品一区,二区,三区| av中文乱码字幕在线| 久久香蕉国产精品| 91av网站免费观看| 啦啦啦免费观看视频1| 久久香蕉国产精品| 午夜福利在线观看吧| 精品一区二区三区四区五区乱码| 级片在线观看| 成年版毛片免费区| 草草在线视频免费看| 性色avwww在线观看| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 久久久久久国产a免费观看| aaaaa片日本免费| 欧美日韩国产亚洲二区| 国产男靠女视频免费网站| 色综合站精品国产| 午夜免费激情av| 日本三级黄在线观看| 欧美精品啪啪一区二区三区| 男女午夜视频在线观看| 久久久久久大精品| 国产成人一区二区三区免费视频网站| 天堂网av新在线| 亚洲 欧美 日韩 在线 免费| 搡老岳熟女国产| 亚洲九九香蕉| 黄色片一级片一级黄色片| 脱女人内裤的视频| 日本黄色视频三级网站网址| 国内揄拍国产精品人妻在线| 亚洲aⅴ乱码一区二区在线播放| 法律面前人人平等表现在哪些方面| 免费av不卡在线播放| 国产不卡一卡二| 久久久久国内视频| 亚洲av五月六月丁香网| 久久中文字幕一级| 亚洲 欧美一区二区三区| 国产高清激情床上av| 一级作爱视频免费观看| 一级黄色大片毛片| 亚洲av熟女| 色综合婷婷激情| 国产欧美日韩一区二区三| 在线看三级毛片| 成人特级黄色片久久久久久久| 中文字幕人妻丝袜一区二区| 香蕉国产在线看| 午夜福利成人在线免费观看| 香蕉国产在线看| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区mp4| 在线免费观看的www视频| 俄罗斯特黄特色一大片| 国产成人av教育| 精品国内亚洲2022精品成人| 午夜福利在线观看免费完整高清在 | 亚洲人成网站高清观看| 99视频精品全部免费 在线 | 国内久久婷婷六月综合欲色啪| h日本视频在线播放| 精品国产三级普通话版| 最近最新免费中文字幕在线| 夜夜躁狠狠躁天天躁| 国产男靠女视频免费网站| 男女视频在线观看网站免费| 小说图片视频综合网站| 久久中文字幕人妻熟女| 精品久久久久久久久久免费视频| 美女大奶头视频| 91久久精品国产一区二区成人 | 美女 人体艺术 gogo| 亚洲成av人片在线播放无| 热99在线观看视频| 中出人妻视频一区二区| 最好的美女福利视频网| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 最近最新中文字幕大全免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区激情短视频| 成人18禁在线播放| 一a级毛片在线观看| 精品一区二区三区四区五区乱码| 久久久久久人人人人人| 一本一本综合久久| 国产亚洲av高清不卡| а√天堂www在线а√下载| 亚洲国产欧美网| 国产精品免费一区二区三区在线| 成人三级做爰电影| 久久久久亚洲av毛片大全| 黄片大片在线免费观看| 免费无遮挡裸体视频| 国产一区二区三区在线臀色熟女| 亚洲 欧美一区二区三区| 婷婷六月久久综合丁香| 美女高潮的动态| 黄色 视频免费看| 天天躁日日操中文字幕| 又黄又粗又硬又大视频| 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品电影| 色视频www国产| av在线蜜桃| 国产精品久久久久久人妻精品电影| 中文字幕高清在线视频| 一二三四社区在线视频社区8| 成年女人毛片免费观看观看9| 国产高清视频在线播放一区| 给我免费播放毛片高清在线观看| av天堂中文字幕网| 啪啪无遮挡十八禁网站| 精品久久久久久久久久免费视频| 国产一区二区三区视频了| 99精品在免费线老司机午夜| 国产一级毛片七仙女欲春2| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| www国产在线视频色| 国产精品亚洲一级av第二区| 午夜免费观看网址| 国产成人精品久久二区二区91| 成人鲁丝片一二三区免费| 国产成+人综合+亚洲专区| 中文字幕人成人乱码亚洲影| 男女视频在线观看网站免费| 中文在线观看免费www的网站| 日韩成人在线观看一区二区三区| 