• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical Modeling of Nesquehonite Solubility in Li + Na + K + NH4 +Mg + Cl + H2O System with a Speciation-based Approach*

    2012-02-14 08:26:16WANGDaoguang王道廣andLIZhibao李志寶
    關(guān)鍵詞:王道

    WANG Daoguang (王道廣) and LI Zhibao (李志寶)**

    Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

    1 INTRODUCTION

    Nesquehonite (MgCO3·3H2O), one of important mineral compounds of magnesium [1-5], has recently attracted interest due to its good filtration characteristics as a target precipitate in high purity MgO production process [6-8]. Additionally, MgCO3·3H2O is emphasized for its potential role as a CO2-sequestering medium and as a means of disposing Mg-rich wastewater [9-11]. Nesquehonite is usually synthesized through a reactive crystallization (so called precipitation) process by the reaction of MgCl2-rich brine with precipitators, i.e. Na2CO3or (NH4)2CO3, yielding the suspensions with the solutions containing LiCl, NaCl,KCl, NH4Cl, and MgCl2[6-9, 10]. In the crystallization process, the properties of the target solid, namely composition, crystalline, particle size, morphology,cleanliness and stability, are determined by the solid-liquid equilibria (SLE) in the precipitating system [12]. The solubility and stability of nesquehonite in Li + Na + K + NH4+ Mg + Cl + H2O system have been experimentally investigated in our lab [13, 14]. At this point, an accurate comprehensive thermodynamic model capable of predicting nesquehonite solubility in Li + Na + K + NH4+ Mg + Cl + H2O system is desirable and invaluable to obtain crystal nesquehonite with specific/desired properties. Furthermore, the reliable solubility estimation of nesquehonite in the highly concentrated chloride solutions is also an important requirement in developing, designing and optimizing the industrial processes involved in nesquehonite precipitation.

    Some work has been done to model the solubility of minerals with some attention given to solubility of nesquehonite. Harvie et al. [15] developed a thermodynamic model for the Na + K + Mg + Ca + H + Cl +SO4+ OH + HCO3+ CO3+ CO2+ H2O system at 298.15 K. Their model successfully describes the solubility of nesquehonite in MgSO4solution at 298.15 K while the inability is observed to represent the solubility of nesquehonite in MgCl2solution.K?nigsberger et al. [2] established a low-temperature model for the Na2CO3+ MgCO3+ CaCO3+ H2O system below 298.15 K to estimate nesquehonite solubility in the presence of CO2at 101.325 kPa. Marion [16]further extended the low-temperature model to the Na + K + Mg + Ca + H + Cl + SO4+ OH + HCO3+ CO3+CO2+ H2O system. However, limited work has been carried out for a concentrated Li + Na + K + NH4+Mg + Cl + H2O system (I > 10 mol·kg-1) involved in the nesquehonite crystallization process. Therefore,more modeling work is required in order to predict the solubility of nesquehonite in a highly concentrated Li + Na + K + NH4+ Mg + Cl + H2O brine system.

    Modeling the solubility of nesquehonite in chloride solutions is a challenging task mainly because the strong non-ideal solution behavior and the formation of ion complex, i.e.[17-22]. It seems that a hybrid modeling approach of ion-association (i.e., speciation using various complexes) and ion-interaction models may be the best to model such complex aqueous systems. Indeed, the speciation-based chemical modeling approach has been successfully used to represent solubility of sparingly soluble solids in various concentrations of chloride-sulphate-carbonate solutions [23-27].Thus, the speciation approach may be adopted to correlate and predict the solubility of nesquehonite in this work.

    The objective of this work is to establish an accurate model for predicting nesquehonite solubility and describing the speciation chemistry in the Li+Na+K-NH4-Mg-Cl-H2O system up to 10 mol·kg-1at ambient temperature. The speciation modeling approach combined with Pitzer activity coefficient model embedded in Aspen PlusTMplatform is adopted. The equilibrium constants of nesquehonite and Mg-bearing species are evaluated by Van’t Hoff equation. Pitzer equation parameters of MgHCO3-Cl, MgHCO3-NH4,Na-HCO3-Cl, and Na-CO3-Cl interactions are obtained by correlating solubility data. These new parameters are incorporated in Aspen platform to construct a new chemical model for representing the nesquehonite solubility in the concentrated Li + Na + K + NH4+Mg + Cl + H2O system at temperatures ranging from 288.15 to 308.15 K. Finally, the new model can aid in explaining the solubility behavior of nesquehonite in Li + Na + K + NH4+ Mg + Cl + H2O system.

    2 MODELING METHODOLOGY

    2.1 Chemical equilibria

    In nesquehonite-saturated aqueous electrolyte systems, two types of reaction occur: partial dissolution of nesquehonite and association (speciation) of ionic species. Thus, the solubility of nesquehonite (s) is equal to the sum of the molatilies of the free magnesium ion Mg2+and the associated Mg-bearing species, i.e.

    Consequently, the solubility of nesquehonite is governed by the following four equilibrium reactions

    The thermodynamic equilibrium constants for reactions (2) to (5) are

    where Kspis the solubility product constant of nesquehonite, K1, K2and K3the association constants ofand MgOH+, respectively, m and γ are the molality and activity coefficient for corresponding species, and awis the activity of water.

    By solving Eqs. (1), (6)-(9), we obtain the solubility of nesquehonite

    In the MgCl2-containing media, however, the total (Mg) does not represent the nesquehonite solubility,which becomes s=total (C), i.e., s is taken as the sum of all C-bearing species.

    Therefore, the following dissociation equilibria should be considered to calculate the nesquehonite solubility in these systems.

    The thermodynamic equilibrium constants for reactions (12) and (13) are

    where K4and K5are the dissolution constants of H2CO3and, respectively.

    By solving Eqs. (6)-(8), (11), (14) and (15), we obtain the solubility of nesquehonite

    From Eqs. (10) and (16), it is apparent that the calculation of nesquehonite solubility requires the equilibrium constants for all reactions including nesquehonite dissolution and ion complex association in the system of interest, the activity coefficients aqueous species, as well as the activity of water. Therefore, the success in modeling is heavily dependent on the calculation accuracy of the thermodynamic parameters above.

