• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    貴金屬催化劑上兩步法選擇性降解有機(jī)溶劑型木質(zhì)素

    2012-03-06 04:44:12劉凌濤
    物理化學(xué)學(xué)報(bào) 2012年10期
    關(guān)鍵詞:工程學(xué)院北京大學(xué)木質(zhì)素

    劉凌濤 張 斌 李 晶 馬 丁 寇 元

    (北京大學(xué)化學(xué)與分子工程學(xué)院,北京大學(xué)綠色化學(xué)研究中心,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100871)

    1 Introduction

    Biomass is considered to be the only sustainable organic carbon footprint in the nature.1So far,a great deal of effort has been addressed on converting cellulose,the most abundant component in biomass,to liquid fuels2-10or platform chemicals.11-20Cellulose can be hydrogenolyzed to polyols on Ru/C in subcritical water,12or glycol using supported WC catalyst.13It could also be converted in ionic liquids to hydroxymethylfurfural.15,17-18Lignin is one of the three main components of biomass,which makes up 15%-30%dry weight of lignocellulose. However,direct hydrogenating isolated lignin to alternative fuels has few reports.21-25Previously,we had developed a twostep method for the conversion of lignin to liquid fuels using wood sawdust as raw material,26including(1)selective degradation of lignin into fragment molecules and(2)hydrodeoxygenation of these fragment molecules(mainly monomer and dimers)into alkanes and methanol.The reaction pathway for the second step was studied by Lercher et al.27-29and Dyson et al.30On the other hand,the detailed chemical transformation of lignin in the first step remains unclear.This is largely because in our original system wood sawdust was used as the starting material.As such,the cellulose and hemicellulose,which account for about 80%in wood,were also converted upon hydrotreating and therefore impeding a clear understanding of the chemical transformation of lignin in the process.In this paper,we used isolated lignin as the starting material to convert it to liquid fuels via the two-step process developed in this group and studied the degradation reactions of lignin in the first step. Combined Fourier transform infrared(FTIR)spectroscopy, X-ray photoelectron spectroscopy(XPS),element analysis (EA),and gel permeation chromatography(GPC)analysis provide a clearer overall picture of the fate of lignin upon hydrotreating over noble metal catalyst.

    2 Experimental

    2.1 Chemicals

    Dioxane,toluene,ethanol,chloroform,diethyl ether,n-dodecane,sodium bicarbonate(NaHCO3),anhydrous sodium sulphate(Na2SO4),and barium bitrate(Ba(NO3)2)were all of analytical reagent grade and were used as received.Pd/C and Rh/ C were purchased from Shaanxi Kaida Chemical Engineering Co.,Ltd.

    2.2 Dioxane lignin preparation

    Dioxane lignin was prepared according to a procedure described in the literature(Fig.S1(see Supporting Information)).31Birch(Betula platyphylla Suk)sawdust(10 g)was extracted with a toluene and ethanol mixture(volume ratio 2:1) for 24 h in a Soxhlet extractor.After drying in the air,the sawdust was placed in a flask with a dioxane and deionized water mixture(volume ratio 9:1)containing HCl(0.7%(w)).After extracting at 90-95°C for 6 h,the extractor was removed and the solid residue was washed with fresh dioxane.NaHCO3was added to neutralize the combined solution.The solution was concentrated under reduced pressure to get a viscous black liquid,into which dioxane(10 mL)was added.This mixture was added drop by drop to a Na2SO4aqueous solution(1000 mL, 1%(w)).The solution was slowly stirred for 1 h,and then filtrated.The solid was washed with water until no SO2-4could be detected by Ba(NO3)2,and then dried under vacuum at 60°C overnight to obtain the dioxane lignin(~1.0 g).

    2.3 Reaction procedure

    A two-step method was used.All the reactions were carried out in an autoclave(60 mL).For step 1,dioxane lignin(0.5 g), Rh/C(0.1 g,5%(w)),phosphoric acid,and solvent(40 mL,dioxane and water(volume ratio 1:1),were mixed in the autoclave.The autoclave was pressurized with H2(4 MPa)at room temperature and then heated to set temperature.After reacting for 10 h,the autoclave was put into cold water to quench the reaction and then the reaction mixture was filtered and the filtrate was analyzed.

    For step 2,the filtrate after reaction in step 1 was extracted with chloroform and then vaporized to remove the solvent.The residue was mixed with Pd/C(0.05 g,10%(w))and phosphoric acid aqueous solution(40 mL)in autoclave.The autoclave was pressurized with 4 MPa H2,heated to 250°C and reacted for 4 h.After reaction,the reaction mixture was extracted with diethyl ether and analyzed by gas chromatography(GC)and gas chromatography-mass spectrometry(GC-MS).

    2.4 Product analysis

    Dioxane lignin was characterized by FTIR(Vector 22,Bruker,United States)and Fourier transform ion cyclotron resonance mass spectrometry(FTICR MS,Bruker,United States) (Figs.S2,S3(see Supporting Information)).The monomer and dimer products from step 1 and their hydrodeoxygeantion products from step 2 were analyzed by an Agilent gas chromatography equipped with a HP-5 column and a flame ionization detector using n-dodecane as the internal standard.Molecular weight analysis was carried out over an Agilent gel permeation chromatography using chromatographic pure tetrahydrofuran as mobile phase and polystyrene as the standard.The XPS characterization was carried out on a Kratos Analytical Ltd.(Japan) instrument using an Al Kα(1486.7 eV)X-ray source,with the pressure of the measuring chamber set at 6.7×10-7Pa.C 1s binding energy was set to 284.8 eV as a reference.

