• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    花生殼制備微孔炭及其在電化學(xué)超級(jí)電容器中的應(yīng)用

    2011-12-11 09:09:28郭培志季倩倩張麗莉趙善玉趙修松
    物理化學(xué)學(xué)報(bào) 2011年12期
    關(guān)鍵詞:張麗莉花生殼微孔

    郭培志 季倩倩 張麗莉 趙善玉 趙修松,,*

    (1青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,纖維新材料與現(xiàn)代紡織國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,山東青島266071;2Department of Chemical and Biomolecular Engineering,National University of Singapore,4 Engineering Drive 4,Singapore 117576)

    花生殼制備微孔炭及其在電化學(xué)超級(jí)電容器中的應(yīng)用

    郭培志1,*季倩倩1張麗莉2趙善玉2趙修松1,2,*

    (1青島大學(xué)化學(xué)化工與環(huán)境學(xué)院,纖維新材料與現(xiàn)代紡織國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,山東青島266071;2Department of Chemical and Biomolecular Engineering,National University of Singapore,4 Engineering Drive 4,Singapore 117576)

    以未使用和使用氫氧化鈉溶液處理的花生殼為碳源分別制備出微孔炭PSC-1和PSC-2.PSC-1和PSC-2的比表面積分別為552和726 m2·g-1,其主要孔徑都約為0.8 nm.用PSC-1和PSC-2制備的電極和對(duì)稱型超級(jí)電容器的循環(huán)伏安曲線均接近矩形,表明其具有良好的電容特性.在以微孔炭電極為工作電極、鉑電極為對(duì)電極和銀/氯化銀電極為參比電極組成的三電極體系測(cè)量表明,在0.1 A·g-1的電流密度下,PSC-1和PSC-2的比電容達(dá)到233和378 F·g-1.經(jīng)過1000次恒電流充放電循環(huán)后,在三電極體系和超級(jí)電容器中電極均表現(xiàn)出良好的穩(wěn)定性和電容保持率.基于實(shí)驗(yàn)結(jié)果探討了微孔炭的形成機(jī)理及其結(jié)構(gòu)與電化學(xué)性質(zhì)之間的聯(lián)系.

    超級(jí)電容器;電極;微孔炭;花生殼;電容

    1 Introduction

    Electrochemical double-layer capacitors(EDLCs)are promising power sources because the demand for energy storage devices is increasing as a result of the fast-growing market for portable electronic devices and hybrid electric vehicles.1-3The capacitance of EDLCs comes from charge accumulation at the electrode/electrolyte interface,and is therefore strongly dependent on the pore size and the surface area of the electrode accessible to the electrolyte.4-6Among the various electrode materials for EDLCs,porous carbons are the most popular because of their high surface area,low cost,good electrical conductivity,and excellent chemical stability.6-9

    There are several approaches to prepare porous carbon.One is the direct high-temperature carbonization of appropriate precursors.10,11The other uses a template to prepare composites of the template and carbon precursor,and the mixed composites are then carbonized.6,7Many researchers also use alkali/salt activation methods consisting of treating a mixture of the precursors and an alkali/salt at high temperature.12,13For example, Béguin et al.10reported that porous carbon derived directly by carbonization of sodium alginate had a capacitance as high as 200 F·g-1.Zhang et al.12reported that oxygen-rich activated carbons prepared from bituminous coal by a high-temperature activation method had a specific capacitance of 370 F·g-1.Recently,we have shown that the carbonization temperature has a significant effect on the electrochemical properties of chitosanbased porous carbons.11

    Peanuts are widely planted in China,and the total amount can reach 14 million tons per year.Some of the peanut shells are used as animal feed and for cultivation of edible fungi,but a large proportion of the shells are unused.It is necessary to explore possible applications of peanut shells as well as other waste biomass.14-21Recently,peanut shells have been used to fabricate porous carbons,which show many potential applications,14-16for example as sorbents for metal ions14and as Li-ion battery electrode materials.16The activation method is usually use to fabricated activated carbons from peanut shell based on the solid mixture of the precursors and KOH or ZnCl2,10-13however,peanut shells are pretreated using aqueous NaOH solution before carbonization in our work.It is found that the pretreatment process has a strong effect on the physical and electrochemical properties of the peanut-shell-based microporous carbons.The electrochemical properties of the samples are characterized by cyclic voltammetry(CV),galvanic charge-discharge,and cycling experiments.

    2 Experimental

    2.1 Materials

    Peanut shells were obtained from peanuts purchased at Qingdao market.NaOH and KOH(AR grade)were purchased from the Sinopharm Chemical Reagent Company.Acetylene carbon black(99.99%)and polytetrafluoroethylene(PTFE,with mass fraction of 60%)latex were purchased from Strem Chemicals and Aldrich,respectively.All chemicals were used without further purification.

    2.2 Preparation of porous carbons

    The peanut shells were rinsed with water,dried,and then cut into small pieces(PS-1).Some peanut shells had been pretreated in an aqueous NaOH solution(1 mol·L-1)at 80°C for 12 h, and then the treated peanut shells were washed with water, dried and cut into pieces(PS-2).Porous carbons were obtained by carbonization of the peanut shells in a tube furnace at 800°C for 90 min under a nitrogen flow.The heating rate was 10°C· min-1.The obtained black solid was then immersed into HF (20%,mass fraction)solutions for 48 h.Finally,the solid was filtered with water and dried at 60°C for 6 h.The samples referred to as PSC-1 and PSC-2 were derived from PS-1 and PS-2,respectively.