    2.2 Equilibrium constant

    Two methods,i.e. solubility data regression and thermodynamic data calculation, are feasible to access the chemical equilibrium constants. However, the solubility data are not always available. Therefore, the latter is often employed. The solubility product constant for nesquehonite and equilibrium constants for various complex species of interest in this work are calculated with thermodynamic data by following Van’t Hoff equation [28]

    2.3 The Pitzer activity coefficient model

    There are different types of activity coefficient models, such as the Pitzer model, the electrolyte NRTL equation, and the Bromely-Zemaitis model.Among these models, the Pitzer ion-interaction model has been successfully used for highly concentrated electrolytes (up to 30 mol·kg-1) and elevated temperature (up to 473 K) to predict the osmotic coefficient and the activity coefficients of chemical species[29], and is subsequently employed in this work. The model has already been discussed in several publications [30, 31], and need not be repeated here. This

    model gives expressions for the excess Gibbs energy and hence for the logarithms of the activity coefficients and the osmotic coefficient of electrolyte mixtures in terms of six types of empirical parameters,i.e.β(0),β(1),β(2),Cφ,θij, andψijk. Provided that their temperature and pressure dependencies are known, these parameters permit the calculation of solubilities in binary, ternary and more complex mixtures at different temperatures and pressures. For a limited temperature range around the reference temperatureTr=298.15 K,the binary interaction parameters may be set at a constant with respect to our preliminary calculations. Additionally, the activity of water,aw, is related to the osmotic coefficient,φ, according to

    3 RESULTS and DISCUSSION

    3.1 Solubility estimation with the existing models

    Table 1 Absolute average relative deviation (AARD① AARD(%); NP: number of experimental points. ② Existing model in Aspen Plus./%) between experimental data and calculated results from the model

    Table 1 Absolute average relative deviation (AARD① AARD(%); NP: number of experimental points. ② Existing model in Aspen Plus./%) between experimental data and calculated results from the model

    Solubility System Temperature/oC AARD②/% AARD③/% AARD④/%MgCO3·3H2O-H2O 25, 30, 40 41.04 11.07 3.20 MgCO3·3H2O-NaCl-H2O 15, 25, 35 13.23 12.16 2.24 MgCO3·3H2O-KCl-H2O 25 15.63 10.29 1.72 MgCO3·3H2O-LiCl-H2O 25 18.83 10.82 1.40 MgCO3·3H2O-NH4Cl-H2O 15, 25, 35 7.54 11.85 1.94 MgCO3·3H2O-MgCl2-H2O 15, 25 70.76 54.93 26.50 MgCO3·3H2O -NH4Cl-MgCl2-H2O 25, 35 21.54 24.79 2.72

    ③ Marion model [16]. ④ Model (this work).

    The solubility of nesquehonite in water and aqueous solutions of electrolyte,i.e. NaCl, NH4Cl,LiCl, KCl and MgCl2, are estimated first with an Aspen Plus model (software package 11.1) and Marion model [16] by comparing model predictions with experimental data. The absolute average relative deviations (AARD) of the predictions by the two models in all involving systems are listed in Table 1. In general,both models give poor estimates with AARDs more than 10% for almost all of the systems. Even, the AARDs of the predictions by two models for MgCO3?3H2O + MgCl2+ H2O system are 70.76% and 54.93%. As an example, Fig. 1 presents a comparison of the model predictions with the experimental measurements [13] for the solubility of nesquehonite in water. The Marion model, with the AARD of 11.07%,underestimates the solubility at temperatures below 303.15 K, but it definitely overestimates the solubility.It can be also seen that the existing model in Aspen grossly underestimates the solubility with the AARD of 41.04%.

    Figure 1 Solubility of MgCO3·3H2O in pure water▲ Dong et al. [13]; Model (Aspen); Model (Marion);Model (this work)

    The discrepancy between predictions of the existing model and experimental solubilities in the Li +Na + K + NH4+ Mg + Cl + H2O system, as explained later, is mainly attributed to the whole/partial ignorance of Mg-bearing species,i.e.and MgOH+, and their relevant thermodynamic parameters. Given the attractiveness of regression ability incorporated in Aspen PlusTMplatform and its user friendly interface, further work is undertaken with the purpose of improving the solid liquid equilibrium(SLE) estimation capability of Aspenviadetermination and validation of new equilibrium constants and Pitzer model parameters.

    3.2 Model parameterization

    3.2.1Calculation of equilibrium constants

    The dissolution constants of H2CO3andK4andK5, have been thoroughly investigated and proper thermodynamic data have been developed and included in the default databank of Aspen Plus. The present work focuses on the solubility product constant,Ksp, of nesquehonite and the association con-MgOH+, which are inaccurate or absent in the Aspen Plus databank. In order to obtain these constants,μ0,ΔfH0andcpof equilibrium species involved are required by use of the Van’t Hoff equation [Eq. (17)].The relevant thermodynamic data are collected (see Table A1). The thermodynamic data of water is from Zemaitiset al. [32] withcpre-regressed in the following form

    withTin Kelvin. Heat capacity of nesquehonite is fitted from data given by Robie [33] with the above equation. Other thermodynamic data listed in Table 2 are from Refs. [34-36] with the heat capacity in the form of

    whereTθ=228 K.

    Table 2 Coefficients for aqueous equilibrium constants and nesquehonite solubility product

    ① Aspen plus. ② This work.

    Having compiled the thermodynamic data for all the equilibrium species, the equilibrium constants (Ksp,K1,K2andK3) are determined using Eq. (17). In subsequent calculations, it is conventional to have simple mathematical expressions for the equilibrium constants. Accordingly, these computational results are subjected to regression analysis using an equation of the form

    The regressed coefficients are given in Table 2 and highlighted in italic.

    3.2.2Pitzer model parameters

    Previous investigations for modeling mineral solubilities in concentrated Na + K + Mg + Ca + Cl +SO4+ OH + H2O or Na + K + Mg + Ca + H + Cl +SO4+ OH + HCO3+ CO3+ CO2+ H2O systems have been successfully carried out by Pabalan and Pitzer [29],Harvieet al. [15, 23], as well as other researchers [20].Therefore, binary and ternary Pitzer parameters used in the work (as listed in Tables 3 and 4) are largely taken from their work because these parameters are suitable for high ionic strength brines (up to 30 mol·kg-1). All of the binary and ternary parameters for Na+, K+, Mg2+interactions with Cl-are taken from Pabalan and Pitzer [29], and interactions withandfrom Harvieet al. [15] and He and Morse[20]. Binary interaction parameters of LiCl from Song and Yao [37] are adopted for its application in wide LiCl concentrations up to saturation. Binary interaction parameters of NH4Cl and ternaryθandψparameters of4NH+, Mg2+and Cl-from Balarewet al. [38] and Christov [39] are used. It should be mentioned that the Pitzer parameters and solubility data subjected to the following model parameterization are of 298.15 K.

    (1) MgCO3?3H2O + H2O The solubility data can be well represented only through the use of the new equilibrium constants listed in Table 2 and the binary Pitzer parameters of Mg-HCO3listed in Table 3 for MgCO3?3H2O + H2O system. As can be seen from Fig.1, the model predictions are in good agreement with the experimental values with the AARD of 3.2%.

