• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing control of a two-span rotor system with magnetorheological fluid dampers

    2015-04-22 02:33:20XINGJian邢健HELidong何立東WANGKai王锎HUANGXiujin黃秀金

    XING Jian(邢健), HE Li-dong(何立東), WANG Kai(王锎), HUANG Xiu-jin(黃秀金)

    (Engineering Research Center of Chemical Technology Safety, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China)

    ?

    Optimizing control of a two-span rotor system with magnetorheological fluid dampers

    XING Jian(邢健), HE Li-dong(何立東), WANG Kai(王锎), HUANG Xiu-jin(黃秀金)

    (Engineering Research Center of Chemical Technology Safety, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China)

    A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper-rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled (first critical speed region 37%, second critical speed region 42%). To reflect advantages of optimizing strategy presented and validate the intelligent optimization control technology, detailed experiments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.

    magnetorheological fluid damper; two-span rotor; Hooke and Jeeves; optimizing control; vibration reduction

    Reduction of shafting vibration is very important for safe and efficient functioning of rotating machines. The common technique for vibration control is vibration damping. Magneto rheological fluid (MRF) damper[1-3]has the advantage of rapid damping and stiffness changing in the presence of an applied magnetic field, large damping force, low-power consumption, easy to control. There are mainly two MRF dampers used in rotor vibration: magnetorheological fluid squezze film damper(MRFSFD)[4]and shear mode MRF damper[5]. Compared with MRFSFD (easy to instability, limited inhibition of critical vibration and delayed responses[6]), shear mode MRF damper achieves better vibration suppression with quicker responses.

    Research literatures about shear mode MRF damper in rotor vibration reductionis mainly focus on one-span rotor system with a simple control technique called on-off method. Related studies[7-8]have shown that rotor vibration is well controlled in resonance region with on-off control technique. Furthermore, improper current may cause rotor system losing stability.

    Due to the complex dynamic behavior of a rotor system, not many studies focus on the control technology for rotor vibration with shear mode MRF damper especially in multi-span rotor system. Wang J[9]developed a dynamic model for a two-disk cantilever flexible rotor supported on a MR fluid damper. Few literature till now focus on the optimizing control for the rotor vibration especially multi-span rotor using MRF damper. For this, a two-span rotor system supported by two shear mode MRF dampers was analyzed and a vibration control system was designed in this paper. An intelligent optimization control strategy for complex rotor system with high nonlinearity and uncertainty was proposed and designed to reduce vibration dynamically and effectively. It provides a powerful technical support for the extension and application in target control for shafting vibration.

    1 System modeling and numerical analysis

    1.1 MRF damper force model

    A shear mode MRF damper was made and tested as shown in Fig.1.

    Fig.1 Testing process and geometry of the shear mode MRF damper

    The MRF damper has three moving disks and two stationary disks as shown in Fig.1b. The disks are placed uniformly and alternatively with a uniform gap of 1 mm to form six relative shear surfaces. Electric current is input to the coil to generate magnetic field. The relation betweenHandτyof MRF (SG-MRF2035) in the damper is shown in Fig.2. The damper can be described by the Bingham plastic model[10]:

    (1)

    TherelationshipbetweendamperforceFandcurrentIisasfollows[11-13]:

    Fmr(I,t)=Ssrηvmr(t)/w+Ssrτy(I)

    (2)

    whereFmris the damper force;Vmr(t) is the move speed of the MR damper ball bearing center;wis the width of the gap between parallel plates;Ssris the effective shear area;ηis the Newtonian viscosity.Fmrdepends onVmr(t) andτy.Nis turns per coil. The relationship betweenHandIcan be simplified:

    H≈NI/w

    (3)

    Fig.2 Relation between H and τy of MRF

    1.2 System modeling and analysis

    The simplified mechanical model of two-span rotor system is illustrated in Fig.3.

    Fig.3 Simplified model of rotor-MRF damper system

    According to the finite element method, the MR-rotor dynamics equation can be expressed as

    (4)

    whereMis the mass matrix;Cis the damping matrix;Kis the stiffness matrix;Fδ(t) is the unbalanced force; andfmr(·) is the nonlinear relationship between damping force and other coefficients (see Eq.(3),current, displacements etc.).

    The basic structure parameters of the rotor system are shown in Tab.1.