    2.3 Characterization of porous carbons

    The pore structures of the samples were investigated by physical adsorption of nitrogen at liquid nitrogen temperature (77 K)on an automatic volumetric sorption analyzer(NOVA 1100,Quantachrome).The specific surface area was determined by the Brunauer-Emmett-Teller(BET)method.Pore size distribution was evaluated by the Barrett-Joyner-Halenda (BJH)method.Elemental analyses were performed on a VARIO EL III elemental analyses system(Elementar Analysensysteme GmbH,Hanau,Germany).Fourier transform infrared (FTIR)spectra were recorded on a Thermo Nicolet 5700 spectrophotometer.X-ray powder diffraction(XRD)measurements were determined using a Bruker D8 advanced X-ray diffractmeter equipped with Cu Kαradiation(λ=0.15418 nm).

    2.4 Fabrication of porous carbon electrodes

    The electrochemical measurements were performed on an Autolab PGSTAT302N in an aqueous KOH solution(6 mol· L-1)at room temperature using a three-electrode cell with porous carbon as the working electrode,a platinum electrode as the counter electrode,and an Ag/AgCl electrode as the reference electrode.The porous carbon electrodes were obtained by pressing a well-mixed slurry(80%(mass fraction)carbon, 15%acetylene carbon black,and 5%PTFE)onto a nickel foam grid(1 cm×1 cm)at 1.25×107Pa.The typical mass load of each electrode material was about 5 mg.The electrodes were vacuum dried at 110°C.Symmetrical sandwich-type supercapacitors made of two carbon pallets separated by fibrous paper and the electrode materials composed of 80%carbon(10 mg),10%acetylene carbon black,and 10%PTFE.

    3 Results and discussion

    Nitrogen sorption isotherms were recorded to determine the pore properties of the peanut-shell-based porous carbons (Fig.1).It can be seen that the data for PSC-1 and PSC-2 are almost the same,except that the surface area of PSC-2 is larger than that of PSC-1.At low pressure,the initial step region ascends abruptly and then follows a plateau(Fig.1A),indicating that adsorption has virtually stopped because of the pore wall multilayer.Both isotherms are type IV isotherm curves.It can be seen from Fig.1B that for both porous carbons the major pore size of particles is~0.8 nm,with a minor part of~1.3 nm. However,the surface area increases from 552 m2·g-1for PSC-1 to 726 m2·g-1for PSC-2.These changes are ascribed to the pretreatment with NaOH solution,which may enable some pectin and hemicelluloses(lignin,and wax like substances)to separate from the peanut shell and contribute to the increase in the specific surface area and pore volume.22This will be further confirmed by the FTIR results.The pore sizes of PSC-1 and PSC-2 are suitable for EDLC;1,23they allow ion migration of inorganic electrolytes and electronic adsorption because the diameters of K+and OH?in the KOH solution are smaller than 0.4 nm.24

    Fig.1 Nitrogen adsorption-desorption isotherms(A)and pore size distribution(B)of PSC-1 and PSC-2

    FTIR spectroscopy can give direct structural information in the peanut shells during various chemical treatments.It can be seen from the FTIR spectra of PS-1 and PS-2(Fig.2)that most of the absorption peaks are not shifted.For example,the absorption peaks at 3420 cm-1,ascribed to the OH group,and the peaks in the fingerprint regions at 1424,1158,and 1054 cm-1, attributed to the cellulose structure,are virtually unchanged in both peanut shell samples.22The absorption band at 1635 cm-1, ascribed to asymmetric COO― stretching,and the bands at 1458 and 1378 cm-1,assigned to the CH2and CH symmetric bending modes,are also unchanged.However,the vibrational peak at 1738 cm-1in the PS-1 spectrum,which is ascribed to C=O stretching of the methyl ester and carboxylic acid groups in pectin,or the acetyl group in the hemicelluloses,disappeared from the PS-2 spectrum.This indicates that pectin and hemicelluloses can be successfully extracted by a simple alkaline solution treatment.22A new band at 877 cm-1in the PS-2 spectrum,ascribed to an epoxy compound,gives further information on the efficiency of the pretreatment.Furthermore,the mass contents(%)of C,N,S,and H,based on the elemental analyses data,are 92.13,0.79,0.36,and 1.01 for PSC-1,and 92.30,0.48,0.36,and 0.81 for PSC-2.