    (2) MgCO3?3H2O + NH4Cl + H2O It is noted that the hydrolysis reaction of4NH+ions should be included in the model to predict the solubility of nesquehonite in the system.

    Table 3 Pitzer binary interaction parameters, β(0), β(1), and Cφ, for Li + Na + K + NH4 + Mg + Cl + CO3 + HCO3 + H2O system at 298.15 K

    ① This work.

    The above hydrolysis reaction is treated as two dissociation reactions, H2O and NH3, for which the equilibrium constants are available in Aspen Plus listed in Table 2. Fig. 2 shows the comparison of model predictions with experimental data for the solubility of nesquehonite in NH4Cl solutions. Better predictions are obtained with including Eq. (22) than excluding it. However, the pronounced deviation is still observed for the former at higher NH4Cl concen-0.3885 and 0.2735, respectively, lead to a significant improvement in the model fitting to experimental data(see Fig. 2) with AARD of 1.94%.

    Figure 2 Solubility of MgCO3·3H2O in NH4Cl solutions at different temperatures■ 288.15 K; ▼ 298.15 K; 308.15 K; Model (Aspen);Model (this work)

    Table 4 The ternary Pitzer interaction parameters, θ and ψ, for Li + Na + K + NH4 + Mg + Cl + CO3 + HCO3 + H2O system at 298.15 K

    ① This work.

    Figure 3 Solubility of MgCO3·3H2O in NaCl solutions at different temperatures■ 288.15 K; ▲ 298.15 K; 308.15 K; 298.15 K (Aspen);Model (this work)

    (3) MgCO3?3H2O + NaCl + H2O In the system,having values of 0.03 and -0.005, respectively, are obtained by regressing the nesquehonite solubility at 298.15 K. The regressed result is plotted in Fig. 3 with AARD of 2.24%.

    (4) MgCO3?3H2O + KCl + H2O and MgCO3?3H2O +LiCl + H2O The solubility of nesquehonite can be well represented by use of parameters presented above for the two systems. As can be seen from Fig. 4, the model predictions are in good agreement with the experimental values with the AARD of 1.72% and 1.40%.

    Figure 4 Solubility of MgCO3·3H2O in KCl and LiCl solutions at 298.15 K■ LiCl; ▲ KCl; LiCl (Aspen); KCl (Aspen);Model (this work)

    (5) MgCO3?3H2O + MgCl2+ H2O As aforementioned, large deviations of 70.76% and 54.93%between predications and experimental data in such system are observed by use of the existing models. It might indicate the difficulty in modeling the nesquehonite solubility in such common ion system. Preliminary examination shows that the solubility of nesquehonite could not be fitted very well with orThe best fitting with AARD of 26.50% is obtained using the parameters listed in Tables 2 and 3 (see Fig.5), indicating significant improvement in comparison with the existing models as shown in Table 1.

    Figure 5 Solubility of MgCO3·3H2O in MgCl2 solutions at 288.15 and 298.15 K■ 288.15 K; ▼ 298.15 K; 298.15 K (Aspen); 298.15 K(this work); 298. 15 (this work)

    The predictions with the existing model of Aspen at 298.15 K are also plotted for comparison in Figs. 2-5.It is noticeable that the prediction of the newly developed model has been greatly improved by comparing with the existing models.

    3.3 Validation of the model

    After successfully modeling the solubility data of nesquehonite in the concentrated NH4+ Na + K + Li +Mg + Cl system at 298.15 K, the resulting model is further validated by comparing model predictions with experimental data not used in model parameterization.To accomplish the task, the solubility of nesquehonite in three binary systems, NaCl + H2O, NH4Cl + H2O and MgCl2+ H2O, at 288.15 and 308.15 K and in the ternary NH4Cl + MgCl2+ H2O system are predicted.In Figs. 2, 3 and 5, 6, the model with the new parameters is evaluated against experimental solubility data.Excellent agreement between new model predictions and experimental data is observed for all the four cases (except for MgCl2). It is noteworthy to point out that neither temperature-dependent parameters nor MgCl2were involved when the new model parameters were determined.

    Figure 6 Solubility of MgCO3·3H2O in mixed solutions(NH4Cl + MgCl2) at 298.15 and 308.15 K■ 298.15 K; ▲ 308.15 K; Model (this work)

    3.4 Model application: solubility behavior of nesquehonite in chloride media

    In order to better appreciate the effect of various chloride salts,i.e. NaCl, NH4Cl, KCl, LiCl, and MgCl2, on the solubility behavior of nesquehonite in aqueous solutions, the predicted solubility data with the new model in various chloride solutions at 298.15 K are summarized in Fig. 7. It is noted that the chloride salts affect the solubility of nesquehonite in a complex way. The effect is stronger as the charge-mass ratio increases for alkali metals,i.e. as we move from KCl to NaCl to LiCl. The solubility of nesquehonite is mildly affected by MgCl2in concentration below 2 mol·kg-1, and then it increases in higher concentration range. Of all salts investigated, NH4Cl seems to enhance the solubility of nesquehonite most.

    Figure 7 Effect of various chloride salts on the solubility of nesquehonite at 298.15 K on the basis of new model estimates 1—NaCl; 2—KCl; 3—LiCl; 4—MgCl2; 5—NH4Cl

    As aforementioned, it can be derived from Eqs.(10) and (16) that the solubility of nesquehonite is determined by the activity coefficients, Mg/CO3-bearing speciation and H+/OH-, as well as the equilibrium constants. Furthermore, at a given temperature, the equilibrium constants are invariable. Thus, we decided to investigate the Mg/CO3-bearing speciation distribution, activity coefficients, and pH in various chloride solutions with the aid of the newly developed model to further explain the effect of various chloride salts on nesquehonite solubility.

    3.4.1The behavior of Mg/CO3-bearing speciation in chloride solutions

    Figure 8 Magnesium speciation at 298.15 K in nesquehonite-saturated NaCl brine

    Figure 9 Magnesium speciation at 298.15 K in nesquehonite-saturated NH4Cl brine

    Figure 10 Carbon speciation at 298.15 K in nesquehonite-saturated MgCl2 brine

    The distribution of Mg/CO3-bearing species in NaCl, NH4Cl, or MgCl2solutions saturated with nesquehonite is shown in Figs. 8-10, while the distribution of Mg/CO3-bearing species for LiCl and KCl solutions is not shown since they are very similar to Fig. 8. In the case of NaCl (Fig. 8), it is obvious that the magnesium ion (Mg2+) dominates the nesquehonite solubility while the magnesium carbonate neutral species,, is a moderately important species. Theion seems to be negligible. A dramatic variation is observed in the relative abundance of the four Mg-bearing species with addition of NH4Cl(Fig. 9) up to 0.3 mol·kg-1. Theion, instead, becomes moderately important at higher NH4Cl concentrations. The Mg2+ion still controls the nesquehonite solubility in the whole concentration range of NH4Cl. MgOH+becomes negligible in the case.