    The vibration modes of double shafts have been calculated through the rotor dynamics software DyRoBeS, in which MRF dampers were simplified with damping and stiffness as to simulate the shafting vibration with the MRF damper switched on current during the operation, and the simulation results as shown in Fig.4a and Fig.4b.

    Tab.1 Basic parameters of two-span rotor system

    Fig.4 Comparison of unbalanced response of two-span rotor with and without MRF dampers

    The simulation results in Fig.4 indicated that the first order critical speed of the double shafts system is 2 900 r/min and the second order critical speed is 4 200 r/min without MR dampers. During the run-up process, rotor resonance occurred in shaft 2 about 2 900 r/min, which in turn raising the vibration of shaft 1 (Fig.4b). The resonance of shaft 1 occurred about 4 200 r/min. The rotor vibration is well controlled in resonance region with MRF dampers. With the increasing of the current, the damping effect is better. However, the rising current may also cause instability to the rotor system. Because MRF dampers will increase largely the support stiffness, which may cause rotor system losing stability. It is necessary to control the current properly to get better performance.

    2 Optimizing controller design based on Hooke and Jeeves algorithms

    Due to the complex dynamic behavior of the two-span rotor and multidiscipline interaction of MRF damper, it is hard to obtain optimal control parameter with traditional control methods based on an accurate mathematical model. Based on the modeling and numerical analysis, an optimizing control strategy to find appropriate control parameters (current) for the desired vibration amplitude is proposed and designed.

    Hooke and Jeeves algorithm[14](step acceleration method or Pattern search method) was proposed in 1961,which is a family of numerical optimization methods. Pattern search methods are gradient related methods. They do not rely on the evaluation of derivatives, which is especially desirable for the cases where derivatives are either unavailable or unreliable. It is straightforward and easy to use for control parameter tuning when used in properly.

    Two parameters are needed in Hooke and Jeeves algorithm, search patternPkto accelerate search process and an exploratory movesk, which varied one theoretical parameter at a time by steps of the same magnitude, and when no such increase or decrease in any one parameter further improved the fit to the experimental data, they halved the step size and repeated the process until the steps were deemed sufficiently small. The pattern Pkis a matrix as follows:

    Pk=B×Ck

    (6)

    Ck=[ΓkLk]

    (7)

    where B∈Rn×nis a basis matrix fixed in every iteration, assumed normally B=I. The direction of experiment search is decided by Ck, which is a generating matrix that can vary from iteration to iteration.Γk∈Zn×rkbelongs to a finite set of matricesΓwith certain geometrical properties. Lk∈Zn×(pk-rk)contains at least a column of zeros, that means a zero step.

    sk∈Δkpk≡Δk[ΓkLk]

    (8)

    If min {f(xk+y)|y∈ΔkΓkand (xk+y)∈Ω}

    f(xk+sk)

    (9)

    If expressions (8) and (9) are valid,xk+1=xk+skwherexkis the current iterate.Ωis feasible region forx.Γk∈Zn×rkbelongs to a finite set of matricesΓwith certain geometrical properties. Lk∈Zn×(pk-rk)contains at least a column of zeros, which means a zero step. R,Q, and N represent the sets of real, rational, integer, and natural numbers respectively.

    A parallel and independent control strategy based on Hooke and Jeeves algorithm for a two-span rotor system was developed, which controlled each span non-interfering and respectively. The control scheme for optimizing controller is illustrated in Fig.5.

    As shown in Fig.5, the input of the designed controller is the vibration amplitudef(u) of the rotor, which was measured by a sensor. The desired valuef*for the control of rotor vibration was settled by simulations with DyroBes and experiments. The initial control currentu0∈Ωfor each rotor was chosen andΔ0>0 be settled independently. The output of the controller was the optimized currentuk. The controller is designed and accomplished in Labview platform.

    Fig.5 Control scheme of optimizing controller

    Once Pksettled to accelerate moving process andskdetermined with a linearly constrained exploratory moves algorithm,f(uk) was computed. Iff(uk+sk)

    3 System design and experimental result analysis

    The schematic diagram of the control system and the sketch of two-span rotor system with two MR dampers are shown in Fig.8. The control platform is designed and developed in Labview.The Labview control platform includes five modules,as shown in Fig.6a.

    The rotor system is outfitted with eddy-current type non-contact displacement sensor that measures the displacements of the flexible rotor. A real time control and data acquisition system is designed to collect the vibration data and regulate the input current to the MR damper.