    Fig.2 FTIR spectra of PS-1 and PS-2

    Fig.3 shows the CV curves of PSC-1 and PSC-2 based electrodes in three-electrode systems or symmetrical supercapacitors at different scan rates.Fig.3(A,C)displays that the CV curves of the electrodes in three-electrode systems have an almost rectangular shape,even at high scan rates,indicating that electrodes based on PSC-1 and PSC-2 have good capacitance4-7and fast charge-discharge switching.25PSC-1 and PSC-2 electrodes all have large specific currents.Furthermore, the specific currents for the PSC-2 electrode are larger than those of the PSC-1 electrode,indicating that the PSC-2 electrode has a lower resistance and higher capacitance than that of the PSC-1 electrode.3For symmetrical supercapacitors(Fig.3 (B,D)),all the CVs of the composites at a scan rate of 50 mV· s-1are nearly rectangular.However,the shape of the CVs are somewhat tilted at 80 mV·s-1.The shape evolution of the CVs at different scan rates indicates that the ohmic resistance of the carbon electrodes is large at high scan rates.26

    Galvanostatic charge-discharge is a commonly used method for studying electrochemical capacitors;much information, such as the capacitance and the long cycle capability of electrode materials,can be obtained from the experiments.27The charge-discharge curves of the PSC-2 based electrodes and supercapacitors are shown in Fig.4.The coulombic efficiency of carbon electrodes is nearly 100%,although the charge/discharge curves are not exactly linear.28The specific capacitance can be calculated from the equation C=Itd·(m·ΔV)-1,12,29where I is the current in the galvanostatic charge-discharge measurement,m is the mass of the active materials,tdis the variance metric of charge or discharge time,and ΔV is the potential window during the discharge process after IR drop.As depicted in Fig.4A,the PSC-2 electrode had a capacitance of 378 F·g-1at a current density of 0.1 A·g-1,and the capacitances decreased to 322 and 310 F·g-1at 0.5 and 1 A·g-1,respectively.However,the capacitance of the PSC-2 electrode dropped to 233 F· g-1at a current density of 0.1 A·g-1and decreased to 208 and 205 F·g-1at current densities of 0.5 and 1 A·g-1,respectively. For symmetrical supercapacitors,29,30the capacitances were 130,109,and 75 F·g-1for PSC-2 at current densities of 0.2, 0.5,and 1 A·g-1(Fig.4B),respectively,while the capacitance was 102 F·g-1for PSC-1 at 0.2 A·g-1and decreased to 74 and 52 F·g-1at current densities of 0.5 and 1 A·g-1,respectively. These results indicate that the pore sizes of PSC-1 and PSC-2 are suitable for rapid diffusion of ions,similar to those of carbide-derived microporous carbons.1-3The difference in the capacitances of PSC-1 and PSC-2 is mainly caused by variations in the specific surface areas.

    Fig.3 CV curves of PSC-1(A,B)and PSC-2(C,D)based electrodes(A,C)and supercapacitors(B,D)

    The electrochemical stabilities of the active materials and their repeatability were also investigated by galvanostatic charge-discharge measurement.Fig.5 shows the results of a cycling performance test on the PSC-2-based electrodes and supercapacitors.For the PSC-2 based symmetric supercapacitor, the capacitance retention was over 90.0%at a current density of 0.5 A·g-1after 1000 cycles(Fig.5A).After 1000 cycles,the specific capacitance of the PSC-2 electrode at a current density of 2 A·g-1was maintained more than 94.5%of the original value(Fig.5B).These results indicate that the peanut shell-based carbon electrodes and supercapacitors have good stability and capacitance retainability.

    Fig.4 Galvanostatic charge-discharge curves of PSC-2-based electrodes(A)and supercapacitors(B)

    The excellent electrochemical performances of PSC-1 and PSC-2 can be attributed to their unique micropore structure and appropriate surface areas which afford a large enough electrode/electrolyte interface for charge accommodation.It should be noted that no products were obtained when solid mixtures of peanut shells and NaOH were undergone the same calcina-tion procedure.The new procedure consisting of sample pretreatment with alkaline solutions increases the specific surface areas while the pore structure can be maintained.FTIR spectra showed that the peak at 1738 cm-1in the PS-1 spectrum,ascribed to the C=O stretching of the methyl ester and carboxylic acid groups in pectin,or the acetyl group in hemicelluloses, disappeared from the PS-2 spectrum.This indicates that pectin and hemicelluloses can be successfully extracted by a simple alkaline solution treatment.And thus microporous carbons with superior electrochemical properties from peanut shells are produced.

    Fig.5 Cycling performance of the PSC-2-based supercapacitors (A)and electrodes(B)

    4 Conclusions

    The alkaline solution activation method has been used to fabricate peanut-shell-based microporous carbons.It is found that PSC-2 derived via the activation method displays a higher surface area than that of PSC-1 produced by a non-activation method.The pore size distribution is unchanged.The CV curves of the samples in three-electrode systems and supercapacitors display rectangular shapes denoting the fast charge-discharge switching.The PSC-2 electrode shows a specific capacitance as high as 378 F·g-1and good cycle stability.These results suggest that microporous carbon electrodes made from peanut shells have a potentially broad application as electrochemical capacitor electrode materials.

    (1) Chmiola,J.;Yushin,G.;Gogotsi,Y.;Portet,C.;Simon,P.; Taberna,P.L.Science 2006,313,1760.

    (2)Winter,M.;Brodd,R.J.Chem.Rev.2004,104,4245.

    (3) Conway,B.E.Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications;Kluwer Academic/Plenum Publisher:New York,1999.

    (4) Burke,A.J.Power Sources 2000,91,37.

    (5) K?tz,R.;Carlen,M.Electrochim.Acta 2000,45,2483.

    (6) Zhang,L.L.;Zhao,X.S.Chem.Soc.Rev.2009,38,2520.

    (7) Alvarez,S.;Blanco-Lopez,C.;Miranda-Ordieres,A.J.;Fuertes, A.B.;Centeno,T.A.Carbon 2005,43,866-870.