    The distribution of carbonate-bearing species is given in Fig. 10 for the case of MgCl2.is modestly important C-bearing species in the whole MgCl2concentration range. Following a plateau, the concentration of dominantspecies dramatically decreases in the concentration range of MgCl2above~1.5 mol·kg-1. It is noticeable that the abundance of MgHboosts with the increment of MgCl2, and becomes predominant at higher MgCl2concentrations.This is due to a twofold effect of magnesium ion on the dissolution of nesquehonite [reversing Eq. (2)] and the formation of Mg-bearing species [facilitating Eqs.(3)-(5)].

    3.4.2The behavior of activity coefficients in chloride solutions

    Solubility of nesquehonite is fundamentally determined by the dissolution reaction, Eq. (2). According to the thermodynamic definition [Eq. (6)], the solubility product constant can be given by

    In order to reveal the effect of ion interaction on nesquehonite solubility, the activity coefficient product(as calculated with the aid of the newly developed model) as a function of chloride salt concentration at 298.15 K is plotted in Fig. 11. Thevalue reaches a minimum (at ~2-3 m),and then gradually increases with NaCl concentration.This minimum corresponds to the maximum nesquehonite solubility (see Fig. 2). However, thesalt solutions except for NaCl case. The behavior ofvalues mirrors the sharp of solubility curve for the case of NaCl, LiCl, KCl and NH4Cl (see

    value and nesquehonite solubility in MgCl2case is due to the complexity caused by the dissociation and association involving Mg2+ion.

    3.4.3The behavior of pH values in chloride solutionsFigure 12 demonstrates the pH values (as calculated with the aid of the newly developed model) of nesquehonite-saturated solutions containing chloride salts. The pH values vary mildly from 10.50 to 10.82 for the system containing alkali metal salts. The pH values are preferred for the existence ofcases. Thus, the dominantion associated with the dominant Mg2+ion in the Mg-bearing species results in the modestly importantion,dominant in C-bearing species in the alkali metals species in these solutions. The pH value in MgCl2case is modest due to the formation of MgOH+[as shown in Eq. (4)],the abundance of which is similar toin aqueous solution. The variation of pH is most significant in the case of NH4Cl. It can be seen that the pH value sharply decreases to 9 with addition of NH4Cl to 0.075 mol·kg-1, and then gradually to 8 with further increase of NH4Cl concentration to 4.5 mol·kg-1. The dramatic decrease of pH is due to the hydrolysis ofion [as shown in Eq. (22)]. In the NH4Cl case,the pH value ranging from 8 to 9 is preferred for the formation ofbecomes dominant in C-bearing species andMg is subsequently the modestly important species in-containing solutions.

    Figure 11 Calculated values of 3 as a function of concentration for various chloride salts at 298.15 K 1—NaCl; 2—KCl; 3—LiCl; 4—MgCl2; 5—NH4Cl

    Figure 12 Calculated pH as a function of concentration for various chloride salts at 298.15 K

    4 CONCLUSIONS

    A chemical model to describe the chemistry and solubility of nesquehonite in concentrated chloridecontaining brine has been successfully developed on the basis of Pitzer model embedded in Aspen Plus platform. The model incorporates equilibrium constants and new Pitzer parameters obtained in this work, as well as those model parameters available in literature.The accurate equilibrium constants of solid and aqueous species,i.e. nesquehonite,and MgOH+, are judicially obtained with the published thermodynamic data. The prediction ability of the new model is greatly improved, superior to those presented in other studies. The modeling results indicate that the new thermodynamic model on the basis of Pitzer model embedded in Aspen Plus platform, after improvements made in this work, is a good tool to describe nesquehonite solubility behavior and calculate solution speciation in concentrated NH4+ Na + K + Li + Mg + Cl + H2O system at ambient temperature. With the help of the model,the difference of solubility behavior for nesquehonite in various chloride solutions is explained, based on the formation of,etc., pH and activity coefficient changes.

    1 H?nchen, M., Prigiobbe, V., Baciocchil, R., Mazzotti, M., “Precipitation in the Mg-carbonate system-effects of temperature and CO2pressure”,Chem.Eng.Sci., 63, 1012-1028 (2008).

    2 K?nigsberger, E., K?nigsberger, L.C., Gamsj?ger, H., “Low-temperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O”,Geochim.Cosmochim.Acta, 63, 3105-3119 (1999).

    3 Hopkinson, L., Rutt, K., Cressey, G., “The transformation of nesquehonite to hydromagnesite in the system CaO-MgO-H2O-CO2:An experimental spectroscopic study”,The Journal of Geology, 116,387-400 (2008).

    4 Kloprogge, J.T., Martens, W.N., Nothdurft, L., Duong, L.V., Webb,G.E., “Low temperature synthesis and characterization of nesquehonite”,Journal of Materials Science Letters, 22, 825v829 (2003).

    5 Giester, G., Lengauer, C.L., Rieck, B., “The crystal structure of nesquehonite, MgCO3·3H2O, from Lavrion, Greece”,Mineralogy and Petrology, 70, 153-163 (2000).

    6 Wang, Y., Li, Z.B., Demopoulos, G.P., “Controlled precipitation of nesquehonite by the reaction of MgCl2with (NH4)2CO3at 303 K”,J.Cryst.Growth, 310, 1220-1227 (2007).

    7 Cheng, W.T., Li, Z.B., “Precipitation of nesquehonite from homogeneous supersaturated solutions”,Cryst.Res.Technol., 44, 937-947(2009).

    8 Cheng, W.T., Li, Z.B., Demopoulos, G.P., “Effect of temperature on the preparation of magnesium carbonate hydrates by reaction of MgCl2with Na2CO3”,Chin.J.Chem.Eng., 17, 661-669 (2009).

    9 Park, A.A., “Carbon dioxide sequestration: Chemical and physical activation of aqueous carbonation of Mg-bearing minerals and pH swing process”, Ph.D. Dissertation, The Ohio State University, USA(2005).

    10 Ferrini, V., Vito, C.D., Mignardi, S., “Synthesis of nesquehonite by reaction of gaseous CO2with Mg chloride solution: Its potential role in the sequestration of carbon dioxide”,J.HazardousMaterials, 168,832-837 (2009).

    11 Ballirano, P., Vito, C.D., Ferrini, V., Mignardi, S., “The thermal behavior and structural stability of nesquehonite, MgCO3·3H2O, evaluated byin situlaboratory parallel-beam X-ray powder diffraction:New constraints on CO2sequestration within minerals”,J.HazardousMaterials, 178, 522-528 (2010).