    3 Results and discussion

    The separation method on lignin usually modifies its structure.25Lignin prepared by organic solvent extraction generally exhibits much smaller structural change compared to lignin obtained by chemical treating methods such as kraft lignin and hydrolyzed lignin and therefore is selected in the present study. Among various extracting solvents,dioxane was commonly used because of its good solubility towards lignin.Thus we prepared dioxane lignin as the starting material.

    As dioxane lignin has a very low solubility in water which might prohibit its conversion,we used a mixture of dioxane and water as the reaction medium.Table 1 showed the results of hydrogenolysis of dioxane lignin using Rh/C and H3PO4at different conditions.Rh/C exhibited exceptional activity in CO bond cleavage when wood sawdust was used as the substrate26and therefore was selected as the metal catalyst in this study.After reacting at 200°C for 10 h,the yields of monomers and dimer were quite low,only 5.6%and 1.3%,respectively.Adding H3PO4(1%(w))increased the total yield of monomers and dimer to 10.9%.By increasing the H3PO4concentration to 3%(w),the total yield kept almost unchanged. Then we studied the temperature effect on the hydrogenolysis of dioxane lignin.The general trend is that the total yield of monomers and dimer increases with increasing temperature. For example,when the reaction temperature was increased to 220°C,the total yield of monomers and dimer increased slightly to 11.7%,whereas at 270°C,the highest yield(16.9%)was obtained.

    The existence of these structurally well-defined monomers and dimer strongly suggests that the chemical process in step 1 involves C-O bond cleavages,and the fact that both Rh and an acid are required to obtain the maximized yield indicates that monomer and dimer were produced by a combined hydrogenolysis(catalyzed by Rh)and hydrolysis(catalyzed by H3PO4)of the C-O bond.Nevertheless,it has to be noted that these products only account for less than 20%of all the monomer units in lignin.A majority of lignin repeating units were converted to non-volatile compounds that were invisible by GC-MS analysis.To shed light on the structural changes of all lignin aromatic units during the reaction,we examined the crude products extracted by CHCl3from entries 2,5,and 6 in step 1 with combined FTIR,XPS,EA,and GPC analyses.

    The FTIR spectra of lignin and the crude products at different temperatures were compiled in Fig.1.The intensities of the peaks at 1710 and 1032 cm-1,which were assigned to nonconjugated C=O vibration32and the bending vibration of C-O in ether bond33respectively,decreased considerably with increasing the reaction temperature.The intensity of the vibration of C-O bond34in the guaiacyl structural unit at 1272 cm-1also decreased after reaction which was consistent with the GC results in Table 1.The intensities of the peaks from 1607 to 1423cm-1which were assigned to the vibration of the aromatic ring skeleton35kept almost unchanged,indicating that the aromatic structure was reserved during the reaction.The intensities of the peaks near 2931 cm-1appeared to increase after reaction indicating the increasing of C-H bond in the products.36From the FTIR result it is suggested that the major chemical transformations in step 1 include:(1)hydrogenation of the nonconjugated C=O bond and(2)cleavage of the C-O bond,and consequently an increase in the C-H bonds.Meanwhile,the cleavage of C-O bond which was incomplete as the peak at 1272 cm-1did not disappear even after treating at 270°C.

    Table 1 Conversion of dioxane lignin using H2with Rh/C and H3PO4(step 1)

    Fig.1 FTIR spectra of lignin and its products from step 1 at different temperatures

    FTIR analysis provided insightful information regarding the chemical reactions that occurred to lignin.To obtain quantitative data concerning the composition in lignin,e.g.,how many oxygen atoms were removed,XPS measurement and element analysis were applied.The XPS spectrum revealed the change of different types of carbon-oxygen bonds,and the relative ratio of C-H and C-O bonds.Fig.2 showed the XPS spectrum of dioxane lignin.The spectrum could be fitted into four peaks. The peak at 284.8 eV was the signal of 1s electron of carbons which bonded with C or H.The peaks at 286.4 and 287.7 eV were assigned to C which connected with O through single bond and double bond,respectively.The peak at 291.8 eV corresponded to the C in the carboxyl unit.33,37From Fig.3 it could be found that after reacting at different temperatures,the XPS spectra of the products changed dramatically compared to that of the dioxane lignin.These spectra,together with integration results of different types of C were provided in Fig.3.The carbon bonded with C or H increased from 35.5%in the starting material to 86.0%in the product after reacting at 270°C.The carbon bonded with O through single bond decreased from 54.3%to 14.0%,suggesting that the hydrotreating broke ca 75%total C-O linkages in lignin,corroborating with FTIR analysis that a majority of C-O bonds were broken.The percentage of the signals of the carbon bonded with O through double bond and in the carboxyl unit remained largely unchanged when the reaction temperature was below 250°C. However,a complete disappearance of these signals was observed for the product obtained after reaction at 270°C,highlighting that these C=O and O-C=O bonds were removed by energy intensive transformations that high temperature is necessary,probably by decarbonylation and decarboxylations.