    (8) Li,W.;Zhou,J.;Xing,W.;Zhuo,S.P.;Lü,Y.M.Acta Phys.-Chim.Sin.2011,27,620.[李 文,周 晉,邢 偉,禚淑萍,呂憶民.物理化學(xué)學(xué)報(bào),2011,27,620.]

    (9)Wang,D.W.;Li,F.;Liu,M.;Lu,G.Q.;Cheng,H.M.Angew. Chem.Int.Edit.2008,47,373.

    (10) Raymundo-Pi?ero,E.;Leroux,F.;Béguin,F.Adv.Mater.2006, 18,1877.

    (11) Ji,Q.Q.;Guo,P.Z.;Zhao,X.S.Acta Phys.–Chim.Sin.2010, 26,1254.[季倩倩,郭培志,趙修松.物理化學(xué)學(xué)報(bào),2010, 26,1254.]

    (12)Zhang,C.X.;Long,D.H.;Xing,B.L.;Qiao,W.M.;Zhang, R.;Zhan,L.;Liang,X.Y.;Ling,L.C.Electrochem.Commun. 2008,10,1809.

    (13) Vilaplana-Ortego,E.;Lillo-Ródenas,M.A.;Alca?iz-Monge,J.; Cazorla-Amorós,D.;Linares-Solano,A.Carbon 2009,47,2141.

    (14) Wilson,K.;Yang,H.;Seo,C.W.;Marshall,W.E.Bioresour. Technol.2006,97,2266.

    (15) Watanabe,I.;Doi,T.;Yamaki,J.;Lin,Y.Y.;Fey,G.T.K. J.Power Sources 2008,176,347.

    (16) Girgis,B.S.;Yunis,S.S.;Soliman,A.F.Mater.Lett.2002,57, 164.

    (17)Li,Y.H.;Du,Q.J.;Wang,X.D.;Zhang,P.;Wang,D.C.;Wang, Z.H.;Xia,Y.Z.J.Hazard.Mater.2010,183,583.

    (18) Yang,J.;Qiu,K.Q.Chem.Eng.J.2010,165,209.

    (19) Garg,U.K.;Kaur,M.P.;Garg,V.K.;Sud,D.J.Hazard.Mater. 2007,140,60.

    (20) Singh,K.P.;Mohan,D.;Sinha,S.;Tondon,G.S.;Gosh,D.Ind. Eng.Chem.Res.2003,42,1965.

    (21) Karagoz,S.;Tay,T.;Ucar,S.;Erdem,M.Bioresour.Technol. 2008,99,6214.

    (22)Wang,L.L.;Han,G.T.;Zhang,Y.M.Carbohyd.Polym.2007, 69,391.

    (23) Janes,A.;Permann,L.;Arulepp,M.;Lust,E.Electrochem. Commun.2004,6,313.

    (24) Wang,D.W.;Li,F.;Zhao,J.P.;Ren,W.C.;Chen,Z.G.;Tan, J.;Wu,Z.S.;Gentle,I.;Lu,G.Q.;Cheng,H.M.ACS Nano 2009,3,1745.

    (25) Peng,C.;Jin,J.;Chen,G.Z.Electrochim.Acta 2007,53,525.

    (26) Zheng,J.P.J.Electrochem.Soc.2003,150,A484.

    (27) Eliad,L.;Salitra,G.;Soffer,A.;Aurbach,D.J.Phys.Chem.B 2002,106,10128.

    (28)Yang,X.H.;Wang,Y.G.;Xiong,H.M.;Xia,Y.Y.Electrochim. Acta 2007,53,752.

    (29) Stoller,M.D.;Ruoff,R.S.Energy Environ.Sci.2010,3,1294.

    (30)Khomenko,V.;Frackowiak,E.;Béguin,F.Electrochim.Acta 2005,50,2499.

    July 18,2011;Revised:September 26,2011;Published on Web:October 13,2011.

    Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors

    GUO Pei-Zhi1,*JI Qian-Qian1ZHANG Li-Li2ZHAO Shan-Yu2ZHAO Xiu-Song1,2,*
    (1Laboratory of New Fiber Materials and Modern Textile,the Growing Base for State Key Laboratory,School of Chemistry, Chemical Engineering and Environmental Sciences,Qingdao University,Qingdao 266071,Shandong Province, P.R.China;2Department of Chemical and Biomolecular Engineering,National University of Singapore, 4 Engineering Drive 4,Singapore 117576)

    Microporous carbons(PSC-1 and PSC-2)were obtained directly by the carbonization of peanut shells without and with NaOH solution pretreatment,respectively.Both samples have a main pore size of~0.8 nm.The surface area increases from 552 m2·g-1for PSC-1 to 726 m2·g-1for PSC-2.Cyclic voltammograms(CVs)of the PSC-1 and PSC-2 electrodes and the symmetrical supercapacitors show almost rectangular shape indicating excellent capacitance features.The specific capacitances of PSC-1 and PSC-2 can reach 233 and 378 F·g-1,respectively,at a current density of 0.1 A·g-1in a three-electrode system using porous carbon as the working electrode,a platinum electrode as the counter electrode and a Ag/AgCl electrode as the reference electrode.Furthermore,the electrodes in both three-electrode systems and supercapacitors show high stability and capacitance retainability after 1000 cycles.The formation mechanisms for the two microporous carbons and the relationship between the carbon materials and their electrochemical properties are discussed based on the experimental results.