    12 Demopoulos, G.P., “Aqueous precipitation and crystallization for the production of particulate solids with desired properties”,Hydrometallurgy, 96, 199-214 (2009).

    13 Dong, M., Li, Z.B., Mi, J.G., Demopoulos, G.P., “Solubility and stability of nesquehonite (MgCO3·3H2O) in mixed NaCl, KCl, MgCl2and NH4Cl solutions”,J.Chem.Eng.Data, 53, 2586-2593 (2008).

    14 Dong, M., Li, Z.B., Mi, J.G., Demopoulos, G.P., “Solubility and stability of nesquehonite (MgCO3·3H2O) in mixed NaCl + MgCl2,NH4Cl + MgCl2, LiCl and LiCl + MgCl2solutions”,J.Chem.Eng.Data, 54, 3002-3007 (2009).

    15 Harvie, C.E., M?ller, N., Weare, J.H., “The prediction of mineral solubilities in natural waters: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 °C”,Geochim.Cosmochim.Acta, 48, 723-751 (1984).

    16 Marion, G.M., “Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system”,Geochim.Cosmochim.Acta, 65, 1883-1896 (2001).

    17 Nakayama, F.S., “Magnesium complex and ion-pair in MgCO3-CO2solution system”,J.Chem.Eng.Data, 16, 178-181 (1971).

    18 McGee, K.A., Hostetler, P.B., “Studies+in the system MgO-SiO2-CO2-H2O. IV: The stability of MgOH from 10 to 90 °C”,Am.J.Sci., 275, 304-317 (1975).

    19 Millero, F.J., Thurmond V., “The ionization of carbonic acid in Na-Mg-Cl solutions at 25 °C”,J.Solution Chem., 12, 401-412(1983).

    20 He, S., Morse, J.W., “The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions form 0 to 90 °C”,Geochim.Cosmochim.Acta., 57, 3533-3555 (1993).

    21 Siebert, R.M., Hostetler, P.B. , “The stability of the magnesium carbonate ion pair from 10° to 90 °C”,Am.J.Sci., 277, 716-734(1977).

    22 Bauman, J.E.Jr., “Thermodynamic measurements of carbonate equilibria involving metal ions”,Inf.Circ.Bur.MinesU.S.Dep.Inter.No, 8853, 268-274 (1981).

    23 Harvie, C.E., Weare, J.H., “The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-Cl-SO4-H2O systems from zero to high concentration at 25 °C”,Geochim.Cosmochim.Acta, 44,981-997 (1980).

    24 Li, Z.B., Demopoulos, G.P., “Speciation-based chemical equilibrium model of CaSO4solubility in the H + Na + Ca + Mg + Al + Fe(II) +Cl + SO4+ H2O system”,Ind.Eng.Chem.Res., 46, 6385-6392 (2007).

    25 Azimi, G., Papangelakis, V.G., Dutrizac, J.E., “Development of an MSE-based chemical model for the solubility of calcium sulphate in mixed chloride-sulphate solutions”,Fluid Phase Equilibria, 266,172-186 (2008).

    26 Azimi, G., Papangelakis, V.G., “Thermodynamic modeling and experimental measurement of calcium sulphate solubility in complex aqueous solutions”,Fluid Phase Equilibria, 290, 88-94 (2010).

    27 Azimi, G., Papangelakis, V.G., “The solubility of gypsum and anhydrite in simulated laterite pressure acid leach solutions up to 250 °C”,Hydrometallurgy, 102, 1-13 (2010).

    28 Wang, D.G., Li, Z.B., “Modeling solid-liquid equilibrium of NH4Cl-MgCl2-H2O system and its application to recovery of NH4Cl in MgO production”,AIChE J., 57, 1595-1606 (2011).

    29 Pabalan, R.T., Pitzer, K.S., “Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O”,Geochim.Cosmochim.Acta, 51, 2429-2443 (1987).

    30 Pitzer, K.S., “Thermodynamics of electrolytes. I. Theoretical basis and general equations”,J.Phys.Chem., 77, 268-277 (1973).

    31 Pitzer, K.S., “Theory: Ion interaction approach”, In: Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton, 75-154(1991).

    32 Zemaitis, J.F., Clark, D.M., Rafal, M., Scrivner, N.C., Handbook of Aqueous Electrolyte Thermodynamics, Des. Inst. for Phys. Prop.Res., AIChE, New York (1986).

    33 Robie, R.A., “The heat capacities at low temperatures and entropies at 298.15 K of nesquehonite, MgCO3·3H2O, and hydromagnesite”,American Mineralogist, 57, 1768-1781 (1972).

    34 Shock, E.L., Helgeson, H.C., “Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 Kb and 1000 °C”,Geochim.Cosmochim.Acta, 52, 2009-2036 (1988).

    35 Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A., “Inorganic species in geologic fluids: Correlations among standard molar thermodynamic properties of aqueous ions and hydroxide complexes”,Geochim.Cosmochim.Acta, 61, 907-950 (1997).

    36 Johnson, J.W., Oelkers, R.H., Helgeson, H.C., “Supcrt92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous, and reactions from 1 to 5000 bar and 0 to 1000 °C”,Computers and Geosciences, 18, 899-947 (1992).

    37 Song, P.S., Yao, Y., “On Pitzer parameters of LiCl and Li2SO4”,Journal of Salt Lake Science, 4, 55-63 (1996).

    38 Balarew, C., Christov, C., Valyashko, V., Petrenko, S., “Thermodynamics of formation of carnallite type double salts”,J.Solution Chem., 22, 173-181 (1993).

    39 Christov, C., “Thermodynamics of formation of double salts and mixed crystals from aqueous solutions”,J.Chem.Thermodynamics,37, 1036-1060 (2005).

    APPENDIX

    Table A1 Standard-state chemical potentials, enthalpies of formation, and heat capacity of species

    ① Fitted from data given by Robie [33].