国产伦人伦偷精品视频| 精品午夜福利视频在线观看一区| 欧美绝顶高潮抽搐喷水| 亚洲成人中文字幕在线播放| 日本 欧美在线| 精品国产乱子伦一区二区三区| 91字幕亚洲| 久久中文字幕一级| 欧美另类亚洲清纯唯美| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 久久久久精品国产欧美久久久| 亚洲国产精品999在线| 在线观看日韩欧美| 两个人的视频大全免费| 香蕉国产在线看| 在线a可以看的网站| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 亚洲中文av在线| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三| 欧美极品一区二区三区四区| 国产成人系列免费观看| 免费看日本二区| 国产精品影院久久| 午夜激情欧美在线| 人人妻,人人澡人人爽秒播| 99热6这里只有精品| 两个人的视频大全免费| 国产欧美日韩一区二区精品| 国产99白浆流出| 亚洲精品久久国产高清桃花| 亚洲专区国产一区二区| 欧美成人一区二区免费高清观看 | 天天添夜夜摸| netflix在线观看网站| 国产三级黄色录像| 免费在线观看日本一区| 免费高清视频大片| 小蜜桃在线观看免费完整版高清| 黄片小视频在线播放| 午夜福利视频1000在线观看| 国产成+人综合+亚洲专区| 热99在线观看视频| 狂野欧美激情性xxxx| 神马国产精品三级电影在线观看| 久久九九热精品免费| 亚洲专区国产一区二区| 午夜福利在线观看吧| 曰老女人黄片| 午夜福利在线观看吧| 99视频精品全部免费 在线 | 精品电影一区二区在线| 久久亚洲真实| 久久久国产成人精品二区| 好看av亚洲va欧美ⅴa在| 午夜激情福利司机影院| 中出人妻视频一区二区| 91老司机精品| 国内精品久久久久精免费| 中文字幕av在线有码专区| 九九在线视频观看精品| 欧美乱色亚洲激情| 国产视频一区二区在线看| 国产野战对白在线观看| 日本精品一区二区三区蜜桃| 精品国产乱码久久久久久男人| 欧美在线一区亚洲| 国产成人欧美在线观看| 国产伦精品一区二区三区四那| 欧美高清成人免费视频www| 最新中文字幕久久久久 | 国产激情久久老熟女| 国产高清激情床上av| 亚洲天堂国产精品一区在线| 亚洲av成人av| 午夜日韩欧美国产| 久久中文字幕人妻熟女| 757午夜福利合集在线观看| 91久久精品国产一区二区成人 | 久久精品人妻少妇| 免费大片18禁| 日本一本二区三区精品| 久久国产乱子伦精品免费另类| 18禁裸乳无遮挡免费网站照片| netflix在线观看网站| 男人舔女人下体高潮全视频| 老司机午夜十八禁免费视频| 午夜两性在线视频| 欧美激情在线99| 国产成人精品久久二区二区免费| 色吧在线观看| 91麻豆av在线| 中文字幕人成人乱码亚洲影| 俄罗斯特黄特色一大片| 天堂网av新在线| 欧美又色又爽又黄视频| 丝袜人妻中文字幕| 国产高清三级在线| 女同久久另类99精品国产91| 中文字幕熟女人妻在线| 99久久成人亚洲精品观看| 夜夜看夜夜爽夜夜摸| 俄罗斯特黄特色一大片| 首页视频小说图片口味搜索| 成人av一区二区三区在线看| 国产亚洲av嫩草精品影院| 国内精品一区二区在线观看| 19禁男女啪啪无遮挡网站| 99热6这里只有精品| 国产极品精品免费视频能看的| 日韩av在线大香蕉| 少妇的逼水好多| 少妇丰满av| 中文字幕精品亚洲无线码一区| 少妇熟女aⅴ在线视频| 90打野战视频偷拍视频| 中文字幕久久专区| 一进一出好大好爽视频| 狂野欧美激情性xxxx| 成人特级黄色片久久久久久久| 少妇裸体淫交视频免费看高清| 国产欧美日韩精品一区二区| 国产91精品成人一区二区三区| 狂野欧美激情性xxxx| 亚洲熟女毛片儿| 精品免费久久久久久久清纯| 国产亚洲精品av在线| 亚洲av日韩精品久久久久久密| 国产又黄又爽又无遮挡在线| 我的老师免费观看完整版| 亚洲国产精品成人综合色| 757午夜福利合集在线观看| 偷拍熟女少妇极品色| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 