    Supercapacitor;Electrode;Microporous carbon;Peanut shell;Capacitance

    10.3866/PKU.WHXB20112836

    ?Corresponding authors.GUO Pei-Zhi,Email:pzguo@qdu.edu.cn;Tel:+86-532-83780378.ZHAO Xiu-Song,Email:chezxs@qdu.edu.cn.

    The project was supported by the National Natural Science Foundation of China(20803037,21143006),Foundation of Qingdao Municipal Science and Technology Commission,China(11-2-4-2-(8)-jch)and“Taishan Scholar”Program of Shandong Province,China.

    國(guó)家自然科學(xué)基金(20803037,21143006),青島市應(yīng)用基礎(chǔ)研究項(xiàng)目(11-2-4-2-(8)-jch)和“泰山學(xué)者”計(jì)劃資助

    O646

    猜你喜歡
    張麗莉花生殼微孔
    花生殼磁性生物炭對(duì)水體中Cr(Ⅵ)的吸附研究
    “閨蜜”之禍
    Setf-assessment of Algebra for Maths 數(shù)學(xué)簡(jiǎn)易方程自測(cè)
    Skills to Work out the Perimeters and Areas of Irregular Figures
    Intensive Training of Maths(1B)
    An integrated spectroscopic strategy to trace the geographical origins of emblic medicines:Application for the quality assessment of natural medicines
    強(qiáng)疏水性PDMS/PVDF微孔膜的制備及其性能研究
    花生殼及其在畜牧業(yè)中的應(yīng)用
    廣東飼料(2016年8期)2016-02-27 11:10:02
    膜蒸餾用PDMS/PVDF/PTFE三元共混微孔膜制備
    微孔發(fā)泡塑料中成核劑的研究
    xxxwww97欧美| 看片在线看免费视频| 国产欧美日韩精品一区二区| 国产高清不卡午夜福利| 久久国产乱子免费精品| 日本免费a在线| 国产欧美日韩一区二区精品| 精品久久久噜噜| 国产精品98久久久久久宅男小说| 国产一区二区在线观看日韩| 国产一区二区三区在线臀色熟女| 一进一出抽搐动态| 免费av观看视频| 日本黄大片高清| 热99在线观看视频| 色精品久久人妻99蜜桃| 亚洲第一电影网av| 欧美日韩综合久久久久久 | 狂野欧美激情性xxxx在线观看| 欧美色视频一区免费| 国产又黄又爽又无遮挡在线| 精品一区二区三区视频在线观看免费| 波多野结衣高清作品| 18禁裸乳无遮挡免费网站照片| 蜜桃久久精品国产亚洲av| 国产精品99久久久久久久久| av国产免费在线观看| 精品欧美国产一区二区三| 日韩欧美在线二视频| 亚洲国产精品合色在线| 日韩欧美一区二区三区在线观看| 桃红色精品国产亚洲av| 日韩欧美国产在线观看| 亚洲一区二区三区色噜噜| 99久久中文字幕三级久久日本| 偷拍熟女少妇极品色| 午夜激情欧美在线| 亚洲,欧美,日韩| 午夜福利在线在线| 日本免费a在线| 在线看三级毛片| 麻豆一二三区av精品| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 在线看三级毛片| 日韩在线高清观看一区二区三区 | 日韩欧美精品免费久久| 久久久久久久久久久丰满 | 国内毛片毛片毛片毛片毛片| 性欧美人与动物交配| 在线播放无遮挡| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 中出人妻视频一区二区| 国产高清不卡午夜福利| 91麻豆精品激情在线观看国产| 男女视频在线观看网站免费| 国产aⅴ精品一区二区三区波| 啪啪无遮挡十八禁网站| 日本 av在线| 岛国在线免费视频观看| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 露出奶头的视频| 国内精品久久久久久久电影| 成人国产综合亚洲| 久久亚洲精品不卡| 国产成人影院久久av| 老师上课跳d突然被开到最大视频| 日本成人三级电影网站| 亚洲熟妇中文字幕五十中出| 三级毛片av免费| 国产伦精品一区二区三区四那| 午夜福利高清视频| 超碰av人人做人人爽久久| 成人鲁丝片一二三区免费| 欧美+日韩+精品| 精品人妻视频免费看| 免费大片18禁| 老司机福利观看| 日本熟妇午夜| 在线观看av片永久免费下载| 久久精品国产自在天天线| 哪里可以看免费的av片| aaaaa片日本免费| 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| 男女视频在线观看网站免费| 九色国产91popny在线| 