    猜你喜歡
    王道
    庫(kù)存蘋果形勢(shì)嚴(yán)峻 注重品質(zhì)才是王道
    埋個(gè)將軍
    荀子的“王道”觀念
    Realistic Words, Chilling after Reading
    青年生活(2020年27期)2020-07-30 13:26:54
    傲邦雖有效 幸福是王道
    追尋中國(guó)油畫先驅(qū)王道源
    Experimental investigation on diffusive contaminant release from permeable sediment layer under unidirectional unsteady flow*
    Sediment rarefaction resuspension and contaminant release under tidal currents*
    民主抑或王道:儒家與現(xiàn)代秩序的追問
    Hydrodynamic effects on contaminants release due to rususpension and diffusion from sediments*
    久久久久国产一级毛片高清牌| 国产又黄又爽又无遮挡在线| 色婷婷久久久亚洲欧美| 99国产极品粉嫩在线观看| 国内揄拍国产精品人妻在线 | 人妻久久中文字幕网| 日日摸夜夜添夜夜添小说| 天天一区二区日本电影三级| 波多野结衣av一区二区av| 欧美日韩中文字幕国产精品一区二区三区| 热99re8久久精品国产| 国产成人av激情在线播放| 777久久人妻少妇嫩草av网站| 精品久久久久久,| 久久久国产精品麻豆| 欧美色视频一区免费| 亚洲第一电影网av| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久 | 欧美 亚洲 国产 日韩一| 国产精品久久久久久亚洲av鲁大| 国产亚洲欧美在线一区二区| 在线观看日韩欧美| 成人一区二区视频在线观看| 免费在线观看影片大全网站| 88av欧美| 中文字幕人妻熟女乱码| 国产亚洲精品综合一区在线观看 | 一个人免费在线观看的高清视频| 午夜老司机福利片| 热re99久久国产66热| 一区二区三区高清视频在线| 久久久久久久午夜电影| 成年免费大片在线观看| 亚洲国产精品合色在线| 国产又色又爽无遮挡免费看| 1024视频免费在线观看| 91老司机精品| 嫩草影视91久久| 女性生殖器流出的白浆| 久99久视频精品免费| 怎么达到女性高潮| 嫩草影视91久久| 亚洲无线在线观看| 精品无人区乱码1区二区| 国产精品野战在线观看| 亚洲精品一区av在线观看| 欧美性猛交黑人性爽| 99精品久久久久人妻精品| 免费观看精品视频网站| 久久精品人妻少妇| 午夜亚洲福利在线播放| 国产精品久久电影中文字幕| 好看av亚洲va欧美ⅴa在| 午夜福利在线在线| 国产av不卡久久| 免费看美女性在线毛片视频| 成人国语在线视频| 精品国产乱子伦一区二区三区| 女同久久另类99精品国产91| 免费在线观看完整版高清| 99riav亚洲国产免费| 成人18禁高潮啪啪吃奶动态图| 又紧又爽又黄一区二区| 亚洲国产欧洲综合997久久, | 免费看a级黄色片| 日韩视频一区二区在线观看| 欧美色欧美亚洲另类二区| 韩国av一区二区三区四区| 国产男靠女视频免费网站| 久久久国产精品麻豆| 精品无人区乱码1区二区| 亚洲国产欧美网| 午夜免费成人在线视频| 免费观看人在逋| 精品久久蜜臀av无| 精品不卡国产一区二区三区| 波多野结衣高清作品| 欧美乱妇无乱码| 91老司机精品| 女人高潮潮喷娇喘18禁视频| cao死你这个sao货| 男女那种视频在线观看| 伊人久久大香线蕉亚洲五| 国产精品爽爽va在线观看网站 | 亚洲精品国产区一区二| 国产精品爽爽va在线观看网站 | 久久久久久九九精品二区国产 | x7x7x7水蜜桃| 国产伦一二天堂av在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 免费看a级黄色片| 一夜夜www| 欧美日韩亚洲国产一区二区在线观看| 精品福利观看| 深夜精品福利| xxxwww97欧美| 国产精品免费视频内射| 变态另类丝袜制服| 久久草成人影院| 久久久久国产精品人妻aⅴ院| av欧美777| 视频在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 女生性感内裤真人,穿戴方法视频| 一级片免费观看大全| 一级a爱片免费观看的视频| 老汉色∧v一级毛片| www日本黄色视频网| 久久久水蜜桃国产精品网| 久久久久久久精品吃奶| 在线观看免费午夜福利视频| 国产精品永久免费网站| 国产熟女xx| 久久婷婷成人综合色麻豆| 国产av一区二区精品久久| or卡值多少钱| 亚洲成av人片免费观看| 亚洲av电影不卡..在线观看| 在线国产一区二区在线| 国产一级毛片七仙女欲春2 | 国产熟女午夜一区二区三区| 国产激情久久老熟女| 中文资源天堂在线| 一区福利在线观看| 免费在线观看黄色视频的| 亚洲av片天天在线观看| 久久人人精品亚洲av| 满18在线观看网站| 久久青草综合色| 此物有八面人人有两片| 国产成人精品久久二区二区91| 亚洲一区高清亚洲精品| 久久久久精品国产欧美久久久| 99久久国产精品久久久| 亚洲 欧美一区二区三区| 国内少妇人妻偷人精品xxx网站 | 美国免费a级毛片| 精品人妻1区二区| 99国产综合亚洲精品| 国内精品久久久久久久电影| 精品国内亚洲2022精品成人| 中文亚洲av片在线观看爽| 香蕉av资源在线| 欧美在线一区亚洲| 桃色一区二区三区在线观看| 在线观看免费视频日本深夜| 欧美激情极品国产一区二区三区| 人妻久久中文字幕网| 变态另类成人亚洲欧美熟女| 琪琪午夜伦伦电影理论片6080| 97超级碰碰碰精品色视频在线观看| 中文字幕精品免费在线观看视频| 国产又色又爽无遮挡免费看| 别揉我奶头~嗯~啊~动态视频| 一级毛片高清免费大全| 亚洲国产看品久久| 午夜福利视频1000在线观看| 国产激情偷乱视频一区二区| 人人妻人人澡欧美一区二区| a级毛片在线看网站| 久久午夜综合久久蜜桃| av天堂在线播放| 亚洲一码二码三码区别大吗| 我的亚洲天堂| 欧美又色又爽又黄视频| 18美女黄网站色大片免费观看| 最新美女视频免费是黄的| 悠悠久久av| 露出奶头的视频| 99久久综合精品五月天人人| 欧美日韩黄片免| 成人亚洲精品一区在线观看| 国产av一区在线观看免费| 亚洲成人久久性| 