張冬梅
蘇教版小學(xué)《數(shù)學(xué)》二年級上冊第84頁第7題是這樣的一道習(xí)題:
1+3=□1+3+5=□1+3+5+7=□
2×2=□3×3=□ 4×4=□
顯然,這道題蘊藏著豐富的數(shù)學(xué)內(nèi)涵,那么如何讓孩子們感受更多的數(shù)學(xué)意義、體會數(shù)學(xué)的神奇與偉大呢?我在教學(xué)時進(jìn)行了一次大膽的嘗試。
【教學(xué)片斷】
1.初步感知算式“有生命”,在創(chuàng)造中探究
(學(xué)生先獨立完成,再交流校對后,教師引導(dǎo)學(xué)生思考。)
師:我知道,大家一定每做完一組題就有話要說,說說吧。
生1:我發(fā)現(xiàn)每組兩道題的得數(shù)是一樣的。
生2:我知道為什么它們的得數(shù)一樣,因為“3”可以拿出1借給“1”,這樣“1+3”就變成“2+2”了,2個2相加也可以寫成2×2。
生3:我也可以舉個例子,1+3+5,可以讓5借2給1,這樣就是3個3相加了,也就是3×3。
師:誰聽懂了?也能來舉例說說嗎?
(95%的孩子高高舉起了手)
生4:我聽懂了。我們看第三組,5分1給3,7分3給1,這樣就是4個4相加了,也就是4×4=16。
師:太了不起了,在孩子們眼里,每個算式都是有生命的,都可以根據(jù)我們的需要變化!誰也能創(chuàng)造出一組這樣的算式呢?
(有五六個孩子舉起了手。)
師:你們四人小組可以商量商量,說說自己的想法。
(小組討論后交流。)
生5:我們創(chuàng)造了這樣一組算式1+3+5+7+9=25,5×5=25。
生6:我們還可以創(chuàng)造1+3+5+7+9+11=36,6×6=36。
生7:還可以寫1+3+5+7+9+11+13=49,7×7=49。
2.深入體會算式“有生命”,在驗證中發(fā)現(xiàn)
生8:老師,我發(fā)現(xiàn)一個秘密,上面的加法算式都是從1開始的一些單數(shù),下面乘法的兩個乘數(shù)相同。
生9:而且我還發(fā)現(xiàn),加數(shù)有幾個,就是幾乘幾。
師:你能具體解釋解釋嗎?
生9:1+3+5是3個加數(shù),就是3×3,1+3+5+7是4個加數(shù),就是4×4。
師:真的有這樣的秘密?認(rèn)真地觀察觀察,然后在四人小組里互相說說,看看有沒有這樣的秘密。
(生紛紛發(fā)言表示確實有這樣的秘密,孩子們顯得特別興奮。)
師:這么說,孩子們認(rèn)為“1+3+5+7+9+11+13+15+17”會等于幾乘幾呢?
學(xué)生自覺地數(shù)了起來,然后齊喊:9×9。
師:我不大相信,能算算嗎?
生齊算出1+3+5+7+9+11+13+15+17=81,9×9=81。
師:看來大家發(fā)現(xiàn)的秘密還真行!那么,8×8=1+3+5+…,大家掰著手指數(shù)一數(shù),看看該加到幾???
生齊數(shù):1+3+5+7+9+11+13+15。
師:為什么停了?
生:滿8個了。
師:老師還是有些懷疑,能再算一算驗證一下嗎?
(生算,得出兩邊都是81。)
師:祝賀大家!孩子們,我們剛才從簡單的三組題開始,想到了很多、發(fā)現(xiàn)了很多,靜靜地想想自己的收獲吧。
(教室里特安靜,孩子們在認(rèn)真地沉思著,突然有一生舉起了小手。)
3.由此及彼,提出新的研究
生10:老師,如果是雙數(shù)連著加起來也會有這些秘密嗎?
師:由一個問題想到了另一個問題,太讓老師感動了!可老師也不知道答案,大家說怎么辦呢?
生11:老師,我們可以試試呀!
師:太棒了!那我們就舉例試試吧。
生12:2+4=6,不能寫成兩個相同的數(shù)相乘。
生13:2+4+6=12,也不能寫成兩個相同的數(shù)相乘。
生14:我發(fā)現(xiàn)可以寫成乘法的,2+4=6,2×3=6;2+4+6=12,3×4=12。
(孩子們受啟發(fā)了,紛紛舉手爭著要發(fā)言。)
師:先不忙下結(jié)論,四人小組趕快討論討論,再舉例試試,看看真的是這樣嗎?
(小組活動)
生15:是這樣的,2+4+6+8=20,4×5=20。
生16:我們也試過了,2+4+6+8+10=30,5×6=30。
生17:其實這里也是有秘密的,加法中有幾個雙數(shù),第一個乘數(shù)就是幾,第二個乘數(shù)比第一個乘數(shù)大1。
【教學(xué)反思】
也許孩子們的“發(fā)現(xiàn)”在我們看來是那么的微不足道,甚至他們的表達(dá)還不是那么地嚴(yán)密,但我卻毫不掩飾自己的感動:這樣的孩子,這樣的思考,這樣的教學(xué),能讓我從臉上笑到心底!