动漫黄色视频在线观看| 亚洲自偷自拍三级| 97超级碰碰碰精品色视频在线观看| 韩国av一区二区三区四区| 午夜福利18| 欧美日韩乱码在线| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 国产精品三级大全| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 亚洲无线在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕日韩| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 亚洲欧美日韩东京热| 色噜噜av男人的天堂激情| 日韩av在线大香蕉| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 国国产精品蜜臀av免费| 婷婷丁香在线五月| 麻豆久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 91麻豆av在线| 国产极品精品免费视频能看的| 国产男人的电影天堂91| 99热这里只有是精品在线观看| 日韩,欧美,国产一区二区三区 | 成年女人毛片免费观看观看9| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产| 最近在线观看免费完整版| 美女被艹到高潮喷水动态| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 国产av麻豆久久久久久久| 最好的美女福利视频网| www.www免费av| 日韩大尺度精品在线看网址| 国产 一区精品| 一个人观看的视频www高清免费观看| 久久久久精品国产欧美久久久| 欧美日韩黄片免| 99在线人妻在线中文字幕| 三级毛片av免费| 亚洲最大成人中文| 高清日韩中文字幕在线| aaaaa片日本免费| 亚洲最大成人中文| 少妇的逼好多水| x7x7x7水蜜桃| 国产精品1区2区在线观看.| 亚洲av美国av| 99久国产av精品| 九九在线视频观看精品| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 欧美日韩黄片免| 欧美日韩中文字幕国产精品一区二区三区| 校园春色视频在线观看| 在线观看av片永久免费下载| 天天躁日日操中文字幕| 免费一级毛片在线播放高清视频| 日韩精品有码人妻一区| 日本成人三级电影网站| 国产男人的电影天堂91| 亚洲男人的天堂狠狠| 夜夜看夜夜爽夜夜摸| 99在线人妻在线中文字幕| aaaaa片日本免费| 精品福利观看| 精品久久国产蜜桃| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| av在线天堂中文字幕| 亚洲精品乱码久久久v下载方式| 午夜福利在线观看免费完整高清在 | 99精品在免费线老司机午夜| avwww免费| 午夜福利视频1000在线观看| 亚洲性久久影院| 黄色女人牲交| 99热这里只有是精品在线观看| h日本视频在线播放| 五月玫瑰六月丁香| 成人亚洲精品av一区二区| 亚洲一区二区三区色噜噜| 日韩欧美免费精品| 啦啦啦韩国在线观看视频| 亚洲欧美日韩无卡精品| 午夜精品在线福利| 99久久九九国产精品国产免费| 99在线人妻在线中文字幕| 一级av片app| 久久香蕉精品热| 欧美性猛交黑人性爽| 欧美成人免费av一区二区三区| 熟女电影av网| 成人午夜高清在线视频| 色综合婷婷激情| 草草在线视频免费看| 国产真实乱freesex| 日韩,欧美,国产一区二区三区 | 搞女人的毛片| 变态另类丝袜制服| 日韩欧美国产在线观看| 欧美日韩精品成人综合77777| 免费观看的影片在线观看| 亚洲精华国产精华液的使用体验 | 成人三级黄色视频| 亚洲四区av| 成人永久免费在线观看视频| 国产一区二区在线av高清观看| 蜜桃亚洲精品一区二区三区| 日韩人妻高清精品专区| 一本久久中文字幕| 成人国产综合亚洲| 色综合站精品国产| 九色国产91popny在线| 日本与韩国留学比较| 嫁个100分男人电影在线观看| 亚洲性久久影院| 亚洲av免费在线观看| 欧美中文日本在线观看视频| 一区二区三区激情视频| а√天堂www在线а√下载| 欧美一级a爱片免费观看看| 无遮挡黄片免费观看| 亚洲四区av| 日韩,欧美,国产一区二区三区 | 欧美精品啪啪一区二区三区| 露出奶头的视频| 日韩欧美国产在线观看| 国产一区二区在线观看日韩| 亚洲成a人片在线一区二区| 国产熟女欧美一区二区| 欧美成人性av电影在线观看| 韩国av一区二区三区四区| 97超视频在线观看视频| 国产精品久久久久久久久免| 亚洲av中文av极速乱 | 此物有八面人人有两片| 毛片女人毛片| 国产精品1区2区在线观看.