欧美成人免费av一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩卡通动漫| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 亚洲av成人精品一区久久| 国产精品香港三级国产av潘金莲| 亚洲人与动物交配视频| 国产亚洲精品久久久久久毛片| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 最新中文字幕久久久久 | 最新美女视频免费是黄的| 国产精品综合久久久久久久免费| 亚洲精华国产精华精| 精品福利观看| 狠狠狠狠99中文字幕| 真人做人爱边吃奶动态| 久久亚洲精品不卡| 国产v大片淫在线免费观看| 国产男靠女视频免费网站| 可以在线观看的亚洲视频| 中文亚洲av片在线观看爽| av在线天堂中文字幕| 一级毛片高清免费大全| 日韩三级视频一区二区三区| 久久热在线av| 丰满的人妻完整版| 亚洲欧美精品综合久久99| 老熟妇仑乱视频hdxx| 欧美成狂野欧美在线观看| 国产精品久久久久久久电影 | 亚洲成av人片免费观看| 一本综合久久免费| 噜噜噜噜噜久久久久久91| 9191精品国产免费久久| 国产午夜精品久久久久久| 亚洲在线观看片| 精品久久久久久,| 日本撒尿小便嘘嘘汇集6| 精品人妻1区二区| 99久久精品国产亚洲精品| 久久精品人妻少妇| 精品熟女少妇八av免费久了| 一个人看的www免费观看视频| 在线观看美女被高潮喷水网站 | 国内揄拍国产精品人妻在线| 国产精品亚洲av一区麻豆| 久久久久久人人人人人| 桃红色精品国产亚洲av| 中文亚洲av片在线观看爽| 国内精品久久久久久久电影| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 亚洲自偷自拍图片 自拍| 综合色av麻豆| 一级毛片高清免费大全| 国产精品九九99| 九色国产91popny在线| 色吧在线观看| 国内精品久久久久精免费| 国产精品一区二区三区四区久久| 99热这里只有是精品50| 免费电影在线观看免费观看| 国产精品亚洲一级av第二区| 国产私拍福利视频在线观看| 国产日本99.免费观看| 欧美一区二区精品小视频在线| 男人和女人高潮做爰伦理| 精品一区二区三区视频在线观看免费| 成人无遮挡网站| 小蜜桃在线观看免费完整版高清| АⅤ资源中文在线天堂| 少妇的逼水好多| 黄色视频,在线免费观看| 99国产精品99久久久久| 国产一区二区在线av高清观看| 国产人伦9x9x在线观看| 亚洲片人在线观看| 国产精品 欧美亚洲| 亚洲激情在线av| 欧美大码av| 免费电影在线观看免费观看| 日本一本二区三区精品| 国产野战对白在线观看| av片东京热男人的天堂| 国产野战对白在线观看| 成年女人毛片免费观看观看9| 日韩 欧美 亚洲 中文字幕| 校园春色视频在线观看| 色在线成人网| e午夜精品久久久久久久| 在线视频色国产色| 99久国产av精品| 最新中文字幕久久久久 | 久久人妻av系列| 岛国视频午夜一区免费看| 国产探花在线观看一区二区| 88av欧美| 国产激情偷乱视频一区二区| 亚洲精品色激情综合| 免费观看精品视频网站| 天堂√8在线中文| 成人欧美大片| 久久久国产精品麻豆| 免费观看精品视频网站| 九色成人免费人妻av| 精品久久久久久久人妻蜜臀av| 国产精品精品国产色婷婷| 亚洲国产日韩欧美精品在线观看 | 免费看美女性在线毛片视频| 国产亚洲精品一区二区www| 叶爱在线成人免费视频播放| 9191精品国产免费久久| 久久中文字幕人妻熟女| 国产毛片a区久久久久| 高清毛片免费观看视频网站| 999久久久精品免费观看国产| 一本久久中文字幕| 精品一区二区三区视频在线观看免费| 欧美日韩福利视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 法律面前人人平等表现在哪些方面| 精华霜和精华液先用哪个| 美女扒开内裤让男人捅视频| 男女做爰动态图高潮gif福利片| 久久热在线av| 在线免费观看的www视频| 美女被艹到高潮喷水动态| 欧美性猛交╳xxx乱大交人| 色老头精品视频在线观看| 高清毛片免费观看视频网站| 中文亚洲av片在线观看爽|