    Experiments were done firstly to verify the simulation of rotor-MR damper system and analyze the feasibility of vibration reduction with MR

    damper. According to the experiments, the first order critical speed of the double shafts system is about 3 000 r/min with the maximum vibration amplitude 160 μm, and the second order critical speed is 4 800 r/min with the maximum vibration amplitude 525 μm. As showed in Fig.7, rotor vibration caused by unbalance is well controlled in two-span rotor system(first critical speed region 37%, second critical speed region 42%) with appropriate current which obtained by optimal current approximate controller.

    Fig.6 Schematic diagram and component of the control system

    To reflect advantages of optimizing control strategy and to validate the intelligent optimization control for complex rotor system with high nonlinearity and uncertainty, detailed experiments about the performance of optimizing control strategy were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed through different control parameters(different desired values and different tolerances).

    ① Experiments with different desired values

    Vibration amplitudes for each shaft: shaft

    1 (150 μm, 140 μm and 130 μm) and shaft 2 (90 μm, 80 μm, 70 μm): When the rotor is accelerating across two critical speeds, according to the optimizing strategy, the control current is applied. The frequency response of rotor system with MR dampers and without MR dampers are illustrated in Fig.8.

    Note that the experimental results in Fig.8 show the effectiveness of the control strategy. With three different desired control target values for each shaft, the control strategy is effective in the vibration suppressing. It indicated that rotor vibration caused by unbalance is well controlled both in resonance region and in non-resonance region with optimizing control strategy.

    It is shown in Fig.9 that the current varying with the changing vibration amplitude. The smaller the rotor vibration changes, the smoother the current curve appears. That is,the current regulating follows vibration amplitude change quickly and effectively.

    ②Experiments with different desired tolerances

    Experimental results in the rotor run-up process under the same desired vibration amplitude but with four different tolerances for each shaft were shown in Fig.10.

    From Fig.10, current seeking process with larger tolerance is smoother and more stable than with smaller tolerance. The smaller the tolerance is, the stricter the control requirement for optimizing process it to find an appropriate coefficient, which means the more instable curve for the current optimization.

    Fig.11 is the comparison of the frequency response in different tolerances. The current approximating process and the frequency response in different tolerances show the accuracy and response speed of MR dampers. The transient response with larger tolerance is more rapid but less steady than with smaller tolerance.

    Fig.7 Comparison of two-span rotor with and without MRF dampers

    Fig 8 Comparison of rotor with damper (in three desired amplitude) and without damper

    Fig.9 Amplitude-speed-current of two span rotor with optimizing control in different desired value

    Fig.10 Vibration response and current approximating process in different tolerances

    Fig.11 Frequency response with different tolerances

    4 Conclusions

    ①Experiment results show that rotor vibration caused by unbalance is well controlled in two-span rotor system(first critical speed region 37%, second critical speed region 42%).

    ②This optimizing controller for current is regulated independently for each shaft, which is especially meaningful in a multi-span rotor system. It can be extended to a multi-span (more than three or four span) rotor system and provides a powerful technical support for the extension and application in target and control for shafting vibration.

    ③The stability and rapidity of transient response and efficiency of optimal approximate technique for rotor system depends on coefficients, such as tolerance, target value etc.

    The rapidity of optimizing control is better with longer current search step, but longer search step may affect the accuracy and stability of optimizing control. It is necessary to balance these control performance requirements (accuracy, rapidity and stability). In the premise of vibration control stability, rapidity and accuracy of control are maximized.

    A fixed search step is used in this paper. Further research on search step varying with different vibration amplitudes can be done to improve the efficiency, smoothness and rapidity of transient vibration response.

    [1] Yang G, Spencer B F, Carlson J D, et al. Large scale MR fluid dampers: modeling and dynamic performance consider-ations[J]. Engineering Structures,2002.

    [2] Carlson J D, Catanzarite D M, Clair K A. Commercial magnetorheological fluid devices[J].International Journal of Modern Physics B, 1996,10:2857-2865.

    [3] Andrzej Milecki. Investigation and control of magnetor- heological fluid dampers[J]. International Journal of Machine Tools & Manufacture,2001,41:379-391.

    [4] Masoud Hemmatian, Abdolreza Ohadi. Sliding mode control of flexible rotor based on estimated model of magnetorheological squeeze flim damper[J].Journal of Vibration and Acoustics,2013,135(5):1-11.

    [5] Wang J, Meng G. Experimental study on stability of an MR fluid damper-rotor journal bearing system[J].Journal of Sound and Vibration,2003, 262:999-1007.