| 噜噜噜噜噜久久久久久91| 天堂影院成人在线观看| 少妇丰满av| 精品人妻熟女av久视频| 一区二区三区激情视频| 国产精品久久视频播放| 不卡视频在线观看欧美| 欧美性感艳星| 国产在线男女| 长腿黑丝高跟| 国产aⅴ精品一区二区三区波| 精品人妻视频免费看| av女优亚洲男人天堂| 成年版毛片免费区| 黄色视频,在线免费观看| 成人美女网站在线观看视频| 国产蜜桃级精品一区二区三区| bbb黄色大片| 精品不卡国产一区二区三区| 免费人成视频x8x8入口观看| 国产免费男女视频| 日韩强制内射视频| 窝窝影院91人妻| 99热网站在线观看| 欧美高清性xxxxhd video| 99国产极品粉嫩在线观看| 日本欧美国产在线视频| 麻豆成人av在线观看| 搡老妇女老女人老熟妇| 中文资源天堂在线| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久精免费| 国产精品av视频在线免费观看| 精品无人区乱码1区二区| 动漫黄色视频在线观看| 桃红色精品国产亚洲av| 国产老妇女一区| 岛国在线免费视频观看| 日本熟妇午夜| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 一进一出好大好爽视频| 91麻豆av在线| 97人妻精品一区二区三区麻豆| 18禁黄网站禁片午夜丰满| 亚洲电影在线观看av| 啪啪无遮挡十八禁网站| 国产精品一区二区三区四区免费观看 | 搡老妇女老女人老熟妇| 欧美人与善性xxx| 成年女人永久免费观看视频| 联通29元200g的流量卡| 久久人人爽人人爽人人片va| 一本精品99久久精品77| 日日撸夜夜添| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 午夜激情福利司机影院| 此物有八面人人有两片| 精品无人区乱码1区二区| 国产免费一级a男人的天堂| 精品久久久久久久末码| 免费无遮挡裸体视频| 一级毛片久久久久久久久女| 中国美白少妇内射xxxbb| 成年女人永久免费观看视频| av专区在线播放| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 自拍偷自拍亚洲精品老妇| 国产真实乱freesex| 成年女人看的毛片在线观看| 欧美成人一区二区免费高清观看| 99久久九九国产精品国产免费| 制服丝袜大香蕉在线| 波多野结衣巨乳人妻| 国产av不卡久久| 观看免费一级毛片| 97超视频在线观看视频| 亚洲在线自拍视频| 免费高清视频大片| 国产大屁股一区二区在线视频| 国产女主播在线喷水免费视频网站 | 免费观看的影片在线观看| 变态另类成人亚洲欧美熟女| videossex国产| 黄色一级大片看看| 久久6这里有精品| 内射极品少妇av片p| 国产精品精品国产色婷婷| 少妇的逼水好多| 国产亚洲91精品色在线| 亚洲欧美日韩高清在线视频| 久久精品影院6| 国产色爽女视频免费观看| 他把我摸到了高潮在线观看| 精品人妻一区二区三区麻豆 | 有码 亚洲区| 十八禁国产超污无遮挡网站| 国产精品人妻久久久影院| 国产又黄又爽又无遮挡在线| 99久久精品热视频| 中文字幕人妻熟人妻熟丝袜美| 婷婷六月久久综合丁香| av黄色大香蕉| 久久久久久久久久黄片| 国产又黄又爽又无遮挡在线| 国产精品人妻久久久影院| 久久国产精品人妻蜜桃| 亚洲精品色激情综合| 一本精品99久久精品77| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 国产精品,欧美在线| 久久久久精品国产欧美久久久| 久久婷婷人人爽人人干人人爱| 内地一区二区视频在线| 久久久久久伊人网av| 欧美国产日韩亚洲一区| 99热网站在线观看| 久久久久久久亚洲中文字幕| 99在线人妻在线中文字幕| 免费在线观看日本一区| 精品久久久久久久久av| 国产精品野战在线观看| 成年女人永久免费观看视频| 免费av观看视频| 舔av片在线| 中国美白少妇内射xxxbb| 欧美性猛交╳xxx乱大交人| 中国美白少妇内射xxxbb| 国产精品精品国产色婷婷| 欧美日本视频| 91在线精品国自产拍蜜月| 亚洲va日本ⅴa欧美va伊人久久| 天美传媒精品一区二区| 少妇高潮的动态图| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看| 简卡轻食公司| 亚洲精品亚洲一区二区| 色视频www国产| 色在线成人网| 蜜桃亚洲精品一区二区三区| 精品国产三级普通话版| 精品人妻一区二区三区麻豆 | 舔av片在线| 亚洲成av人片在线播放无| 极品教师在线免费播放| 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 日本-黄色视频高清免费观看| 免费观看的影片在线观看| 亚洲中文字幕一区二区三区有码在线看| 日本一二三区视频观看| 精品一区二区三区人妻视频| 18禁黄网站禁片午夜丰满| 此物有八面人人有两片| 免费看日本二区| 五月伊人婷婷丁香| 亚洲图色成人| 亚洲av免费在线观看| 欧美一级a爱片免费观看看| 久久人人爽人人爽人人片va| 在线国产一区二区在线| 国产伦人伦偷精品视频| 国产精品1区2区在线观看.| 最后的刺客免费高清国语| 久久香蕉精品热| 男人和女人高潮做爰伦理| 精品一区二区三区人妻视频| 在线免费观看不下载黄p国产 | 级片在线观看| 亚洲熟妇熟女久久| 日日摸夜夜添夜夜添av毛片 | 国产视频一区二区在线看| 午夜免费激情av| 三级国产精品欧美在线观看| 中文字幕精品亚洲无线码一区| 自拍偷自拍亚洲精品老妇| 极品教师在线视频| 亚洲综合色惰| 国产探花在线观看一区二区| a级毛片a级免费在线| 尾随美女入室| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 亚洲真实伦在线观看| 亚洲精品456在线播放app | 美女被艹到高潮喷水动态| or卡值多少钱| 国产精品国产高清国产av| 中国美女看黄片| 999久久久精品免费观看国产| 