    Fig.2 XPS spectrum of dioxane lignin

    Fig.3 XPS spectra of fresh lignin and lignin after degradation at different temperatures(step 1)

    These products were further analyzed by element analysis with results provided in Table 2.The carbon,hydrogen,and oxygen contents in dioxane lignin were 58.96%,5.75%,and 34.56%,respectively,accounting for over 99%(w)of the lignin indicating that there were few other atoms,such as S and N,existing in the starting material.From the composition empirical formulas of C9H10.5O4.0for the starting material,C9H10.8O3.2, C9H11.1O2.5,and C9H11.3O2.0for the extracted products from reaction at 200,250,and 270°C,respectively,could be calculated. A clear trend was that the C and H contents in the product kept increasing at the compensation of a continuous decrease in the O content as the reaction temperature increased.Meanwhile, the relative ratio between H and C only slightly increased from 1.17 to 1.25,ruling out the possibility of significant hydrogenation towards unsaturated functionalities such as aromatic rings in lignin.The O/C molar ratio decreased from 0.44 to 0.22 after reacting at 270°C,meaning that half of the O was removed from the lignin.Hydrolysis of the C-O bond would not result in a notable decrease in O content,as the O atoms remained in the product.Therefore,the decreasing of O content was plausibly due to the following reactions:(1)dehydration of hydroxyl group,catalyzed by H3PO4;(2)hydrogenolysis of methoxyl group in the lignin;and(3)removing of the carboxyl group at high temperature.The contribution of each reaction to the removal of oxygen in lignin remains unknown and is a subject of future research.

    Fig.4 Molecular weight analyses of lignin and products from step 1 by GPC

    Fig.5 Proposed reaction scheme for the degradation of dioxane lignin1:schematic representation of lignin;2,3:schematic representation of lignin fragments;4:monomers and dimer of lignin

    Table 3 Yields and selectivities in step 2 of hydrogenation of dioxane lignin using Pd/C and H3PO4as catalysts

    We also analyzed the molecular weight(MW)of dioxane lignin and its products after the hydrotreating.As the dioxane lignin has a relatively small molecular weight(about 1300 Da, see Fig.S3(Supporting Information)),and that of the products is even smaller,it was not possible to determine the exact MW of the products by GPC.Nevertheless,we could use the retention time to qualitatively analyze the change of the MW.The result was shown in Fig.4.The dioxane lignin?s retention time was 27.2 min,and the monomer?s was 32.4 min.After the first step reaction,there were two main peaks on the spectra with retention time of 29.8 and 32.4 min.The extension of the retention time on the GPC indicated that the molecular weight of the products was smaller than the reagent.The peak at 32.4 min indicated that there was small molecule which might be monomer or dimer in the products.The results from GPC showed that the dioxane lignin was completely transformed, partly degraded to lower molecular weight products and others to monomer and dimer.

    Based on these analyses above,we proposed a reaction scheme for the first step of selective degradation of lignin (Fig.5).Lignin was degraded to low molecular weight lignin derived polymer and some monomer and dimer.The C-O-C bond in the lignin was much more favored to be broken through hydrolysis or hydrogenolysis than the C-C bond concluded from the model compound reaction(Table S1(see Supporting Information)).The cleavage of C-O bond,which might be due to the dehydration of hydroxyl group,the hydrogenolysis of methoxyl group etc.,resulted in the decreasing of O content in the products.

    After the step 1 reaction,the solution was extracted and the products were placed in the autoclave for the step 2 reacting, under the condition that was optimized in our previous studies.27From Table 3 we could notice that the monomer and dimer were hydrodeoxygenated to alkanes using Pd/C and H3PO4as catalysts at 250°C for 4 h.The highest yield of alkanes was 17.4%in entry 6.Besides,the selectivity of alkanes was all over 100%.We proposed that in the second step,the dioxane lignin with low molecular weight was further partly degraded to its monomer and dimer,and these products were also hydrodeoxygenated to alkanes.

    4 Conclusions

    Dioxane lignin was degraded by a two-step method using supported noble metal catalysts and phosphoric acid.The monomer and dimer could be hydrodeoxygenated to alkanes which has carbon number in the range of gasoline and diesel. The characterization of the products in the first step showed that the lignin was degraded to low molecular weight lignin polymers and lignin monomer and dimer.The O content decreased dramatically.Metal catalyst played a key role in the C-O bond cleavage whereas the phosphoric acid probably promoted dehydration reaction that further decreased the oxygen content.These results provided us a clearer scheme of the lignin?s selective degradation to liquid fuels.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Huber,G.W.;Iborra,S.;Corma,A.Chem.Rev.2006,106,4044. doi:10.1021/cr068360d

    (2) Huber,G.W.;Chheda,J.N.;Barrett,C.J.;Dumesic,J.A. Science 2005,308,1446.