    [6] Zhu Changsheng. Experiment investigation into the dynamic behaviors of a flexible rotor on magnetorheological fluid squeeze film dampers[J]. Journal of Functional Materials, 2006,5(37):750-753.

    [7] Wang J X, Meng G. Experimental study on rotor system vibration control of a squeeze MR fluid damper[J]. Journal of Aerospace Power, 2005,20(3):424-428.

    [8] Wang J, Meng G. Experimental study on stability of a rotor supported on a MR fluid damper and sliding bearing[J]. Journal of Vibration Engineering, 2003, 16(1):71-74.

    [9] Wang J, Meng G. Dynamic model of flexible rotors supported on an MR fluid damper (Ⅱ) : Cantilever rotor with two disks[J]. Journal of Foshan University:Natural Science Edition, 2003,21(1):15-18.

    [10] Stanway R, Sposton J L, Stevens N G. Non-linear modeling of an electrorheological vibration damper[J]. J Electrostatics, 1987,20:167-184.

    [11] Yang G.Large-scale magnetorheological fluid damper for vibration mitigation:modeling,esting and control[D].Indiana,USA: University of Notre Dame, 2001.

    [12] Winslow W M. Method and means for translating electrical impulses into mechanical forces,U.S.Patent 2417850[P]. 1947-03-25.

    [13] Shtarkman E M. Fluid response to magnetic field,U.S. Patent 4992190[P].1991-02-12.

    [14] Hooke R, Jeeves T A. Direct search solution of numerical and statistical problems[J]. J Assoc Comput Mach, 1961, 8(2): 212-229.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0420

    TP 273.1 Document code: A Article ID: 1004- 0579(2015)04- 0558- 08

    Received 2014- 01- 20

    Supported by the National Program on Key Basic Research Project (973 Program)(2012CB026000); Ph.D Programs Foundation of Ministry of Education of China(20110010110009)