听说在线观看完整版免费高清| 久久这里只有精品19| av电影中文网址| 美女大奶头视频| 亚洲欧美一区二区三区黑人| 国产人伦9x9x在线观看| 美女大奶头视频| 18禁裸乳无遮挡免费网站照片 | 美女大奶头视频| 一边摸一边抽搐一进一小说| 久久精品亚洲精品国产色婷小说| 欧美黑人欧美精品刺激| 国产成人欧美在线观看| 老司机在亚洲福利影院| 日韩视频一区二区在线观看| 成人18禁高潮啪啪吃奶动态图| 久久欧美精品欧美久久欧美| 日韩高清综合在线| 韩国av一区二区三区四区| av欧美777| 一级作爱视频免费观看| 又黄又爽又免费观看的视频| 久久久久久国产a免费观看| 亚洲第一欧美日韩一区二区三区| 日韩欧美 国产精品| 精品免费久久久久久久清纯| 精品国产乱子伦一区二区三区| 成人三级黄色视频| 禁无遮挡网站| 色婷婷久久久亚洲欧美| 视频区欧美日本亚洲| 日本三级黄在线观看| 自线自在国产av| 日本 欧美在线| 中文字幕高清在线视频| 久久婷婷人人爽人人干人人爱| 无人区码免费观看不卡| 动漫黄色视频在线观看| 久久国产乱子伦精品免费另类| 嫩草影院精品99| 精品欧美一区二区三区在线| 国产精品综合久久久久久久免费| 日本 欧美在线| 一级毛片精品| 1024香蕉在线观看| 亚洲男人的天堂狠狠| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o| 在线国产一区二区在线| 哪里可以看免费的av片| 久久久久精品国产欧美久久久| 午夜免费成人在线视频| 国产真实乱freesex| 亚洲午夜精品一区,二区,三区| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 国产男靠女视频免费网站| 国产精华一区二区三区| 黄色成人免费大全| 国产精品爽爽va在线观看网站 | 日韩精品青青久久久久久| 中亚洲国语对白在线视频| 色播在线永久视频| 哪里可以看免费的av片| 久久热在线av| 一区二区日韩欧美中文字幕| 午夜激情福利司机影院| 亚洲一区二区三区色噜噜| 最近最新中文字幕大全免费视频| 亚洲国产日韩欧美精品在线观看 | 91在线观看av| 19禁男女啪啪无遮挡网站| √禁漫天堂资源中文www| 久久欧美精品欧美久久欧美| 别揉我奶头~嗯~啊~动态视频| 国产精品98久久久久久宅男小说| 日本免费a在线| 啦啦啦韩国在线观看视频| 欧美黑人精品巨大| 人妻久久中文字幕网| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 曰老女人黄片| 日本a在线网址| 精品久久久久久久人妻蜜臀av| 国产欧美日韩一区二区三| 免费看日本二区| 精品电影一区二区在线| 麻豆成人午夜福利视频| 久久精品91蜜桃| 亚洲一码二码三码区别大吗| 一本大道久久a久久精品| 亚洲av成人av| 美女扒开内裤让男人捅视频| 最好的美女福利视频网| 欧美色视频一区免费| 国产精品1区2区在线观看.| 欧美日韩亚洲综合一区二区三区_| 黄片播放在线免费| 1024香蕉在线观看| 法律面前人人平等表现在哪些方面| 日韩精品青青久久久久久| 两性夫妻黄色片| 岛国在线观看网站| 亚洲欧美一区二区三区黑人| 人人妻人人看人人澡| 岛国视频午夜一区免费看| 午夜久久久在线观看| 村上凉子中文字幕在线| 国产视频内射| 久久欧美精品欧美久久欧美| 女警被强在线播放| 国产高清视频在线播放一区| 一级片免费观看大全| 久久精品亚洲精品国产色婷小说| 亚洲性夜色夜夜综合| 精品国产乱子伦一区二区三区| 午夜福利一区二区在线看| 日本撒尿小便嘘嘘汇集6| 久久婷婷成人综合色麻豆| 视频在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 午夜亚洲福利在线播放| 久久精品亚洲精品国产色婷小说| 久久中文字幕人妻熟女| 色综合婷婷激情| АⅤ资源中文在线天堂| 一级毛片女人18水好多| 日本精品一区二区三区蜜桃| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 性欧美人与动物交配| 天天躁夜夜躁狠狠躁躁| 可以在线观看的亚洲视频| 国产午夜福利久久久久久| 午夜福利在线观看吧| 亚洲一区二区三区不卡视频| 久久中文字幕人妻熟女| av电影中文网址| 91成年电影在线观看| 色婷婷久久久亚洲欧美| 丝袜美腿诱惑在线| 99久久99久久久精品蜜桃| 久久久水蜜桃国产精品网| 精品第一国产精品| 国产成年人精品一区二区| 国产片内射在线| 亚洲片人在线观看| 美女扒开内裤让男人捅视频| 亚洲片人在线观看| 日本在线视频免费播放| 国产精品久久久久久精品电影 | 国产成年人精品一区二区| 伦理电影免费视频| 国产91精品成人一区二区三区| 国产亚洲欧美精品永久| www日本黄色视频网| 性欧美人与动物交配| 国产av在哪里看| 精品无人区乱码1区二区| ponron亚洲| 一本一本综合久久| 999久久久精品免费观看国产| 俺也久久电影网| 侵犯人妻中文字幕一二三四区| 国产成人精品久久二区二区91| 熟妇人妻久久中文字幕3abv| а√天堂www在线а√下载| netflix在线观看网站| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 日韩欧美三级三区| 久久热在线av| 黄片小视频在线播放| 在线播放国产精品三级| 国产一卡二卡三卡精品| 精品久久久久久久久久免费视频| 国产欧美日韩精品亚洲av| 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 国产99久久九九免费精品| 88av欧美| 精品国产乱子伦一区二区三区| 国产成年人精品一区二区| 精品第一国产精品| 长腿黑丝高跟| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 啦啦啦韩国在线观看视频| 久久精品影院6| 亚洲人成网站高清观看| 日韩三级视频一区二区三区| 亚洲av中文字字幕乱码综合 | 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 国产伦在线观看视频一区| 中文字幕另类日韩欧美亚洲嫩草| 美国免费a级毛片| 丝袜美腿诱惑在线| www日本在线高清视频| 国产黄色小视频在线观看| 国产伦在线观看视频一区| 香蕉丝袜av| 亚洲av成人一区二区三| 日韩欧美免费精品| 亚洲一区中文字幕在线| 中亚洲国语对白在线视频| 又紧又爽又黄一区二区| 久久九九热精品免费| 日本黄色视频三级网站网址| 