    (3) Rinaldi,R.;Palkovits,R.;Schueth,F.Angew.Chem.Int.Edit. 2008,47,8047.doi:10.1002/anie.200802879

    (4) Deng,L.;Li,J.;Lai,D.M.;Fu,Y.;Guo,Q.X.Angew.Chem. Int.Edit.2009,48,6529.doi:10.1002/anie.200902281

    (5) Bond,J.Q.;Alonso,D.M.;Wang,D.;West,R.M.;Dumesic,J. A.Science 2010,327,1110.doi:10.1126/science.1184362

    (6) Bozell,J.J.Science 2010,329,522.doi:10.1126/ science.1191662

    (7) Geilen,F.M.A.;Engendahl,B.;Harwardt,A.;Marquardt,W.; Klankermayer,J.;Leitner,W.Angew.Chem.Int.Edit.2010,49, 5510.doi:10.1002/anie.201002060

    (8) Corma,A.;de la Torre,O.;Renz,M.;Villandier,N.Angew. Chem.Int.Edit.2011,50,2375.

    (9) Du,X.L.;He,L.;Zhao,S.;Liu,Y.M.;Cao,Y.;He,H.Y.;Fan, K.N.Angew.Chem.Int.Edit.2011,50,7815.doi:10.1002/ anie.201100102

    (10) Rackemann,D.W.;Doherty,W.O.S.Biofuel.Bioprod.Bior. 2011,5,198.doi:10.1002/bbb.267

    (11) Fukuoka,A.;Dhepe,P.L.Angew.Chem.Int.Edit.2006,45, 5161.doi:10.1002/anie.200601921

    (12) Luo,C.;Wang,S.;Liu,H.Angew.Chem.Int.Edit.2007,46, 7636.doi:10.1002/anie.200702661

    (13)Ji,N.;Zhang,T.;Zheng,M.;Wang,A.;Wang,H.;Wang,X.; Chen,J.G.Angew.Chem.Int.Edit.2008,47,8510.doi: 10.1002/anie.200803233

    (14) Zhao,H.;Holladay,J.E.;Brown,H.;Zhang,Z.C.Science 2007,316,1597.doi:10.1126/science.1141199

    (15) Binder,J.B.;Raines,R.T.J.Am.Chem.Soc.2009,131,1979. doi:10.1021/ja808537j

    (16) Zhang,Z.;Zhao,Z.K.Bioresource Technol.2010,101,1111. doi:10.1016/j.biortech.2009.09.010

    (17) Mascal,M.;Nikitin,E.B.Angew.Chem.Int.Edit.2008,47, 7924.doi:10.1002/anie.200801594

    (18) Hu,S.;Zhang,Z.;Song,J.;Zhou,Y.;Han,B.Green Chem. 2009,11,1746.doi:10.1039/b914601f

    (19)Yan,N.;Zhao,C.;Gan,W.J.;Kou,Y.Chin.J.Catal.2006,27, 1159.[顏 寧,趙 晨,甘維佳,寇 元.催化學(xué)報(bào),2006,27, 1159.]

    (20)Yan,N.;Zhao,C.;Luo,C.;Dyson,P.J.;Liu,H.;Kou,Y.J.Am. Chem.Soc.2006,128,8714.doi:10.1021/ja062468t

    (21)Pepper,J.M.;Rahman,M.D.Cell.Chem.Technol.1987,21, 233.

    (22) Thring,R.W.;Katikaneni,S.P.R.;Bakhshi,N.N.Fuel Process.Technol.2000,62,17.doi:10.1016/S0378-3820(99) 00061-2

    (23)Jackson,M.A.;Compton,D.L.;Boateng,A.A.J.Anal.Appl. Pyrol.2009,85,226.doi:10.1016/j.jaap.2008.09.016

    (24) Stark,K.;Taccardi,N.;Bosmann,A.;Wasserscheid,P. ChemSusChem 2010,3,719.doi:10.1002/cssc.200900242

    (25) Zakzeski,J.;Bruijnincx,P.C.A.;Jongerius,A.L.;Weckhuysen, B.M.Chem.Rev.2010,110,3552.doi:10.1021/cr900354u

    (26)Yan,N.;Zhao,C.;Dyson,P.J.;Wang,C.;Liu,L.T.;Kou,Y. ChemSusChem 2008,1,626.doi:10.1002/cssc.200800080

    (27) Zhao,C.;Kou,Y.;Lemonidou,A.A.;Li,X.;Lercher,J.A. Angew.Chem.Int.Edit.2009,48,3987.doi:10.1002/ anie.200900404

    (28) Zhao,C.;Kou,Y.;Lemonidou,A.A.;Li,X.;Lercher,J.A. Chem.Commun.2010,46,412.

    (29) Zhao,C.;He,J.;Lemonidou,A.A.;Li,X.;Lercher,J.A. J.Catal.2011,280,8.doi:10.1016/j.jcat.2011.02.001

    (30)Yan,N.;Yuan,Y.;Dykeman,R.;Kou,Y.;Dyson,P.J.Angew. Chem.Int.Edit.2010,49,5549.doi:10.1002/anie.201001531

    (31) Pepper,J.M.;Siddiqueullah,M.Can.J.Chem.1961,39,1454. doi:10.1139/v61-185

    (32)Derkacheva,O.;Sukhov,D.Macromol.Symp.2008,265,61. doi:10.1002/masy.200850507

    (33) He,J.X.;Zhang,W.;Li,K.J.;Cui,S.Z.;Wang,S.Y.J.Text. Res.2009,30,13.[何建新,章 偉,李克兢,崔世忠,王善元.紡織學(xué)報(bào),2009,30,13.]