精品一区二区三区视频在线| 久久久午夜欧美精品| 男人狂女人下面高潮的视频| 日本 av在线| 十八禁国产超污无遮挡网站| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 免费观看人在逋| 又黄又爽又免费观看的视频| 日本一二三区视频观看| 日韩精品青青久久久久久| 免费看日本二区| 色综合亚洲欧美另类图片| 黄色欧美视频在线观看| 亚洲狠狠婷婷综合久久图片| 婷婷亚洲欧美| 亚洲四区av| 日韩欧美国产一区二区入口| 一卡2卡三卡四卡精品乱码亚洲| 香蕉av资源在线| 国内精品久久久久精免费| or卡值多少钱| 免费无遮挡裸体视频| 毛片女人毛片| av在线观看视频网站免费| 欧美日韩亚洲国产一区二区在线观看| 欧美另类亚洲清纯唯美| 一级a爱片免费观看的视频| 成人av在线播放网站| 欧美绝顶高潮抽搐喷水| 天天躁日日操中文字幕| 99久久久亚洲精品蜜臀av| 夜夜夜夜夜久久久久| 久久精品夜夜夜夜夜久久蜜豆| 国产 一区 欧美 日韩| 亚洲熟妇熟女久久| 内射极品少妇av片p| 欧美xxxx黑人xx丫x性爽| 悠悠久久av| 麻豆av噜噜一区二区三区| 草草在线视频免费看| 人妻丰满熟妇av一区二区三区| 国产精品爽爽va在线观看网站| 成人高潮视频无遮挡免费网站| a在线观看视频网站| 12—13女人毛片做爰片一| 日本黄色片子视频| 日日撸夜夜添| 久久久久久久久中文| 狠狠狠狠99中文字幕| 九九在线视频观看精品| 一级黄片播放器| avwww免费| 精品久久久噜噜| av在线天堂中文字幕| 波野结衣二区三区在线| 久99久视频精品免费| 亚洲成人中文字幕在线播放| 99热这里只有是精品50| 欧美性感艳星| 国产视频一区二区在线看| 亚洲人与动物交配视频| 男人舔女人下体高潮全视频| 熟妇人妻久久中文字幕3abv| 国产成人av教育| 婷婷精品国产亚洲av在线| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣高清作品| 中国美白少妇内射xxxbb| or卡值多少钱| 国产成人一区二区在线| 99久久无色码亚洲精品果冻| 成人毛片a级毛片在线播放| 国产淫片久久久久久久久| 动漫黄色视频在线观看| bbb黄色大片| 国产不卡一卡二| 欧美一级a爱片免费观看看| 一级毛片久久久久久久久女| av.在线天堂| 很黄的视频免费| 国产高清激情床上av| 观看免费一级毛片| 美女xxoo啪啪120秒动态图| 波野结衣二区三区在线| 中文字幕精品亚洲无线码一区| 日本 av在线| 亚洲av中文字字幕乱码综合| 欧美在线一区亚洲| 国产乱人视频| 成熟少妇高潮喷水视频| 有码 亚洲区| 少妇高潮的动态图| 亚洲成人久久爱视频| 男人舔女人下体高潮全视频| 国产在线精品亚洲第一网站| 国产伦人伦偷精品视频| 人妻夜夜爽99麻豆av| 成年女人毛片免费观看观看9| 亚洲av免费在线观看| 欧美人与善性xxx| 国内精品宾馆在线| 精华霜和精华液先用哪个| 99热这里只有是精品50| 日本a在线网址| 国产极品精品免费视频能看的| 久久久国产成人精品二区| 99久久中文字幕三级久久日本| 尾随美女入室| 久久九九热精品免费| 亚洲精品日韩av片在线观看| 人妻丰满熟妇av一区二区三区| 日日干狠狠操夜夜爽| 成人av一区二区三区在线看| 内地一区二区视频在线| 综合色av麻豆| 国产精品亚洲一级av第二区| 美女高潮的动态| 亚洲自偷自拍三级| 成人高潮视频无遮挡免费网站| 别揉我奶头~嗯~啊~动态视频| 男女下面进入的视频免费午夜| 国产激情偷乱视频一区二区| 午夜福利在线观看吧| 97碰自拍视频| 国产又黄又爽又无遮挡在线| 少妇裸体淫交视频免费看高清| 亚洲中文字幕一区二区三区有码在线看| 男人狂女人下面高潮的视频| 国产国拍精品亚洲av在线观看| 欧美不卡视频在线免费观看| 午夜激情福利司机影院| 色吧在线观看| 亚洲最大成人中文| 国产美女午夜福利| www.色视频.com| 91狼人影院| 好男人在线观看高清免费视频| eeuss影院久久| 午夜视频国产福利| 俺也久久电影网| 美女大奶头视频| 美女被艹到高潮喷水动态| 性插视频无遮挡在线免费观看| 久久久午夜欧美精品| av在线老鸭窝| 一区二区三区四区激情视频 | 日韩大尺度精品在线看网址| 色播亚洲综合网| 人人妻,人人澡人人爽秒播| 中文字幕人妻熟人妻熟丝袜美| 我要搜黄色片| 日韩欧美 国产精品| 国内久久婷婷六月综合欲色啪| 欧美性感艳星| 国产免费一级a男人的天堂| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久大精品| 国产精品久久久久久久电影| 欧美成人免费av一区二区三区| 琪琪午夜伦伦电影理论片6080| 麻豆成人av在线观看| 国产单亲对白刺激| 国产精品日韩av在线免费观看| 小说图片视频综合网站| 成人鲁丝片一二三区免费| 国产黄a三级三级三级人| 网址你懂的国产日韩在线| 狂野欧美白嫩少妇大欣赏| 亚洲av.av天堂| 一个人看视频在线观看www免费| 成人av在线播放网站| www.色视频.com| 伊人久久精品亚洲午夜| 无人区码免费观看不卡| 在线免费观看的www视频| 婷婷亚洲欧美| 亚洲成a人片在线一区二区| 久久人人爽人人爽人人片va| av天堂中文字幕网| 久久久国产成人精品二区| 成年女人永久免费观看视频| 国产精品久久久久久久电影| 中文字幕免费在线视频6| av在线天堂中文字幕|