    E-mail: he63@263.net

    成年女人看的毛片在线观看| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 亚洲精品乱码久久久久久按摩| 日韩制服骚丝袜av| 一级毛片久久久久久久久女| 91久久精品国产一区二区三区| 中文字幕免费在线视频6| 久久久久国产精品人妻一区二区| 青春草国产在线视频| 国产精品嫩草影院av在线观看| 麻豆成人午夜福利视频| 在线亚洲精品国产二区图片欧美 | 国产精品av视频在线免费观看| 国产精品嫩草影院av在线观看| 高清欧美精品videossex| 久久99热这里只频精品6学生| 日本一二三区视频观看| 五月天丁香电影| 女人被狂操c到高潮| 伊人久久国产一区二区| 久热这里只有精品99| 国产精品99久久久久久久久| 熟女电影av网| 人人妻人人看人人澡| 国产91av在线免费观看| 特大巨黑吊av在线直播| 免费黄频网站在线观看国产| 成人午夜精彩视频在线观看| 日韩国内少妇激情av| 国产高清不卡午夜福利| 中文天堂在线官网| 中文欧美无线码| 日韩制服骚丝袜av| 精品久久久久久久久av| 久久人人爽av亚洲精品天堂 | 在线观看免费高清a一片| 国产 精品1| 精品一区在线观看国产| 视频中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 欧美 日韩 精品 国产| 真实男女啪啪啪动态图| 久久久久久久久久成人| 在线a可以看的网站| 国产 一区精品| 国产男人的电影天堂91| 久久韩国三级中文字幕| 一级黄片播放器| 亚洲不卡免费看| 免费av观看视频| 欧美最新免费一区二区三区| 全区人妻精品视频| 天天躁夜夜躁狠狠久久av| 97人妻精品一区二区三区麻豆| 日日撸夜夜添| 久久人人爽av亚洲精品天堂 | 丝袜脚勾引网站| 超碰97精品在线观看| 丝袜喷水一区| 国产伦理片在线播放av一区| 99精国产麻豆久久婷婷| 免费看a级黄色片| 菩萨蛮人人尽说江南好唐韦庄| 一区二区av电影网| 中文精品一卡2卡3卡4更新| 亚洲精品久久午夜乱码| 一本久久精品| 久久国内精品自在自线图片| 日韩 亚洲 欧美在线| 久久99热6这里只有精品| 美女高潮的动态| 国产大屁股一区二区在线视频| 国产日韩欧美亚洲二区| 看黄色毛片网站| 黄色日韩在线| 午夜日本视频在线| 免费av毛片视频| 91久久精品国产一区二区三区| 精品久久久久久久末码| 麻豆乱淫一区二区| 亚洲国产精品国产精品| 免费av观看视频| 欧美三级亚洲精品| 97人妻精品一区二区三区麻豆| 亚洲国产欧美人成| 插阴视频在线观看视频| 三级国产精品片| 乱码一卡2卡4卡精品| 亚洲精华国产精华液的使用体验| 亚洲激情五月婷婷啪啪| 只有这里有精品99| 精品久久久久久电影网| 欧美激情在线99| 国产精品嫩草影院av在线观看| 成人欧美大片| 免费看a级黄色片| 日本爱情动作片www.在线观看| 成年免费大片在线观看| 成人高潮视频无遮挡免费网站| 草草在线视频免费看| 国产精品久久久久久av不卡| 丝袜喷水一区| 男女边摸边吃奶| 青春草亚洲视频在线观看| 免费黄色在线免费观看| 日韩,欧美,国产一区二区三区| 国产一区二区在线观看日韩| 91久久精品国产一区二区成人| 在线亚洲精品国产二区图片欧美 | 丰满少妇做爰视频| 免费人成在线观看视频色| 日韩av在线免费看完整版不卡| 在线观看国产h片| 女的被弄到高潮叫床怎么办| 成人亚洲精品一区在线观看 | 日韩强制内射视频| 亚洲成人一二三区av| 欧美激情久久久久久爽电影| 少妇人妻久久综合中文| 老司机影院成人| 秋霞伦理黄片| 精品久久久久久久久亚洲| 91精品伊人久久大香线蕉| 国产综合懂色| 91午夜精品亚洲一区二区三区| 亚洲久久久久久中文字幕| 国产一区二区三区综合在线观看 | 人妻夜夜爽99麻豆av| 3wmmmm亚洲av在线观看| 综合色av麻豆| 午夜激情福利司机影院| 男女无遮挡免费网站观看| 伦理电影大哥的女人| 亚洲av国产av综合av卡| 久久久欧美国产精品| 人妻夜夜爽99麻豆av| av又黄又爽大尺度在线免费看| 能在线免费看毛片的网站| 久久国内精品自在自线图片| 久久精品久久久久久久性| 国产大屁股一区二区在线视频| 黄色配什么色好看| 男的添女的下面高潮视频| 国产成人免费观看mmmm| 国产成人免费无遮挡视频| 插阴视频在线观看视频| 国产亚洲一区二区精品| 男女无遮挡免费网站观看| 免费观看av网站的网址| 少妇人妻 视频| 午夜亚洲福利在线播放| 日韩一区二区三区影片| 秋霞伦理黄片| 麻豆久久精品国产亚洲av| 