    (34)Jung,H.J.G.;Himmelsbach,D.S.J.Agric.Food Chem.1989, 81.

    (35) Zhang,A.P.;Liu,C.F.;Sun,R.C.Ind.Crop.Prod.2010,31, 357.doi:10.1016/j.indcrop.2009.12.003

    (36) Faix,O.Holzforschung 1991,45(Suppl.),21.

    (37) Dorris,G.M.;Gray,D.G.Cell.Chem.Technol.1978,12,9.

    猜你喜歡
    工程學(xué)院北京大學(xué)木質(zhì)素
    福建工程學(xué)院
    福建工程學(xué)院
    北京大學(xué)首都發(fā)展新年論壇(2021)舉行
    就任北京大學(xué)校長(zhǎng)之演說(shuō)
    木質(zhì)素增強(qiáng)生物塑料的研究進(jìn)展
    上海包裝(2019年8期)2019-11-11 12:16:14
    福建工程學(xué)院
    福建工程學(xué)院
    一種改性木質(zhì)素基分散劑及其制備工藝
    天津造紙(2016年1期)2017-01-15 14:03:29
    Le r?le de la lecture dans la formation desétudiants de langues vivantes
    La solitude
    亚洲欧美精品自产自拍| 亚洲国产精品成人综合色| 久久国产乱子免费精品| 欧美精品一区二区大全| 国产熟女欧美一区二区| 欧美+亚洲+日韩+国产| 国产午夜精品论理片| 成人美女网站在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品一二三区在线看| 亚洲国产色片| 久久韩国三级中文字幕| 一个人免费在线观看电影| 深夜精品福利| 国产精品国产三级国产av玫瑰| 97超视频在线观看视频| 黑人高潮一二区| 美女国产视频在线观看| 久久婷婷人人爽人人干人人爱| 搡女人真爽免费视频火全软件| 日韩中字成人| 日韩欧美精品v在线| 日本五十路高清| 国产三级在线视频| 又粗又爽又猛毛片免费看| 成人毛片60女人毛片免费| 插逼视频在线观看| 久久精品91蜜桃| 成人特级黄色片久久久久久久| 三级男女做爰猛烈吃奶摸视频| 国产精品1区2区在线观看.| 日本熟妇午夜| 大香蕉久久网| 少妇熟女aⅴ在线视频| 中国美白少妇内射xxxbb| 美女被艹到高潮喷水动态| 赤兔流量卡办理| 国产伦精品一区二区三区四那| 精品久久久久久久久久免费视频| 十八禁国产超污无遮挡网站| 国产大屁股一区二区在线视频| 国产在线精品亚洲第一网站| 九九爱精品视频在线观看| 国产v大片淫在线免费观看| 色视频www国产| 男人狂女人下面高潮的视频| 国产v大片淫在线免费观看| 晚上一个人看的免费电影| 精品99又大又爽又粗少妇毛片| 内地一区二区视频在线| 高清毛片免费看| 国产精品永久免费网站| 国产精品久久电影中文字幕| 亚洲精品456在线播放app| 亚洲精品456在线播放app| 亚洲av不卡在线观看| 老司机福利观看| 日本黄色片子视频| 嘟嘟电影网在线观看| 精品99又大又爽又粗少妇毛片| 成熟少妇高潮喷水视频| 亚洲图色成人| 久久久a久久爽久久v久久| 啦啦啦观看免费观看视频高清| 午夜久久久久精精品| 丝袜喷水一区| 99热精品在线国产| 赤兔流量卡办理| 亚洲最大成人中文| 日本成人三级电影网站| 天堂中文最新版在线下载 | 能在线免费看毛片的网站| 亚洲av第一区精品v没综合| 亚洲av一区综合| 欧美激情在线99| 亚洲精品国产av成人精品| 性欧美人与动物交配| 又黄又爽又刺激的免费视频.| 国产伦在线观看视频一区| 亚洲欧美精品自产自拍| 日韩精品有码人妻一区| 国产精品精品国产色婷婷| 在现免费观看毛片| 如何舔出高潮| 久久久精品大字幕| 啦啦啦啦在线视频资源| 男插女下体视频免费在线播放| 久久午夜福利片| 青青草视频在线视频观看| 国产亚洲91精品色在线| 亚洲欧美日韩无卡精品| 国产真实伦视频高清在线观看| 欧美bdsm另类| 日韩欧美三级三区| 国产av不卡久久| 激情 狠狠 欧美| 丝袜美腿在线中文| 欧美在线一区亚洲| 男人的好看免费观看在线视频| 乱系列少妇在线播放| 韩国av在线不卡| 国产精品久久久久久久久免| 91精品国产九色| 欧美性猛交黑人性爽| 91av网一区二区| 国产不卡一卡二| 精品午夜福利在线看| 久久久久久大精品| 欧美性猛交╳xxx乱大交人| 青春草亚洲视频在线观看| 91在线精品国自产拍蜜月| 黄色视频,在线免费观看| 亚洲av第一区精品v没综合| 能在线免费看毛片的网站| 最近2019中文字幕mv第一页| 美女高潮的动态| av黄色大香蕉| 国产日韩欧美在线精品| 久久这里有精品视频免费| 欧美激情国产日韩精品一区| 欧美最新免费一区二区三区| 