二年級孩子剛學(xué)完1-9的乘法口訣,說實話,做這個練習(xí)前,我沒想到孩子們會有多少感悟與體會。但就是那個似乎輕描淡寫的“說說吧”,竟然讓我收獲了太多的驚喜,感動于孩子們的思考,忍不住記錄下這精彩的30分鐘。
欣賞與興奮過后,更有些零星的思考。
1.鄭毓信先生在《數(shù)學(xué)文化學(xué)》一書中指出:“數(shù)學(xué)應(yīng)主要地被看成為人類的一種創(chuàng)造活動。”每每讀鄭老這句話,總覺得說起來容易做起來難。“創(chuàng)造”該是多么神圣的詞語、多么高端的行為!可今天,我恍然大悟:“創(chuàng)造”不需要刻意地索取什么,教師要做的只是將靜態(tài)的文本數(shù)學(xué)轉(zhuǎn)化為教育形態(tài)的數(shù)學(xué),“大家一定每做完一組題就有話要說,說說吧”、“誰聽懂了?也能來舉例說說嗎”、“可老師也不知道答案,大家說怎么辦呢?”……看似非常平實的話,關(guān)注的是孩子的真實體驗,表達(dá)的是教師內(nèi)心深處對孩子潛能的真誠的承認(rèn),這些話給了孩子們一個思考的機(jī)會、一個交流的空間、一個平等的氛圍。所以,這里進(jìn)行的是群體的思維碰撞,實現(xiàn)的是共識共享與共進(jìn),洋溢的是煥發(fā)生命活力的兒童數(shù)學(xué)的熱情與氣質(zhì)!
2.教學(xué)一定不僅僅是幫助學(xué)生解疑,更重要的是促使學(xué)生“生疑”。學(xué)生能由“單數(shù)”相加問題,想到“雙數(shù)”相加的問題,著實讓人贊賞!贊賞的理由之一:能有問題,并是有思考價值的問題,就如我們成人發(fā)現(xiàn)一個研究課題一般,是多么地不容易!說明孩子們在思考,而且會思考。理由之二:孩子們這種不唯書不唯師的探索精神尤其可貴。很多時候,我們只要孩子能解答我們提出的問題就滿足了,假如他們能用不同的方法與策略解決了問題,就已經(jīng)特別讓我們安慰了。但我們的目的僅僅于此嗎?回答是否定的。未來的世界是孩子們的,孩子們的問題意識、挑戰(zhàn)意識都將決定著自身的思維品質(zhì)以及人格特征。我們的教學(xué)應(yīng)該在這些方面多做些努力,多給學(xué)生聯(lián)想的機(jī)會,多引導(dǎo)學(xué)生發(fā)現(xiàn)問題、思考問題。
“價值引領(lǐng)”在當(dāng)今是一個很時尚的詞,無論把它看作對教師課堂教學(xué)的要求,還是對教師在課堂教學(xué)中作用的定位,其實都是指在教學(xué)中,我們要引導(dǎo)學(xué)生發(fā)現(xiàn)問題、思考問題,要給予學(xué)生有效的問題情境。要搭建討論與探索時空的平臺,創(chuàng)造個體體驗的機(jī)會,幫助學(xué)生在探索與創(chuàng)造中形成對知識的理解,在與他人的交流中逐漸完善自己的想法,在尋求策略的過程中培養(yǎng)思維的靈活性,以及敢于挑戰(zhàn)老師與書本的批判精神。
3.常常有老師感慨:低年級的數(shù)學(xué)太淺顯,根本上不出數(shù)學(xué)味,這種認(rèn)識肯定是片面的、錯誤的。首先我們得明白:到底什么是“數(shù)學(xué)味”?我想,數(shù)學(xué)的意義不僅僅是知識層面的,“數(shù)學(xué)味”也不僅僅指向于知識的高深。知識可以是簡單的,但學(xué)生經(jīng)歷的這個過程卻是“深刻”的!“每個算式都是有生命的”、“可以根據(jù)我們的需要而變化”、“單數(shù)有幾個,就是幾乘幾”、“老師,我們可以試試呀!”……孩子所感悟的數(shù)學(xué)的美、數(shù)學(xué)的智慧與神奇,在上面的片斷中連續(xù)不斷地涌現(xiàn)著。在這樣簡單卻又深刻的過程中,學(xué)生獲得的數(shù)學(xué)思考、體驗的數(shù)學(xué)思想方法、感受的數(shù)學(xué)精神、體會的數(shù)學(xué)樂趣等等都是數(shù)學(xué)味!因此,低年級的數(shù)學(xué)課堂同樣可以綻放數(shù)學(xué)的精彩!
本案例中這道習(xí)題的教學(xué),孩子們發(fā)現(xiàn)的這些“秘密”,也許在將來、甚至有些孩子在幾天以后就會遺忘,那么這足足30分鐘的交流討論是不是就毫無意義了呢?我們的數(shù)學(xué)學(xué)習(xí)追求的應(yīng)該是一種智慧,學(xué)習(xí)的是一種探求的精神,感悟的是數(shù)學(xué)思想方法,而不是為了“記住”數(shù)學(xué),即便把數(shù)學(xué)都“還給”老師了,而學(xué)習(xí)數(shù)學(xué)過程中領(lǐng)悟的思想和方法、數(shù)學(xué)的精神,作為一種品格力量,將造就學(xué)習(xí)者的智慧人生。
我想,這些都應(yīng)該是這道習(xí)題所蘊藏的豐富內(nèi)涵。
(張冬梅,南京市瑯琊路小學(xué),210024)