99久久中文字幕三级久久日本| 亚洲国产精品成人综合色| 欧美丝袜亚洲另类| 一级爰片在线观看| 肉色欧美久久久久久久蜜桃 | 内地一区二区视频在线| 国产探花极品一区二区| 精品久久久久久久久亚洲| 最近手机中文字幕大全| 美女被艹到高潮喷水动态| 亚洲精品,欧美精品| 大片免费播放器 马上看| 亚洲三级黄色毛片| 国产真实伦视频高清在线观看| 亚洲高清免费不卡视频| 男女无遮挡免费网站观看| 中文欧美无线码| 午夜老司机福利剧场| 一级毛片aaaaaa免费看小| 亚洲自拍偷在线| 国模一区二区三区四区视频| 人妻 亚洲 视频| 久久国产乱子免费精品| 午夜老司机福利剧场| 精品久久久久久久人妻蜜臀av| eeuss影院久久| videossex国产| 午夜视频国产福利| 成人国产麻豆网| 下体分泌物呈黄色| 日韩,欧美,国产一区二区三区| 亚洲精品乱久久久久久| 热re99久久精品国产66热6| 网址你懂的国产日韩在线| 中国三级夫妇交换| 国产乱来视频区| 成人亚洲欧美一区二区av| 一级a做视频免费观看| 国产精品久久久久久久久免| 国产免费福利视频在线观看| 亚洲av一区综合| 国产日韩欧美亚洲二区| av播播在线观看一区| 一本久久精品| 精品酒店卫生间| 久久人人爽人人爽人人片va| 亚洲av不卡在线观看| 寂寞人妻少妇视频99o| 少妇裸体淫交视频免费看高清| 极品少妇高潮喷水抽搐| 婷婷色麻豆天堂久久| 午夜福利视频精品| 免费av观看视频| 久久久久久伊人网av| 少妇人妻精品综合一区二区| 波野结衣二区三区在线| 18禁在线播放成人免费| 99热这里只有是精品50| 亚洲欧美日韩无卡精品| 亚洲最大成人手机在线| 精品酒店卫生间| 国产亚洲午夜精品一区二区久久 | 中文精品一卡2卡3卡4更新| 国产精品伦人一区二区| 永久网站在线| videossex国产| 日韩成人伦理影院| 各种免费的搞黄视频| 建设人人有责人人尽责人人享有的 | 最近的中文字幕免费完整| 成人亚洲精品一区在线观看 | 男男h啪啪无遮挡| 亚洲丝袜综合中文字幕| 九九久久精品国产亚洲av麻豆| 在线免费观看不下载黄p国产| 国产高清不卡午夜福利| 亚洲精品久久午夜乱码| 久久这里有精品视频免费| 少妇人妻 视频| 麻豆乱淫一区二区| 在线看a的网站| 女人十人毛片免费观看3o分钟| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| a级毛色黄片| 天堂中文最新版在线下载 | 国产在线男女| 啦啦啦在线观看免费高清www| 中文字幕制服av| 亚洲激情五月婷婷啪啪| 亚洲最大成人手机在线| 国产精品一区二区在线观看99| 国产视频首页在线观看| 国产成人a区在线观看| 少妇人妻一区二区三区视频| 国产精品一区www在线观看| h日本视频在线播放| 国产视频首页在线观看| 免费黄频网站在线观看国产| 欧美日韩精品成人综合77777| 黄色视频在线播放观看不卡| 亚洲成色77777| 99九九线精品视频在线观看视频| 国产免费又黄又爽又色| 大码成人一级视频| 成人亚洲精品av一区二区| 亚洲精品日韩在线中文字幕| 亚洲欧美清纯卡通| 国产精品.久久久| 综合色av麻豆| 人妻 亚洲 视频| 国产一区二区在线观看日韩| 少妇 在线观看| 九九在线视频观看精品| 免费观看性生交大片5| 国产探花在线观看一区二区| 国产伦精品一区二区三区视频9| 秋霞在线观看毛片| 国产老妇女一区| 日韩成人av中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| 久久99热这里只有精品18| 国产精品一二三区在线看| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 精品少妇黑人巨大在线播放| 国产成人福利小说| 男女那种视频在线观看| 久久久久久伊人网av| 成人二区视频| 成人毛片a级毛片在线播放| 六月丁香七月| 久久久久国产网址| 欧美一区二区亚洲| 夜夜爽夜夜爽视频| 国产精品国产三级国产av玫瑰| 香蕉精品网在线| 婷婷色麻豆天堂久久| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 搡老乐熟女国产| 天堂网av新在线| 九九久久精品国产亚洲av麻豆| 久久人人爽人人片av| 成人高潮视频无遮挡免费网站| 久久久成人免费电影| 97热精品久久久久久| 亚洲美女搞黄在线观看| 日本免费在线观看一区| 大片电影免费在线观看免费| 97精品久久久久久久久久精品| 夫妻性生交免费视频一级片| 国产黄片视频在线免费观看| 国产毛片在线视频| 