在线观看av片永久免费下载| 91午夜精品亚洲一区二区三区| 日韩av不卡免费在线播放| 深夜a级毛片| 午夜a级毛片| 国产成年人精品一区二区| 深爱激情五月婷婷| 欧美在线一区亚洲| 国产精品嫩草影院av在线观看| 亚洲欧美中文字幕日韩二区| 中文字幕免费在线视频6| 国产色爽女视频免费观看| 成人一区二区视频在线观看| 97超碰精品成人国产| 国产精品一区二区三区四区免费观看| 精品一区二区三区人妻视频| 亚洲欧美精品专区久久| 婷婷六月久久综合丁香| 色综合站精品国产| 18禁在线播放成人免费| 午夜老司机福利剧场| 国产中年淑女户外野战色| 国产乱人偷精品视频| 久久久久久久亚洲中文字幕| 小蜜桃在线观看免费完整版高清| 国内精品一区二区在线观看| 亚洲成人久久性| 2021天堂中文幕一二区在线观| 免费av毛片视频| 舔av片在线| 一边摸一边抽搐一进一小说| 亚洲国产精品成人久久小说 | 精品一区二区三区人妻视频| 久久人人精品亚洲av| 国产一区二区激情短视频| 一本久久中文字幕| 麻豆乱淫一区二区| 亚洲av中文字字幕乱码综合| 熟妇人妻久久中文字幕3abv| 国产黄片美女视频| 国产午夜福利久久久久久| 国产亚洲5aaaaa淫片| 丰满人妻一区二区三区视频av| 黄色视频,在线免费观看| 日本一二三区视频观看| 乱系列少妇在线播放| 九九爱精品视频在线观看| 97超碰精品成人国产| 精品熟女少妇av免费看| 国产午夜精品久久久久久一区二区三区| 色吧在线观看| 亚洲最大成人av| 亚洲精品久久国产高清桃花| 日韩 亚洲 欧美在线| 内地一区二区视频在线| 波多野结衣巨乳人妻| 免费av不卡在线播放| 蜜臀久久99精品久久宅男| 久久精品国产亚洲av香蕉五月| 亚洲精品粉嫩美女一区| 亚洲av熟女| 简卡轻食公司| 欧美极品一区二区三区四区| 天堂av国产一区二区熟女人妻| 一级黄色大片毛片| 亚洲激情五月婷婷啪啪| 我的女老师完整版在线观看| 亚洲av第一区精品v没综合| 国产精品美女特级片免费视频播放器| 99热这里只有精品一区| 国产av麻豆久久久久久久| .国产精品久久| 亚洲成人精品中文字幕电影| 床上黄色一级片| 嫩草影院入口| 51国产日韩欧美| 直男gayav资源| 亚洲高清免费不卡视频| 久久这里只有精品中国| 乱系列少妇在线播放| 亚洲丝袜综合中文字幕| 亚洲国产精品sss在线观看| 岛国毛片在线播放| 亚洲国产高清在线一区二区三| 成人毛片a级毛片在线播放| 久久久成人免费电影| 国产黄色小视频在线观看| 亚洲国产精品成人久久小说 | 3wmmmm亚洲av在线观看| 噜噜噜噜噜久久久久久91| 18禁裸乳无遮挡免费网站照片| 日本撒尿小便嘘嘘汇集6| 成人欧美大片| 在线观看免费视频日本深夜| 久久国产乱子免费精品| 欧美一区二区国产精品久久精品| 国模一区二区三区四区视频| 午夜精品国产一区二区电影 | 级片在线观看| 欧美不卡视频在线免费观看| 永久网站在线| 精品一区二区免费观看| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 18+在线观看网站| 国内精品美女久久久久久| www日本黄色视频网| 日本av手机在线免费观看| 国产视频内射| 国产伦精品一区二区三区四那| 我的老师免费观看完整版| www.色视频.com| 99国产精品一区二区蜜桃av| 欧美xxxx性猛交bbbb| 久久久精品大字幕| 熟女电影av网| 久久精品久久久久久噜噜老黄 | 成人漫画全彩无遮挡| 久久久久网色| 乱码一卡2卡4卡精品| 九草在线视频观看| 亚洲精品日韩av片在线观看| 我要看日韩黄色一级片| 亚洲成a人片在线一区二区| 国产av麻豆久久久久久久| 亚洲一区二区三区色噜噜| 日韩欧美三级三区| 99riav亚洲国产免费| 亚洲久久久久久中文字幕| 91狼人影院| 国产午夜精品久久久久久一区二区三区| or卡值多少钱| 好男人在线观看高清免费视频| 亚洲图色成人| 色综合色国产| 黄片wwwwww| 亚洲精品国产成人久久av| av女优亚洲男人天堂| 国产亚洲av片在线观看秒播厂 | 亚洲18禁久久av| av卡一久久| 精品日产1卡2卡| 波多野结衣巨乳人妻| 精品熟女少妇av免费看| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 免费搜索国产男女视频| 色视频www国产| 少妇人妻一区二区三区视频| 特大巨黑吊av在线直播| 青春草视频在线免费观看| 亚洲中文字幕日韩| 国产精品免费一区二区三区在线| 青春草亚洲视频在线观看| 国产成人aa在线观看| 丝袜喷水一区| 亚洲av二区三区四区| www日本黄色视频网| 欧美一区二区亚洲| 亚洲精品久久国产高清桃花| 最后的刺客免费高清国语| 麻豆一二三区av精品| 麻豆精品久久久久久蜜桃| 亚洲欧洲国产日韩| 免费观看a级毛片全部| 国产精品福利在线免费观看| 国内精品美女久久久久久| 日本-黄色视频高清免费观看| 伦理电影大哥的女人| 精品国内亚洲2022精品成人| 久久久久久久久久成人| 