国产熟女午夜一区二区三区| 亚洲av成人不卡在线观看播放网| 成年免费大片在线观看| 国产不卡一卡二| 美女扒开内裤让男人捅视频| 91麻豆精品激情在线观看国产| 欧美大码av| 国产成年人精品一区二区| 中文字幕久久专区| 欧美性猛交黑人性爽| 9191精品国产免费久久| а√天堂www在线а√下载| 婷婷亚洲欧美| 在线观看午夜福利视频| 国产成人欧美| 三级毛片av免费| 精品人妻1区二区| 欧美黄色淫秽网站| 国产又色又爽无遮挡免费看| 中文字幕最新亚洲高清| 中文字幕人妻丝袜一区二区| 一级毛片精品| 欧美激情高清一区二区三区| 久久久久国产精品人妻aⅴ院| 老鸭窝网址在线观看| 一二三四在线观看免费中文在| 午夜福利在线观看吧| 一区二区三区激情视频| 亚洲人成电影免费在线| 午夜影院日韩av| 精品日产1卡2卡| 午夜a级毛片| 级片在线观看| 国产黄a三级三级三级人| 久久久久久久久中文| 免费看美女性在线毛片视频| 免费在线观看视频国产中文字幕亚洲| 免费人成视频x8x8入口观看| 午夜两性在线视频| 国产极品粉嫩免费观看在线| 亚洲自拍偷在线| 欧美另类亚洲清纯唯美| 久久久久久久久久黄片| 国产1区2区3区精品| 欧美性猛交╳xxx乱大交人| 久久精品亚洲精品国产色婷小说| 一级片免费观看大全| 一区二区三区激情视频| 热99re8久久精品国产| 久久久国产欧美日韩av| 99热这里只有精品一区 | 亚洲中文字幕一区二区三区有码在线看 | 一级a爱片免费观看的视频| 日韩欧美在线二视频| 免费在线观看完整版高清| 老鸭窝网址在线观看| 午夜福利高清视频| 日韩三级视频一区二区三区| 精品久久久久久久久久久久久 | 亚洲成人免费电影在线观看| 男女之事视频高清在线观看| 久久 成人 亚洲| 国产蜜桃级精品一区二区三区| 国产成人av教育| 在线观看www视频免费| 99国产精品一区二区蜜桃av| 可以在线观看毛片的网站| 国产一卡二卡三卡精品| 欧美中文综合在线视频| 在线视频色国产色| 国产成人av教育| 亚洲国产欧美日韩在线播放| 两人在一起打扑克的视频| 久久狼人影院| 黄片播放在线免费| 90打野战视频偷拍视频| 成年版毛片免费区| 欧美人与性动交α欧美精品济南到| av中文乱码字幕在线| 国产精品久久电影中文字幕| 国产av不卡久久| 国产精品亚洲美女久久久| 亚洲五月天丁香| 悠悠久久av| 欧美丝袜亚洲另类 | 亚洲国产精品999在线| 丰满人妻熟妇乱又伦精品不卡| www.999成人在线观看| 人人妻人人看人人澡| 欧美zozozo另类| 在线观看www视频免费| 精品一区二区三区四区五区乱码| 一区福利在线观看| 国产精品电影一区二区三区| а√天堂www在线а√下载| 国产亚洲精品久久久久久毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 波多野结衣av一区二区av| 久久久久精品国产欧美久久久| 国产一区二区在线av高清观看| 国产精品亚洲美女久久久| 中国美女看黄片| 一区二区三区高清视频在线| 99久久综合精品五月天人人| 中文字幕人妻丝袜一区二区| 欧美乱色亚洲激情| 午夜福利视频1000在线观看| 欧美日本亚洲视频在线播放| 欧美大码av| 国产精品爽爽va在线观看网站 | 日本免费a在线| 熟女电影av网| 非洲黑人性xxxx精品又粗又长| 国产真人三级小视频在线观看| 久久久久久久久免费视频了| 国产精品av久久久久免费| 国产乱人伦免费视频| 别揉我奶头~嗯~啊~动态视频| 国产成人系列免费观看| 精品久久久久久久久久免费视频| 欧美激情高清一区二区三区| 动漫黄色视频在线观看| 在线av久久热| 欧美黄色片欧美黄色片| 久久精品亚洲精品国产色婷小说| 亚洲五月婷婷丁香| 国产av在哪里看| 久久久久精品国产欧美久久久| 视频区欧美日本亚洲| 免费无遮挡裸体视频| 麻豆成人午夜福利视频| 99re在线观看精品视频| 99精品在免费线老司机午夜| 国产成人精品久久二区二区91| 亚洲一区二区三区色噜噜| 久久久国产成人精品二区| 日韩欧美三级三区| 熟妇人妻久久中文字幕3abv| 久久午夜亚洲精品久久| 巨乳人妻的诱惑在线观看| 我的亚洲天堂| av视频在线观看入口| 悠悠久久av| 亚洲av电影不卡..在线观看| 国产一区二区在线av高清观看| 日韩精品中文字幕看吧| 日韩有码中文字幕| 日韩精品免费视频一区二区三区| 亚洲 欧美一区二区三区| 亚洲av熟女| 国产精品综合久久久久久久免费| 99热这里只有精品一区 | 精品人妻1区二区| 天堂影院成人在线观看| 叶爱在线成人免费视频播放| 熟女电影av网| 国产成人欧美在线观看| 久久精品影院6| 成人国产综合亚洲| 国产麻豆成人av免费视频| 两个人免费观看高清视频| 色综合婷婷激情| 这个男人来自地球电影免费观看| 婷婷精品国产亚洲av在线| 亚洲天堂国产精品一区在线| av在线天堂中文字幕| 久久精品91蜜桃| 中出人妻视频一区二区| 国产黄a三级三级三级人| 精品福利观看| 亚洲欧美激情综合另类| 18禁国产床啪视频网站| 久久精品亚洲精品国产色婷小说| 真人一进一出gif抽搐免费| 日韩 欧美 亚洲 中文字幕| 黄色毛片三级朝国网站| 老鸭窝网址在线观看| 午夜福利在线在线| 日本一本二区三区精品| 性色av乱码一区二区三区2| 麻豆久久精品国产亚洲av| 精品久久久久久成人av| 久久久国产精品麻豆| 亚洲人成网站在线播放欧美日韩| 国产精品亚洲av一区麻豆| 久久精品影院6| 777久久人妻少妇嫩草av网站| 很黄的视频免费| 久久精品国产清高在天天线| 亚洲自偷自拍图片 自拍| 一级作爱视频免费观看| 久久99热这里只有精品18| 香蕉久久夜色| 国产熟女午夜一区二区三区| 男女做爰动态图高潮gif福利片| 国产亚洲精品av在线| 欧美成狂野欧美在线观看| 国产又爽黄色视频| 久久国产亚洲av麻豆专区| a在线观看视频网站| 搡老岳熟女国产| 国产1区2区3区精品| 日韩高清综合在线| 18禁黄网站禁片免费观看直播| 一级毛片精品| 日韩大码丰满熟妇| 美女免费视频网站| 99国产精品99久久久久| 一区二区三区精品91| 久久狼人影院| 久久精品国产综合久久久| 欧美乱妇无乱码| 久久亚洲精品不卡| av电影中文网址| 亚洲人成电影免费在线| 国产一卡二卡三卡精品| 少妇熟女aⅴ在线视频| 可以在线观看的亚洲视频| 宅男免费午夜| 欧美日韩瑟瑟在线播放| 美女 人体艺术 gogo| 亚洲,欧美精品.| 日韩精品中文字幕看吧| 99久久精品国产亚洲精品| 亚洲国产欧洲综合997久久, | 国产国语露脸激情在线看| 亚洲激情在线av|