97在线视频观看| 成人美女网站在线观看视频| 亚洲av男天堂| 极品少妇高潮喷水抽搐| 少妇人妻久久综合中文| 国产在线一区二区三区精| 精品久久久久久久久亚洲| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品 | 国产精品成人在线| 国产视频内射| 2022亚洲国产成人精品| 免费黄色在线免费观看| 男人舔奶头视频| 国产精品久久久久久精品电影小说 | 国产女主播在线喷水免费视频网站| 18禁在线无遮挡免费观看视频| 搞女人的毛片| 精品少妇久久久久久888优播| 波多野结衣巨乳人妻| 九色成人免费人妻av| 涩涩av久久男人的天堂| 亚洲成人中文字幕在线播放| 亚洲va在线va天堂va国产| 欧美变态另类bdsm刘玥| 亚洲怡红院男人天堂| a级毛色黄片| 高清午夜精品一区二区三区| 午夜免费鲁丝| 亚洲天堂国产精品一区在线| 日日啪夜夜撸| videossex国产| av在线老鸭窝| 国产精品福利在线免费观看| 禁无遮挡网站| 精品国产露脸久久av麻豆| 好男人视频免费观看在线| 国产毛片a区久久久久| 免费大片18禁| 久久久久久久久久成人| 搡老乐熟女国产| 亚洲av中文字字幕乱码综合| 男女边吃奶边做爰视频| 国产欧美日韩精品一区二区| 国产av不卡久久| 国产精品麻豆人妻色哟哟久久| www.色视频.com| 精品99又大又爽又粗少妇毛片| 成人黄色视频免费在线看| 亚洲成人一二三区av| 2021天堂中文幕一二区在线观| 99热6这里只有精品| 男人舔奶头视频| 在线免费观看不下载黄p国产| 久久久亚洲精品成人影院| av女优亚洲男人天堂| 日本免费在线观看一区| 啦啦啦中文免费视频观看日本| 日本一本二区三区精品| freevideosex欧美| 一本色道久久久久久精品综合| 国产 精品1| 黄色日韩在线| 欧美另类一区| 亚洲国产成人一精品久久久| 精品国产露脸久久av麻豆| 久久久精品欧美日韩精品| 直男gayav资源| 在线观看av片永久免费下载| 国产免费视频播放在线视频| 成人综合一区亚洲| av免费观看日本| 老司机影院成人| 看十八女毛片水多多多| 激情五月婷婷亚洲| 国产乱人偷精品视频| 一区二区三区精品91| 2021少妇久久久久久久久久久| 天天一区二区日本电影三级| 九色成人免费人妻av| 久久精品国产鲁丝片午夜精品| 只有这里有精品99| 亚洲国产色片| 亚洲精品视频女| 少妇熟女欧美另类| 深夜a级毛片| 欧美日韩亚洲高清精品| www.色视频.com| 真实男女啪啪啪动态图| 一级a做视频免费观看| 欧美变态另类bdsm刘玥| 免费大片18禁| 三级经典国产精品| 亚洲欧美清纯卡通| 22中文网久久字幕| 啦啦啦啦在线视频资源| 日韩不卡一区二区三区视频在线| 国产在线一区二区三区精| 国产精品久久久久久精品电影| 国产乱人偷精品视频| 高清日韩中文字幕在线| 成人综合一区亚洲| 搡老乐熟女国产| 国产毛片在线视频| 欧美激情在线99| .国产精品久久| 国产在视频线精品| 久久热精品热| 男人狂女人下面高潮的视频| 少妇人妻 视频| 在线观看人妻少妇| 777米奇影视久久| 99久久精品一区二区三区| 国产亚洲最大av| 亚洲欧美成人精品一区二区| 校园人妻丝袜中文字幕| h日本视频在线播放| 亚洲综合精品二区| 久久久久久九九精品二区国产| 秋霞在线观看毛片| 国产一区二区在线观看日韩| 国产日韩欧美亚洲二区| 精品久久久久久久久av| 欧美人与善性xxx| 久久韩国三级中文字幕| 寂寞人妻少妇视频99o| 国产成人aa在线观看| 国产精品福利在线免费观看| 内地一区二区视频在线| 在线观看三级黄色| 亚洲欧美成人精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 视频中文字幕在线观看| 在线a可以看的网站| 色婷婷久久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 国产精品伦人一区二区| 七月丁香在线播放| 精品久久久久久久人妻蜜臀av| 18禁在线播放成人免费| 欧美+日韩+精品| 亚洲,一卡二卡三卡| 精品国产一区二区三区久久久樱花 | 舔av片在线| 十八禁网站网址无遮挡 | 久久99热这里只频精品6学生| h日本视频在线播放| 一本一本综合久久| av网站免费在线观看视频| 99热这里只有是精品在线观看| 男的添女的下面高潮视频| 性色av一级| 成人国产麻豆网| 天堂网av新在线| 舔av片在线| 亚洲人成网站在线观看播放| 日日摸夜夜添夜夜爱| 国产有黄有色有爽视频| 在线免费观看不下载黄p国产| 精华霜和精华液先用哪个| videos熟女内射| 亚洲欧美日韩卡通动漫| 国产成人午夜福利电影在线观看| 免费观看无遮挡的男女| 亚洲国产高清在线一区二区三| 人妻少妇偷人精品九色| 91aial.com中文字幕在线观看| 熟妇人妻不卡中文字幕| 精品午夜福利在线看| 免费看不卡的av| 日本色播在线视频| 日本黄色片子视频| 蜜臀久久99精品久久宅男| 乱系列少妇在线播放| av.