人妻制服诱惑在线中文字幕| 国产探花极品一区二区| 黄色配什么色好看| 亚洲电影在线观看av| 国产一级毛片七仙女欲春2| 久久99精品国语久久久| 少妇被粗大猛烈的视频| 久久精品久久久久久噜噜老黄 | www日本黄色视频网| 亚洲欧美成人综合另类久久久 | 国产不卡一卡二| 久久精品综合一区二区三区| av在线播放精品| 在现免费观看毛片| 麻豆成人午夜福利视频| 少妇熟女欧美另类| 人妻久久中文字幕网| 国产高清三级在线| 国产精品不卡视频一区二区| 国语自产精品视频在线第100页| 免费无遮挡裸体视频| 国产伦精品一区二区三区四那| 亚洲美女搞黄在线观看| 三级毛片av免费| 国产乱人偷精品视频| 人人妻人人看人人澡| 国产黄片美女视频| 久久久久久九九精品二区国产| 2021天堂中文幕一二区在线观| eeuss影院久久| 免费电影在线观看免费观看| а√天堂www在线а√下载| 久久久久九九精品影院| 免费看av在线观看网站| 亚洲国产精品国产精品| 中文字幕av在线有码专区| 国产探花极品一区二区| 国产午夜福利久久久久久| 黄片无遮挡物在线观看| 亚洲av男天堂| a级毛片a级免费在线| 免费人成视频x8x8入口观看| 日韩欧美精品免费久久| 非洲黑人性xxxx精品又粗又长| 亚洲天堂国产精品一区在线| 欧美日本视频| 亚洲第一区二区三区不卡| 免费看a级黄色片| 免费av毛片视频| 综合色av麻豆| 国产精品久久久久久av不卡| 狂野欧美白嫩少妇大欣赏| 美女 人体艺术 gogo| 午夜精品国产一区二区电影 | 亚洲美女视频黄频| 99热网站在线观看| 久久久久久大精品| 91在线精品国自产拍蜜月| 亚洲欧美日韩高清专用| 韩国av在线不卡| 如何舔出高潮| 99久久成人亚洲精品观看| 欧美潮喷喷水| ponron亚洲| 综合色丁香网| 色视频www国产| 亚洲第一电影网av| 黄色欧美视频在线观看| 岛国毛片在线播放| 国产免费一级a男人的天堂| 欧美+亚洲+日韩+国产| avwww免费| АⅤ资源中文在线天堂| 97热精品久久久久久| 成年免费大片在线观看| 观看免费一级毛片| 国内精品一区二区在线观看| 两个人的视频大全免费| 久久精品久久久久久噜噜老黄 | kizo精华| 国产毛片a区久久久久| 99视频精品全部免费 在线| 美女被艹到高潮喷水动态| 国产成人一区二区在线| 99久久人妻综合| 国产日韩欧美在线精品| 免费av观看视频| 内射极品少妇av片p| 成人美女网站在线观看视频| 亚洲图色成人| 91精品一卡2卡3卡4卡| 亚洲电影在线观看av| 日韩三级伦理在线观看| 精品欧美国产一区二区三| 国产av麻豆久久久久久久| ponron亚洲| 亚洲最大成人av| 婷婷色av中文字幕| 亚洲在久久综合| 久久国产乱子免费精品| 69人妻影院| 十八禁国产超污无遮挡网站| 欧美三级亚洲精品| 嫩草影院精品99| 一卡2卡三卡四卡精品乱码亚洲| 色综合色国产| 深夜精品福利| 午夜激情福利司机影院| 99精品在免费线老司机午夜| 欧美精品一区二区大全| 黄色视频,在线免费观看| 欧美色欧美亚洲另类二区| 亚洲色图av天堂| 国产男人的电影天堂91| 麻豆国产av国片精品| 日日摸夜夜添夜夜添av毛片| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 天堂av国产一区二区熟女人妻| 国产精品久久久久久亚洲av鲁大| 观看美女的网站| 精品99又大又爽又粗少妇毛片| 日本成人三级电影网站| 亚洲熟妇中文字幕五十中出| 久99久视频精品免费| 尾随美女入室| 精华霜和精华液先用哪个| 嫩草影院入口| 老女人水多毛片| 午夜福利在线在线| 欧美激情久久久久久爽电影| 99国产极品粉嫩在线观看| 欧美性猛交╳xxx乱大交人| 国产精品一二三区在线看| 三级经典国产精品| 国产一区二区激情短视频| 国产精品久久久久久久久免| 欧美区成人在线视频| 床上黄色一级片| 亚洲欧美精品综合久久99| 在线观看免费视频日本深夜| 久久精品综合一区二区三区| 老司机福利观看| 永久网站在线| 天美传媒精品一区二区| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说 | 2021天堂中文幕一二区在线观| 天天躁日日操中文字幕| 成人午夜精彩视频在线观看| eeuss影院久久| 1024手机看黄色片| 欧美激情国产日韩精品一区| 久久99热这里只有精品18| 国产精品久久久久久精品电影小说 | 99久久人妻综合| 人妻夜夜爽99麻豆av| 我要看日韩黄色一级片| 又爽又黄a免费视频| 身体一侧抽搐| 超碰av人人做人人爽久久| 国产综合懂色| 在线观看av片永久免费下载| 一区二区三区四区激情视频 | 男女啪啪激烈高潮av片| 欧美性猛交╳xxx乱大交人| 级片在线观看| 日日啪夜夜撸| 能在线免费看毛片的网站| 日日干狠狠操夜夜爽| 深夜a级毛片| 中国国产av一级| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 三级男女做爰猛烈吃奶摸视频| avwww免费| 亚洲精品久久国产高清桃花| 麻豆一二三区av精品| 亚洲美女视频黄频| 又爽又黄无遮挡网站| 男的添女的下面高潮视频| 精品久久久久久久末码| 少妇熟女aⅴ在线视频| 国产精品爽爽va在线观看网站| 欧美一区二区亚洲| 国产日本99.免费观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲av一区综合| 日韩大尺度精品在线看网址| 久久亚洲精品不卡| 麻豆精品久久久久久蜜桃| 国产一级毛片七仙女欲春2| 99国产精品一区二区蜜桃av| 大又大粗又爽又黄少妇毛片口| 美女大奶头视频| 亚洲成人久久爱视频| 夫妻性生交免费视频一级片| 欧美zozozo另类| 国产毛片a区久久久久| а√天堂www在线а√下载| 久久精品国产亚洲av涩爱 | 亚洲av不卡在线观看| 日产精品乱码卡一卡2卡三| 秋霞在线观看毛片| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 国产精品不卡视频一区二区| 婷婷六月久久综合丁香| 婷婷色av中文字幕| 日产精品乱码卡一卡2卡三| 国产精品美女特级片免费视频播放器| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| 成人永久免费在线观看视频| 97在线视频观看| 成人美女网站在线观看视频| www.色视频.com| 人妻久久中文字幕网| 不卡一级毛片| 亚洲精品粉嫩美女一区| 又爽又黄a免费视频| 日韩精品有码人妻一区| 免费看av在线观看网站| 此物有八面人人有两片| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影| 免费搜索国产男女视频| 中国美白少妇内射xxxbb| 色哟哟·www| 级片在线观看| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 亚洲欧美精品专区久久| 韩国av在线不卡| 男女啪啪激烈高潮av片| 国产黄色视频一区二区在线观看 | 欧美最新免费一区二区三区| av视频在线观看入口| 国产探花极品一区二区| 欧美性感艳星| 欧美高清成人免费视频www| 精品久久国产蜜桃| 99热这里只有是精品50| 久久精品国产清高在天天线| 国内久久婷婷六月综合欲色啪| 婷婷色综合大香蕉| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 久久人人爽人人片av| 国产精品久久久久久亚洲av鲁大| 简卡轻食公司| 在线观看av片永久免费下载| 国产真实乱freesex| 亚洲成人久久性| 好男人在线观看高清免费视频| 亚洲一区二区三区色噜噜| 午夜福利视频1000在线观看| 女同久久另类99精品国产91| 亚洲高清免费不卡视频| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 色综合色国产| 天天躁日日操中文字幕| 国产黄片美女视频| 欧美zozozo另类| 白带黄色成豆腐渣| 亚洲高清免费不卡视频| av天堂中文字幕网| 日韩欧美精品免费久久| 人体艺术视频欧美日本| 一本久久精品| 身体一侧抽搐| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 午夜激情欧美在线| 欧美又色又爽又黄视频| a级毛色黄片| 91av网一区二区| 精品久久久久久成人av| 热99在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 国产私拍福利视频在线观看| 丝袜喷水一区| 亚洲自偷自拍三级| 大又大粗又爽又黄少妇毛片口| 国产成人福利小说| 欧美变态另类bdsm刘玥| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看| 91在线精品国自产拍蜜月| 亚洲最大成人中文| 久久6这里有精品| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看| 国产老妇女一区| 给我免费播放毛片高清在线观看| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 免费看a级黄色片| 亚洲av不卡在线观看| 亚洲欧美成人综合另类久久久 | 校园春色视频在线观看| 亚洲美女视频黄频| 真实男女啪啪啪动态图| 哪里可以看免费的av片| 国产激情偷乱视频一区二区| 青春草亚洲视频在线观看| 欧美+日韩+精品| 日韩av在线大香蕉| 国产熟女欧美一区二区| 男人和女人高潮做爰伦理| 日韩一本色道免费dvd| 国产中年淑女户外野战色| 日韩欧美精品v在线| 内地一区二区视频在线| 美女黄网站色视频| 成人午夜精彩视频在线观看| 一级二级三级毛片免费看| 人妻制服诱惑在线中文字幕| 亚洲婷婷狠狠爱综合网| av在线蜜桃| 人妻系列 视频| 久久精品国产自在天天线|