在线天堂| 一级毛片我不卡| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 人妻一区二区av| 国产精品久久久久久av不卡| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 伦精品一区二区三区| 午夜亚洲福利在线播放| 成人亚洲欧美一区二区av| 精品人妻熟女av久视频| 日韩中字成人| 久久久久久久亚洲中文字幕| 深爱激情五月婷婷| 插逼视频在线观看| 少妇 在线观看| 国内揄拍国产精品人妻在线| 成人一区二区视频在线观看| 久久99热这里只频精品6学生| 在线天堂最新版资源| 亚洲欧美一区二区三区国产| 日韩精品有码人妻一区| 夜夜爽夜夜爽视频| 国产黄片视频在线免费观看| 寂寞人妻少妇视频99o| 欧美丝袜亚洲另类| 99热网站在线观看| 国产精品人妻久久久久久| 国产精品久久久久久av不卡| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av蜜桃| 国产精品国产三级国产av玫瑰| 91精品一卡2卡3卡4卡| 大片免费播放器 马上看| 午夜福利高清视频| 久久久久久久国产电影| 又粗又硬又长又爽又黄的视频| 亚洲在久久综合| 毛片女人毛片| 国产精品福利在线免费观看| 观看免费一级毛片| 在线观看美女被高潮喷水网站| 国产白丝娇喘喷水9色精品| 在线 av 中文字幕| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 日韩不卡一区二区三区视频在线| 亚洲av中文字字幕乱码综合| 久久久国产一区二区| 人妻制服诱惑在线中文字幕| av女优亚洲男人天堂| 黄片wwwwww| 成年女人在线观看亚洲视频 | 人人妻人人爽人人添夜夜欢视频 | 亚洲国产欧美在线一区| 内射极品少妇av片p| 国产亚洲精品久久久com| 欧美日韩在线观看h| 丝袜喷水一区| 日韩成人av中文字幕在线观看| 日本-黄色视频高清免费观看| 青春草国产在线视频| 最近最新中文字幕免费大全7| 日韩在线高清观看一区二区三区| 一区二区三区免费毛片| 只有这里有精品99| 国产高清三级在线| 国产黄片视频在线免费观看| 亚洲精品aⅴ在线观看| 欧美极品一区二区三区四区| 国产一区二区亚洲精品在线观看| 久久久久久久久久久免费av| 午夜激情福利司机影院| 国产成人免费观看mmmm| 伦精品一区二区三区| 一本一本综合久久| 精品国产乱码久久久久久小说| 国产欧美日韩精品一区二区| 亚洲高清免费不卡视频| 亚洲真实伦在线观看| 伊人久久国产一区二区| av在线天堂中文字幕| 亚洲第一区二区三区不卡| 91精品国产九色| 2018国产大陆天天弄谢| 三级经典国产精品| 久久久久性生活片| 亚洲自偷自拍三级| 国产精品一区二区三区四区免费观看| 国产精品99久久99久久久不卡 | 久久久久久久大尺度免费视频| 国产精品秋霞免费鲁丝片| 丝袜喷水一区| 一级a做视频免费观看| 日韩成人伦理影院| 久久韩国三级中文字幕| 日本-黄色视频高清免费观看| 在线免费十八禁| 麻豆成人午夜福利视频| 天天躁夜夜躁狠狠久久av| 久久久久性生活片| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| 亚州av有码| 国产午夜精品一二区理论片| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看 | 亚洲欧洲日产国产| 国产伦理片在线播放av一区| 91精品伊人久久大香线蕉| 天堂中文最新版在线下载 | 国产精品99久久久久久久久| 国产免费一区二区三区四区乱码| 麻豆久久精品国产亚洲av| 国产精品一二三区在线看| 成人国产麻豆网| 国产色婷婷99| 偷拍熟女少妇极品色| 人人妻人人澡人人爽人人夜夜| 一本一本综合久久| 蜜臀久久99精品久久宅男| 免费黄网站久久成人精品| 国产欧美另类精品又又久久亚洲欧美| 午夜视频国产福利| 日日摸夜夜添夜夜爱| 亚洲欧美一区二区三区黑人 | 91久久精品电影网| 在线免费观看不下载黄p国产| 欧美bdsm另类| 国产探花在线观看一区二区| 日韩成人av中文字幕在线观看|